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Density dependence of the symmetry energy probed by β−-decay energies of odd-A nuclei
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The mass-dependent symmetry energy coefficients asym(A) are extracted with the β−-decay energies Qβ−

of heavy odd-A nuclei. The dominant position of this approach is that only the Coulomb energy survives in
Qβ− to determine the unknown asym(A). The obtained asym(A) is employed to analyze the density dependence
of the nuclear matter symmetry energy around the saturation density. The estimated asym(A) of 208Pb is 22.1–
22.7 MeV. The slope parameter of the symmetry energy is found to be 50 ± 15 MeV, with the symmetry
energy S0 = 32.3 ± 1.3 MeV at saturation density obtained from the analysis of pygmy dipole resonance (PDR)
[Carbone et al., Phys. Rev. C 81, 041301(R) (2010)] as input. Furthermore, the corresponding neutron skin
thickness in 208Pb is estimated to be �Rnp = 0.174 ± 0.022 fm.
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I. INTRODUCTION

The measured data on nuclear masses and collective exci-
tations have allowed us to grasp some basic knowledge about
nuclear matter at saturation density, such as the energy per
particle, the symmetry energy, and the incompressibility. How-
ever, the variation of the equation of state (EOS) with respect
to baryon density is still being intensely debated, especially the
symmetry energy which characterizes its isospin dependence.
In recent decades, the symmetry energy has been one of the
focuses of nuclear physics because it plays a crucial role in
understanding a variety of issues in nuclear physics [1–6]
and astrophysics [7–12]. The behavior of density-dependent
symmetry energy at low densities is routinely treated by
series expansion. Around the nuclear matter saturation density
ρ0 = 0.16 fm−3, the symmetry energy S(ρ) is expanded to
second order in density as

S(ρ) = S0 + L

3

(
ρ − ρ0

ρ0

)
+ Ksym

18

(
ρ − ρ0

ρ0

)2

+ · · · , (1)

where S0 is the symmetry energy at density ρ0. L =
3ρ∂S(ρ)/∂ρ|ρ0 and Ksym = 9ρ2∂2S/∂ρ2|ρ0 are respectively
the slope and curvature parameters at ρ0 that characterize the
density dependence of the symmetry energy around density
ρ0. Moreover, the slope parameter L has been found to
correlate linearly with the neutron skin thickness �Rnp of
heavy nuclei such as 208Pb [13–15]. Therefore, a measurement
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of �Rnp with a high accuracy is an effective approach
to constrain the density dependence of S(ρ), but it is a
difficult task because the neutron skin is not directly an
observable and most of the experimental analysis that estimate
its value are model dependent. Instead, one can in turn
use the extracted L value to constrain the neutron skin
thickness.

Many independent investigations have been performed to
constrain the density dependence of the symmetry energy, such
as the microscopic Brueckner-Hartree-Fock approach [16],
the transport model [17,18], giant resonance [19], measured
nuclear masses [20] and the neutron skin thickness of heavy
nuclei [21,22]. Very recently, Sotani et al. constrained the
slope parameter as L � 50 MeV by the identification of the
lowest quasiperiodic oscillation frequency observed from SGR
1806-20 [23]. On the basis of an empirical approach and
the results of different energy density functionals, Agrawal
et al. estimated a value of L = 64 ± 5 MeV [24]. Möller
et al. determined L = 70 ± 15 MeV with the help of a more
accurate FRDM-2011a adjustment of the model constants to
new and more accurate experimental masses [25]. Steiner and
Gandolfi provided a tighter constraint to 43 < L < 52 MeV
within 68% confidence via astrophysical observations of
neutron star masses and radii [26]. Roca-Maza et al. estimated
the slope parameter to be L = 37 ± 18 MeV by exploiting
this correlation together with the experimental values of the
isoscalar and isovector giant quadrupole resonance energies
[27]. A detailed summary of the recent progress can be found
in Ref. [28]. Up to now, although significant progress has been
achieved around subsaturation density, the problem remains
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unsolved owing to its difficulty and complexity. In the present
work, we employ the β−-decay energies of heavy odd-A nuclei
to derive the symmetry energy coefficient asym(A) of heavy
nuclei and then explore the density dependence of the nuclear
matter symmetry energy.

II. SYMMETRY ENERGY COEFFICIENT OF HEAVY
NUCLEI AND INFINITE NUCLEAR MATTER

The asym(A) of finite nuclei is usually extracted by fitting
the measured nuclear masses [20,29–33]. In this study, we
extract the asym(A) with experimental β−-decay energies Qβ−

of heavy odd-A nuclei [34]. It has been well established
that the symmetry energy and the Coulomb energy mainly
determine where nuclei are stable against β decay [35,36].
The reasons why we select the β−-decay energies of odd-
A nuclei are manifold. Firstly, the nuclei for which β−
decay occur are neutron rich. In other words, their isospin
asymmetry β = (ρn − ρp)/ρ is relatively large, which differs
from neutron-deficient nuclei with β+ decay, and hence it
is more conducive for the present investigation. Secondly,
due to such a large isospin asymmetry, the Wigner energy,
which is not very well known, can be furthest depressed,
which is another advantage over the β+ emitters. Finally,
the employment of odd-A nuclei makes the corresponding
pairing energy negligible, which differs from the cases of
even-even nuclei and odd-odd nuclei, to which the pairing
energy contributes significantly, as shown later. Besides, the
nuclei with magic numbers are excluded to avoid shell effects.
The central purpose is to reduce the uncertainties as far as
possible. The β−-decay energy is given by

Qβ− = m(Z,A) − m(Z + 1, A) − me

= (mn − mp − me) + B(Z + 1, A) − B(Z,A), (2)

with mn − mp − me = 0.782 MeV [37]. B(Z,A) is the
binding energy of a nucleus that has been widely investigated
[38–41], which can be described by the well known liquid drop
formula

B(Z,A) = avA − asA
2/3 + Ec − asym(A)β2A

+Ep + EW + · · · . (3)

The Coulomb energy, including charge exchange correction,
is given by

Ec = −ac

Z(Z − 1)

A1/3(1 + �)
(1 − 0.76Z−2/3), (4)

where the parameter � was introduced by Danielewicz [35] to
describe the effect of the Coulomb interaction on the surface
asymmetry and the effect of the surface diffuseness on the
Coulomb energy, taking the following form:

� = 5π2

6

d2

r2
0 A2/3

− 1

1 + A1/3/κ

N − Z

6Z
. (5)

d ≈ 0.55 fm [35] is the diffuseness parameter in the Fermi
function from the parametrization of nuclear charge dis-
tributions and r0 is the nuclear-radius constant satisfying
3/(4πr3

0 ) = 0.16 fm−3. The meaning of the κ is discussed

later. These two effects reflected by the � tend to be
neglected in many investigations, but cannot be discarded
here due to its non-negligible contributions. The param-
eter ac = 0.71 is known very well [29,42]; in particular
it is well determined from the masses of mirror nuclei
[43,44]. Thus, the contribution of the Coulomb energy to
Qβ− is

�Ec = −ac

2Z

A1/3(1 + �)
+ 1.013ac

Z1/3

A1/3(1 + �)
, (6)

where the difference of the � between the parent nucleus and
its daughter one is neglected since it is quite small.

The pairing energy is usually calculated with the following
expressions used for spherical nuclei [45]:

−Ep =

⎧⎪⎪⎨
⎪⎪⎩

4.8/N1/3 + 4.8/Z1/3 − 6.6/A2/3, odd-Z–odd-N ,
4.8/Z1/3, odd-Z–even-N,

4.8/N1/3, even-Z–odd-N ,
0, even-Z–even-N.

(7)

For odd-odd and even-even nuclei, the pairing energy con-
tributes a value of ∼2 MeV and ∼−2 MeV to Qβ− , respec-
tively, while it just contributes ∼0.1 MeV for odd-Z–even-N
nuclei and ∼−0.1 MeV for even-Z–odd-N nuclei. Here,
both odd-Z and even-Z nuclei belonging to odd-A nuclei
are included for the calculation of the Qβ− , and hence the
effects of the pairing interaction are suppressed on average
to a large extent. The Wigner energy leading to a stronger
interaction for a neutron and proton with congruent nodal
structures takes the form of Ew = −10 exp (−4.2β) [46] in
units of MeV, and hence its contribution to Qβ− is estimated to
be �Ew = 84 exp (−4.2β) /A with a magnitude of ∼0.2 MeV.
The charge-asymmetry energy in the binding energy is given
as Ca(N − Z) where Ca = 0.102 89 MeV [47], and therefore
its contribution to Qβ− is −2Ca = −0.2 MeV, which cancels
out the �Ew of the Wigner energy. The shell correction in the
binding energy of a parent nucleus and its daughter one should
be close to each other because the densities of the energy
levels are not expected to change distinctly when decay occurs.
Accordingly, the shell energy corrections to their masses could
be canceled to a large extent, leading to a negligible correction
to Qβ− . The small deviation of the formula for Qβ− shown
later supports this point. Consequently, the β−-decay energy
can be rewritten as

Qβ− = 0.782 + �Ec + 4

(
β − 1

A

)
asym(A). (8)

Different from the single-particle binding energy which is
proportional to β2, the Qβ− is related to β. The contribution
of the Coulomb energy is known relatively well, which is the
primary advantage of this approach. The experimental Qβ−

values of sixty heavy nuclei around the 208Pb from A = 171 to
A = 253 are used for the following analysis. The parent or the
daughter nuclei with magic numbers in this range are excluded
to avoid strong shell effects.
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TABLE I. The calculated symmetry energy coefficient asym(A) of
208Pb, the symmetry energy S0 of nuclear matter at saturation density
ρ0, and the reference density ρA for 208Pb, based on the Skyrme
energy density functionals. The Skyrme interactions used in [48] are
employed.

SIII SLy4 SLy5 SKM*

asym (MeV) 22.1 23.5 23.3 20.8
S0 (MeV) 28.2 32.0 32.0 30.0
ρ0 (fm−3) 0.145 0.160 0.161 0.160
ρA 0.55ρ0 0.56ρ0 0.56ρ0 0.54ρ0

The mass dependence of the symmetry energy coefficient
asym(A) of heavy nuclei in Eq. (8) is written as [49]

asym(A) = S0

1 + κA−1/3
, with κ = 9

4

S0

Q
, (9)

where κ is the ratio of the surface symmetry coefficient to the
volume symmetry coefficient and Q is the surface stiffness
that measures the resistance of a nucleus against separation
of neutrons from protons to form a neutron skin. Centelles
et al. proposed a useful relation that the asym(A) of finite
nuclei is approximately equal to S(ρA) of nuclear matter at a
reference density ρA [21]. For example, the reference density
for 208Pb is ρA = 0.1 fm−3 [21]. This relation bridges the
symmetry energy of the nuclear matter and the one of finite
nuclei, and thus allows us to explore the density dependence of
the symmetry energy S(ρ). The symmetry energy coefficient
asym(A) was directly extracted in the framework of the Skyrme
energy density functional in our previous work [48]. We would
like to determine the reference density ρA as a continuation
of the work [48], which will be used in the following part.
The asym(A) and S(ρA) are treated with the same interactions
without introducing additional assumptions. The calculated ρA

listed in Table I show that the ρA ∼ 0.55ρ0 for 208Pb. Although
the different interactions give the different symmetry energy
(coefficients) of the finite nuclei as well as the nuclear matter,
the obtained ρA are almost the same. The saturation density
ρ0 has not been completely determined yet, so the ρA is in
units of ρ0 in order to reduce the uncertainty to a large degree
and to make Eq. (10) more convenient to use. The specific
calculation process can be represented as follow: (1) With the
experimental Qβ− values of heavy odd-A nuclei, one needs to
fit the S0 value and the parameter κ (S0 is not fitted but as an
input in the present study as shown latter), and then obtain the
asym(A) of 208Pb. (2) With the help of the obtained asym(208Pb)
the density dependence of the nuclear matter symmetry energy
at subnormal densities is explored. We use the formulism from
the DDM3Y interaction in Ref. [30,50] to describe the density
dependence of the symmetry energy S(ρ),

S(ρ) = 13.0

(
ρ

ρ0

)2/3

+ C1

(
ρ

ρ0

)
+ C2

(
ρ

ρ0

)5/3

, (10)

which is not an empirical formula and is found to be better than
the widely used expressions S(ρ) = S0(ρ/ρ0)γ and S(ρ) =
12.5 (ρ/ρ0)2/3 + Cp (ρ/ρ0)γ . Here C1 and C2 are linked
by S0 = 13.0 + C1 + C2 and S(ρA) = 13.0 (ρA/ρ0)2/3 +

FIG. 1. (Color online) L values are obtained by using some S0

values with narrow regions as inputs. The horizontal axis denotes the
S0 values in the range of 31.6 ± 2.2 MeV and the vertical axis denotes
the correspondingly calculated L values. Some S0 with narrow regions
from Möller et al. [25], Jiang et al. [51], Danielewicz and Lee [36],
and Carbone et al. [19] are employed to further constrain the L value.

C1 (ρA/ρ0) + C2 (ρA/ρ0)5/3. Thus, the two parameters C1 and
C2 can be determined uniquely.

It is difficult to fit S0 and κ directly to obtain their optimal
values since many different combinations of S0 and κ could
provide the same least deviation. Considering that S0 has
been determined as 31.6 ± 2.2 MeV at present [50], we solely
determine the optimal value of κ (carrying error bars) taking
the S0 as inputs, where the uncertainty mainly results from
the uncertainty of S0 values. Recently, the S0 value has been
constrained to rather narrow regions by some authors, which
will be used as inputs in the present study to fit the κ value
and then to determine the slope parameter L. S0 has been
determined to be 32.5 ± 0.5 MeV by Möller et al. from the
mass systematics [25], and the value matches very well with the
one from the double differences of “experimental” symmetry
energies [51]. Carbone et al. obtained a value of S0 =
32.3 ± 1.3 MeV using the correlation between L and S0 [19].
Danielewicz and Lee obtained S0 = 31.5–33.5 MeV from
the calculations of half-infinite matter [36]. Employing these
detailed S0 values from the four independent investigations as
inputs in combination with Eq. (10), the L values are calculated
and the results are plotted in Fig. 1. All the calculations
suggest that the most likely value of the slope parameter
is L ∼ 50 MeV. The S0 from Carbone et al. covering the
other three is naturally believed to be the most acceptable
one. With their S0 = 32.3 ± 1.3 MeV as input, the calculated
value of κ is 2.61 ± 0.46, thus the symmetry energy coefficient
of 208Pb is 22.1–22.7 MeV. The parameters in Eq. (10)
are C1 = 36.4 ∓ 4.3 MeV and C2 = −17.1 ± 5.6 MeV, and
correspondingly the slope and curvature parameters of nuclear
symmetry energy are L = 50 ± 15 MeV and Ksym = −197 ±
56 MeV, respectively. Here, we would like to stress that the
determination of the L and Ksym values relies on the reference
density ρA. If ρA = 0.1 fm−3 for 208Pb and ρ0 = 0.16 fm−3
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FIG. 2. Comparison between the L values obtained in the present
work and those from other recent independent analyses including
Chen et al. [17], Tsang et al. [18], Carbone et al. [19], Liu et al. [20],
Warda et al. [22], Agrawal et al. [24], Steiner and Gandolfi [26],
Roca-Maza et al. [27], Danielewicz and Lee [36], Möller et al. [25],
Dong et al. [48], and Shetty et al. [52].

are employed, one obtains L = 73 ± 17 MeV, which suggests
that it is important to consider the ρA accurately. The root-
mean-square deviation and mean deviation of Eq. (8) for the
Qβ− are 0.29 MeV and 0.22 MeV, respectively, where the
values of the Qβ− are ∼0.1–5 MeV. This deviation, leading
to a little uncertainty of asym(A) by just ∼0.3 MeV, to some
extent indicates the reliability of the present approach, and
one may in turn investigate the unknown beta decay energies
in heavy odd-mass nuclei.

Figure 2 shows the present estimated L values (50 ±
15 MeV) compared with those from other approaches. This
figure is not exhaustive but contains several recent estimations
that cover a large range of possible values of L. A more exhaus-
tive compilation is not the aim of this work, and one can refer to
Ref. [28,52,53] for a more complete review. One can see clearly
that the present finding has a remarkable overlap with some
recent results. The diversified approaches perhaps will allow
one to determine eventually the behavior of the symmetry en-
ergy. The present approach is much more straightforward than
those applying the binding energy directly. The contribution of

the symmetry energy asym(A)β2A to the total binding energy
is not very large; for example, the symmetry energy is just
14% of the total binding energy for 208Pb (β = 0.212). Yet, the
4(β − 1

A
)asym(A) in Eq. (8) is several times larger than the Qβ−

value, which is much more conducive for extracting the asym of
heavy nuclei. Furthermore, the pairing energy, Wigner energy,
volume energy, and surface energy, which appear in the binding
energy, are of no concern in the present method. The vanishing
of these interferences reduces the uncertainty significantly.

It has been well established in Ref. [54] that the correlation
between L and �Rnp in 208Pb is �Rnp = 0.101 + 0.00147L,
where L and �Rnp are measured in units of MeV and fm,
respectively. This correction is universal in the realm of
mean field theory as it is based on widely different nuclear
functionals. Reference [54] did not provide the theoretical error
attached to the correlation and hence we assume no theoretical
error of this formula in the following calculations. With the
new values of L obtained here, the neutron skin thickness in
208Pb is determined to be �Rnp = 0.174 ± 0.022 fm, which
agrees well with 0.168 ± 0.022 fm from the electric dipole
polarizability [55], 0.180 ± 0.035 from PDR [56], 0.18 ± 0.02
from exotic atom [57], and 0.17 ± 0.03 from chiral effective
field theory [58]. The �Rnp is related to the neutron star
cooling. It was proposed in Ref. [8] that the thicker the neutron
skin, the faster the electron fraction Ye rise with density, and
�Rnp in 208Pb of the order of 0.24 fm or larger suggests that
Ye will become large enough to allow a direct URCA process
to cool down a 1.4M� neutron star. The calculated �Rnp in
208Pb here is too small to allow a rapid cooling process in
this canonical neutron star. Besides, it has been shown that,
for neutron stars with masses above 1M�, the radius of the
star varies linearly with the slope L [59]. Correspondingly, the
radius is also correlated with the neutron skin thickness. These
all suggest that a high precision measurement of the neutron
skin thickness in 208Pb can provide important information on
the properties of neutron stars.

III. SUMMARY

An alternative method has been developed in the present
study to determine the symmetry energy coefficient of heavy
nuclei with the available experimental β−-decay energies of
heavy odd-A nuclei. This approach prevents interference from
other energy terms effectively, so that just a well known
Coulomb energy appears in the Qβ− value to determine the
asym(A). Accordingly, the extraction of the asym(A) is much
more straightforward. The calculated asym(A) of 208Pb was
furthermore used to probe the density dependence of the
symmetry energy of nuclear matter. With the symmetry energy
S0 = 32.3 ± 1.3 MeV at saturation density in Ref. [19] as an
input, the estimated values of the slope and curvature param-
eters are L = 50 ± 15 MeV and Ksym = −197 ± 56 MeV,
respectively. Correspondingly, the neutron skin thickness of
208Pb is determined to be �Rnp = 0.174 ± 0.022 fm, which
is too small to allow a rapid cooling for a 1.4M� neutron
star. If the S0 is constrained to a relative small value, such as
29.0–32.7 MeV in Ref. [53], the L, Ksym, and �Rnp values
are lowered correspondingly.
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