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Core-excitation three-cluster model description of 8He and 10He
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We introduce a new model applying to the core-nucleus and two-neutron system. The Faddeev equations of
6He-n-n and 8He-n-n systems for 8He and 10He are solved, respectively. The potential of the subsystem in the
model has been determined to make a coupling both of the ground state and the excited one inside the core
nucleus. By a similar mechanism the three-nucleon system is solved with the three-body force originating from
an isobar excitation of the nucleon. Inputting only the information of subsystem energy levels and widths we
get the coupling constants of rank 1 Yamaguchi potential between the core nucleus and neutron. We calculate
the Faddeev three-cluster equations to obtain the low-lying energy levels of 8He and 10He. The 1− state of 10He,
which has not been detected yet in experiments, is located in the energy level between the 0+ and 2+ states.
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I. INTRODUCTION

Due to developments of experimental technique, our
knowledge of unstable nuclei has been increasing rapidly.
Experimental researchers have recently reported a lot of
events. Here neutron-rich nuclei are good targets for studying
interesting phenomena, e.g., clustering, halos, deformation,
dineutron correlation, etc. In order to look for these properties
which differ from ordinary shell model study, one may need to
employ cluster model calculations. However, the interactions
between clusters are usually very complex, except for the
α cluster model treated as the resonating group method.
According to ab initio calculations, there are at most four-body
calculations [1]. Four-nucleon scattering has been solved
by the Faddeev-Yakubovsky formalism using the realistic
nucleon-nucleon force including the three-body force [2].
Beyond the four-nucleon system there are computational
difficulties because of limited memory size and CPU time.
Nevertheless, the Green’s function Monte Carlo simulation is
very promising. Recent calculations show many energy spectra
up to A = 9 [3].

There are some microscopic or effective theoretical ap-
proaches. For instance, the cluster orbital shell model (COSM),
complex scaling method (CSM) [4], and the method of analytic
continuation in the coupling constant (ACCC) [5] describe 9He
and 10He nuclei by their core-nucleus + valence-neutrons
model [6,7]. Systematic studies from 5He to 8He are reported
on the basis of the tensor-optimized shell model (TOSM)
[8] using a bare nucleon-nucleon interaction, of which the
short-range correlation is treated by the unitary correlation
operator method (UCOM) [9].
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On the other hand, the three-cluster model of the Faddeev
theory has been applied to the low-lying energy states of
the 6Li nucleus as an α + n + p three-body system using
nonlocal separable interactions [10]. In the case of T = 1 the
isotope 6He the binding energy and widths of the resonance
for the ground state Jπ = 0+ and the resonance state Jπ = 2+
agree with experiment. By the same scheme we have also
been investigating other exotic nucleus 9

�Be of α + α + �
three-body system [11,12].

In the next section we will introduce a new model calcu-
lation based on the Faddeev theory. The three-body system is
treated as a cluster model consisting of core nucleus +n + n to
investigate 8He and 10He nuclei. 6,8He are so-called Borromean
nuclei and 10He is also regarded as the Borromean nucleus
because the energy level of the ground state is much closer to
the three-body breakup threshold. It is often considered that
the core nucleus of the three-body model deals with only the
ground state core nucleus. However, in our model not only
the ground state core particle but also an excited state core
nucleus are adopted. The idea [13] is also found in the case
of the three-nucleon system, in which some of the nucleons
become a delta isobar in 3He [14].

Preliminary calculations have been carried out [15,16].
Because the excited state Jπ = 1

2
−

of 7He was not found in the
experiment, in the former work the 8He ground state could not
be described accurately. Using the presence of the excited state
in the experiment [17], we recalculate with the new data of 7He.
Our theoretical prediction will be demonstrated in case of 8He
and 10He nuclei in Sec. III. The conclusion is given in Sec. IV.

II. A NEW THREE-CLUSTER MODEL

In the framework of the Faddeev theory the three-body
equations were represented as the Alt-Grassberger-Sandhas
(AGS) equations using a separable potential of NN interaction
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FIG. 1. Illustration of core-excitation cluster. The core cluster of
the ground state and excited state are labeled G and X, respectively.
Neutrons are labeled n.

[18]. The AGS equations are used in many three-body systems.
They have succeeded in the calculation of a three-body breakup
process for the α-n-p system first [19]. Recently the study of
the system has progressed well [20]. The system was often
investigated and the calculation of the resonance states T = 1
without Coulomb force are discussed only corresponding to
the case of the 6He nucleus. We verified the former work
[10], and the energy level of the ground state Jπ = 0+ from
the threshold of α + 2n is obtained as −0.56 MeV, vs data
of −0.973 MeV. The energy level of the first excited state
Jπ = 2+ is also obtained as 0.95 MeV (� = 0.3 MeV), vs data
of 0.824 MeV (� = 0.113 MeV) [21]. The separable potential
is very primitive; nevertheless, these calculations encourage
us to start the neutron-rich study.

On the other hand, the research in three-nucleon scattering
has made great progress according to the three-body force
[22,23]. It is considered that the fundamental origin of the
three-body forces comes from the delta excitation, or inner
excitation, of the nucleon [24]. Study of the three-nucleon
force has progressed recently, centering on the chiral symmetry
that the QCD Lagrangian possesses [25,26].

If the idea of inner excitation is applied to the case of
neutron-rich nuclei, more precise theoretical results would be
possible, taking into consideration the inner excitation of the
core cluster that constitutes the nucleus [13]. This idea has a
similarity to the delta isobar excitation in the three-nucleon
system [14]. Illustrations of the model that we imagine are
shown in Fig. 1. Labels G of Fig. 1(a) and X of Fig. 1(b)
represent the ground and excited state core nuclei, respectively.

The Hilbert space H of the model consists of two Hilbert
ones

H = H(G) ⊕ H(X). (1)

Using the wave function, we have

|�〉 = |G〉|�G〉 + |X〉|�X〉, (2)

where |G〉 and |X〉 are orthonormal bases to distinguish their
spaces,

〈G|G〉 = 〈X|X〉 = 1, 〈G|X〉 = 〈X|G〉 = 0. (3)

The free Hamiltonian Ĥ 2clust.
0 of the subsystem con-

sisting of the core nucleus and neutron is represented

as

Ĥ 2clust.
0 |G〉 ≡ p2

2ν
|G〉, Ĥ 2clust.

0 |X〉 ≡
(

δm + p2

2ν

)
|X〉,

(4)

where p and ν are the relative momentum and the reduced
mass between the core nucleus and neutron, respectively. The
mass difference δm is the energy level shift of the ground state
core nucleus and the excited one.

A. Two-body interaction

In our model the potential of a two-cluster system has a
rank 1 separable Yamaguchi form using a simple form factor
g(p). For instance, the neutron-neutron potential of the 1S0

partial wave is given as

Vnn(p, p′) = −γ 2
nngnn(p)gnn(p′) (5)

with

gnn(p) = 1

p2 + β2
nn

, (6)

where we choose parameters βnn = 1.1648 fm−1 and γ 2
nn =

0.3943 fm−3 from [10].
Let us introduce a new form factor h, which is combined

with the partial waves |lI SI jI 〉 and the particle basis |I 〉:
〈p|h〉 =

∑
I=G,X

∑
lI ,SI ,jI

γIn;lI ,SI ,jI
gIn;lI ,SI ,jI

(p)|lI SI jI 〉|I 〉 (7)

with

gIn;lI ,SI ,jI
(p) = plI(

p2 + β2
In;lI ,SI ,jI

)lI +1 , (8)

where lI , SI , and jI are angular momentum, total spin, and total
angular momentum of the two-body subsystem (jI = lI + SI ),
respectively. The core-nuclei neutron potential V is given by
the form factor h,

V̂ = −|h〉〈h|. (9)

However, the neutron-neutron (nn) potential V̂nn differs from
this form; one writes it as

V̂nn = −|gnn〉γ 2
nn〈gnn|{|G〉〈G| + |X〉〈X|}. (10)

Apparently the potential V̂nn is not coupled between |G〉
and |X〉.

When the core-nucleus spin has the ground state 0+ and
the excited state 2+, there are SG = 1

2 and SX = 3
2 and 5

2 ,
respectively. If one takes the same number for the parameter
β, the potentials of SX = 3

2 and SX = 5
2 differ only in the

coupling constants. The degenerated coupling constant γ 2
In;lI ,jI

could be introduced:

γ 2
Gn;lG,jG

≡ γ 2
Gn;lG, 1

2 ,jG
, γ 2

Xn;lX,jX
≡ γ 2

Xn;lX, 3
2 ,jX

+ γ 2
Xn;lX, 5

2 ,jX
.

(11)

According to the separable scheme, the t matrix t(p, p′; E2),

tIn;lI ,SI ,jI ,I ′n;l′I ,S
′
I ,j

′
I
(p, p′; E2)

≡ 〈I |〈lI SI jI |〈p|h〉τ (E2)〈h|p′〉|l′I S ′
I j

′
I 〉|I ′〉, (12)
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FIG. 2. Integral pass of Eq. (14). In the Riemann complex sheet
of the variable p the integral pass is taken as the dashed line below
the resonance pole.

fulfills the Lippmann-Schwinger equation with the result

τ (E2) = −1 − τ (E2)〈h|Ĝ2clust.
0 (E2)|h〉. (13)

In order to determine these coupling constants γ in Eq. (7), we
introduce the following natural assumption. If the subsystem
has no bound state (Borromean nuclei are in this case) but has
some resonance states, the propagator τ (E2) must diverge at
the resonance energy E2 = Eres

2 , which has a real part E
(r)
2 and

width �. Under the condition τ (E2) = ∞, Eq. (13) becomes

1 + γ 2
Gn;lG,jG

〈gGn;lG,jG
| 1

Eres
2 − p̂2/2ν + iε

|gGn;lG,jG
〉

+γ 2
Xn;lX,jX

〈gXn;lX,jX
| 1

Eres
2 − δm − p̂2/2ν + iε

|gXn;lX,jX
〉

= 0. (14)

Approximately, the resonance state occurs only in two chan-
nels and there is assumed to be no absorption channel;
we expect these coupling constants to be real numbers.
Consequently, the condition leads to two conditions (real part
and imaginary one) to subtract two unknown parameters γG

and γX.
As shown in Fig. 2, one needs to take the integral pass of

Eq. (14), because the resonance pole is located on the physical
Riemann sheet at p = ppole with p2

pole = 2νEres
2 .

In order to apply these potentials to the three-body system,
we must resolve the degeneracy of SX. Following a natural
way of thinking, the weight of the couplings will be taken
from the degree of multiplicity under the condition of (11),1

γXn;lX,SX,jX
=

√
2SX + 1

10
γXn;lX,jX

. (15)

We will show these coupling constants of 6He-n and 8He-n
in Sec. III.

1We caution that the case (lX, 5
2 , jX) = (1, 5

2 , 1
2 ) does not occur;

therefore, one does not need the renormalization for (1, 3
2 , 1

2 ).

TABLE I. Parameters for 6He(0+)-n+6He(2+)-n potential. The
resonance energies are measured from the 6He + n threshold. The
strengths γ 2 are in units of fm−5 for P wave, and fm−7 for F wave.
The parameters βG and βX are commonly taken to be 1.5166 fm−1.
(βnn = 1.1648 fm−1.)

Eres
2 (MeV) Partial wave lG γ 2

G lX γ 2
X

0.445 − i0.075 [21] 2P3/2 + 4,6P3/2 1 4.1655 1 6.1580
1.345 − i0.5 [17,28] 2P1/2 + 4P1/2 1 5.3966 1 4.0418
3.37 − i0.995 [21] 2F5/2 + 4,2P5/2 3 116.80 1 7.6144
nn channel 1S0 0 0.3943 0 0.3943

B. Three-body integral equation

The AGS equations are well established [27], therefore,
we will not repeat the same part of Ref. [10]. The following
explanation is an additional part because of the extension of
the core-excitation channel (G or X) and the definition of the
wave function.

The total wave function |�Jπ T 〉 with total angular momen-
tum J , parity π , and total isospin T consists of the Faddeev
components ψJπ T labeled by particle channels α, β, and γ :

|�Jπ T 〉 = ∣∣ψJπ T
α

〉 + ∣∣ψJπ T
β

〉 + ∣∣ψJπ T
γ

〉
. (16)

The AGS equations for the Faddeev component is given by∣∣ψJπ T
α

〉 = G0tα
∑
β �=α

∣∣ψJπ T
β

〉
(17)

= G0|hα〉τα〈hα|
∑
β �=α

∣∣ψJπ T
β

〉
. (18)

The reduced wave function f Jπ T
I ;K̃α

(qα) is defined by
∑

I=G,X

〈I |〈K̃α|〈qα

∣∣f Jπ T
α

〉

= 〈
qα

∣∣f Jπ T
K̃α

〉 = f Jπ T
K̃α

(qα)

≡
∑

I=G,X

γIn;lα,jα
〈gIn;lαjα

|
∑
β �=α

∣∣ψJπ T
I ;β

〉
, (19)

where qα is the Jacobi momentum designating the momentum
of the particle labeled by α relative to the (βγ ) pair. The index

TABLE II. Sets of the quantum numbers for the J π = 0+ state
of the 8He nucleus. The quantum numbers for the particle channel
α = 3 are obtained from α = 1 by just cyclically label replacing
sα → sβ → sγ → sα .

Kα K̃α α I Lα Sα jα lα Sα sα sβ sγ

1 1 1 G 1 1 3/2 1 1/2 1/2 1/2 0
2 1 1 X 1 1 3/2 1 3/2 1/2 1/2 2
3 1 1 X 0 0 3/2 1 5/2 1/2 1/2 2
4 2 1 G 0 0 1/2 1 1/2 1/2 1/2 0
5 2 1 X 0 0 1/2 1 3/2 1/2 1/2 2
6 3 1 G 0 0 5/2 3 1/2 1/2 1/2 0
7 3 1 X 0 0 5/2 1 3/2 1/2 1/2 2
8 3 1 X 0 0 5/2 1 5/2 1/2 1/2 2
9 4 2 G 0 0 0 0 0 0 1/2 1/2

10 5 2 X 2 2 0 0 0 2 1/2 1/2
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TABLE III. The predicted energy levels of the 8He nucleus from
the 6He + n + n threshold. The resonance energy E equals E(r) −
i�/2. Units are MeV.

J π Present work Expt.

E(r) � E(r) �

0+ −1.35 −2.14
2+ 2.01 2.12 1.06 ± 0.5 0.6 ± 0.2

Kα = {tα, jα, Sα, lα,Sα,Lα, I } is defined as the quantum
numbers that label the different three-body channels JπT .
The index K̃α = {tα, jα, lα,Sα,Lα} is also defined because of
the degeneration of Sα and I .

Here, for the sake of unifying the notation the related
coupling constant γnn is also written as γIn;lα,jα

when the
spectator of the particle channel α is the core nucleus. The
following angular momentum and isospin coupling scheme is
given as

Sα = sβ + sγ , jα = lα + Sα, tα = τβ + τγ ,
(20)

Sα = jα + sα, J = Lα + Sα, T = tα + τα.

Here, sβ and τβ refer to the spin and isospin of the particle
labeled by β, lα refers to the relative orbital angular momentum
of the (βγ ) pair, Sα is the channel spin, and Lα is the orbital
angular momentum of the spectator particle α relative to the
(βγ ) pair.

The AGS equations (18) are modified into equations for the
reduced wave functions:

f Jπ T
K̃α

(qα) =
∑
I,I ′

∑
K̃γ

∫ ∞

0
dqγ q2

γ ZJπ T
I ;K̃α,I ′;K̃γ

(qα, qγ ; E)

× τlγ jγ
(E − εγ (qγ ))f Jπ T

K̃γ
(qγ ), (21)

where the integral kernel ZJπ T
I ;Kα,I ′;Kβ

is defined by

ZJπ T
I ;K̃α,I ′;K̃β

(qα, qβ ; E)

≡ δ̄αβδII ′γIn;lα,jα
γI ′n;lβ ,jβ

×〈gI ;lαjα
; qβKβJT |G(I )

0 |gI ′;lβ jβ
; qβKβJT 〉 (22)

and εγ (qγ ) is
q2

γ

2μγ
, and E is a total energy of the three-body c.m.

system. Eqquation (22) is only changed with the parts of δII ′

and γ from Eq. (13) of [10]. In addition, the free three-body

TABLE IV. Parameters for the 8He(0+)-n+8He(2+)-n potential.
The resonance energies are measured from the 8He + n threshold.
The strengths γ 2 are in units of fm−5 for P wave, and fm−7 for
F wave. The parameters βG and βX are commonly taken to be
1.5166 fm−1.

Eres
2 (MeV) Partial wave lG γ 2

G lX γ 2
X

1.27 − i0.05 [29] 2P1/2 + 4P1/2 1 0.44601 1 10.181
2.42 − i0.35 [29] 2S1/2 + 4,6D1/2 0 0.016538 2 118.42

Green’s function G0 can be written as

G
(G)
0 ≡ 〈G|Ĝ0|G〉 = 1

E − p2
α/(2να) − q2

α/(2μα) + iε
,

G
(X)
0 ≡ 〈X|Ĝ0|X〉

= 1

E + δm − p2
α/(2να) − q2

α/(2μα) + iε
, (23)

where the reduced masses να and μα are mβmγ /(mβ + mγ )
and mα(mβ + mγ )/(mα + mβ + mγ ), respectively.

In order to find out the three-body bound state or resonance
state we regard the AGS equations of Eq. (21) as the eigenvalue
equation

η 
ψ = K(E) 
ψ, (24)

where η and K(E) are the eigenvalue and the integral kernel
Z(E)τ in Eq. (21), respectively. We need to search for E
under a constraint η = 1. Our basic technique is based on the
Gauss-Seidel method to solve the eigenvalue equation. The
typical procedure requires a few hundred iterations to reach the
stable solutions. Performance of the integral for the complex
momentum qγ takes the integral pass as well as two-body
momentum p shown in Fig. 2. The contour deformation angle
θ is defined as

pcomplex ≡ p exp(−iθ ), qcomplex ≡ q exp(−iθ ). (25)

The accuracy of the calculation is sufficiently maintained
within θ � π

3 .

III. NUMERICAL RESULTS

We applied the above-mentioned scheme to the core-
nucleus + 2n systems of 8He and 10He. The results of these
systems are separately demonstrated in the next subsections.

A. 8He nucleus

We treat here 8He as the 6He-n-n three-body system. The
energy shift δm between the ground state G and the first excited
state X of the core nucleus 6He is 1.8 MeV. There are low-lying
three-resonance states in 7He, which are submitted as Jπ =
( 3

2 )− (g.s.: �c.m. = 0.150 ± 0.020 MeV [21]), Jπ = ( 1
2 )−

(Ex = 0.9 ± 0.5 MeV, �c.m. = 1.0 ± 0.9 MeV [17]) and Jπ =
( 5

2 )− (Ex = 2.92 ± 0.09 MeV, �c.m. = 1.990 ± 0.170 MeV)
[21]. The energy level of the ground state is 0.445 MeV [21]
from the threshold of 6He and neutron, we have each Eres.

2 in

TABLE V. Sets of the quantum numbers for the J π = 0+ state
of the 10He nucleus.

Kα K̃α α I Lα Sα jα lα Sα sα sβ sγ

1 1 1 G 1 1 1/2 1 1/2 1/2 1/2 0
2 1 1 X 1 1 1/2 1 3/2 1/2 1/2 2
3 2 1 G 0 0 1/2 0 1/2 1/2 1/2 0
4 2 1 X 0 0 1/2 2 3/2 1/2 1/2 2
5 2 1 X 0 0 1/2 2 5/2 1/2 1/2 2
6 3 2 G 0 0 0 0 0 0 1/2 1/2
7 4 2 X 2 2 0 0 0 2 1/2 1/2
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TABLE VI. The predicted energy levels of the 10He nucleus
from the 8He + n + n threshold. The resonance energy E equals
E(r) − i�/2. Units are MeV.

J π Present work Expt.

E(r) � E(r) �

0+ 0.803 0.665 1.069 0.3 ± 0.2
1− 1.25 0.21
2+ 3.97 4.71 4.31 ± 0.20 0.6 ± 0.3

Table I. Using these experimental data we list the coupling
constants γ 2

I obtained by solving our model equations (14).
For the sake of simplicity the reduced mass ν is 6

7mN with
nucleon mass mN = 939 MeV.

The possible quantum numbers of the three-body partial
wave of Jπ = 0+ are listed in Table II. There are 10 channels
for the Jπ = 0+ ground state of 8He, and 32 channels for Jπ =
2+. In Table III our theoretical predictions are demonstrated
with the recent experimental data. Energy levels are reasonably
well obtained to describe the data; however, there is a tendency
of large width.

B. 10He nucleus

The 10He nucleus is here treated as the 8He-n-n three-body
system. The energy shift δm between the ground state G and
the first excited state X of the core nucleus 8He is 3.1 MeV.
There are low-lying two-resonance states in 9He, which are
submitted as Jπ = ( 1

2 )− (g.s.: �c.m. = 0.10 ± 0.06 MeV) [29]
and Jπ = ( 1

2 )+ (Ex = 1.15 ± 0.10 MeV, �c.m. = 0.7 ± 0.2
MeV) [29]. The energy level of the ground state is 1.27 MeV
[29] from the threshold of 8He and neutron, we have each Eres.

2
in Table IV. Using these experimental data we obtained the
coupling constants γ 2

I by our model equations (14) as well as
the case of 8He. For simplicity the reduced mass ν is 8

9mN .
The possible quantum numbers of the three-body partial

wave of Jπ = 0+ are listed in Table V. There are seven
channels for Jπ = 0+ ground state of 10He, and seven channels
for Jπ = 2+. In Table VI our theoretical predictions are shown
with the recent experimental data. The state (1−) not found
in the experiment is obtained. Although we would like to
recommend measuring it, the clustering of the state may be
poorly developed.

IV. CONCLUSION

We have been conducting research on 6,8,10He isotopes
based on the three-cluster model. Incorporating the core-
nucleus excitation we deal with double Hilbert spaces. In
the sense of ab initio calculation only from the fundamental
NN potential double Hilbert spaces are not necessary. The
three-cluster model requires effective cluster potential between

E
−

E
( 

 H
e)

 [
M

eV
]

6 0+

0+

2+ 2+

2
1 −

2
1 +

2
1 −

2
3 −

2
5 −

2+

−1( )

0+

-3

-2

-1

0

1

2

3

4

6He 7He 9HeHe8 10 He

FIG. 3. Energy levels of He isotopes normalized to the 6He
ground state energy. The dashed lines correspond to our theoretical
predictions. The solid lines are taken from experimental data
[17,21,29].

the core nucleus and neutron. Even though the potential is
determined by sufficient data in each space, it is not always
necessarily useful in the three-cluster model. We have adopted
a separable potential of rank 1, which bounds both of the
Hilbert spaces. Coupling constants in the two spaces can
be determined by their widths and the energy level of the
resonance state in the subsystem.

There are the ground 0+ and the excited 2+ states in both
8He and 10He. In Fig. 3 their energy levels are shown. The
solid (dashed) level lines correspond to experimental data
(theoretical predictions). The energy levels of 6He are obtained
from [10], and are recalculated to check our program code. Our
numbers for 6He agree with [10]. The states of 8He and 10He
mostly appear as in our theoretical prediction. Comparing with
the case of 10He, we obtain rather a large difference (≈1 MeV)
between data and prediction in 8He. The level 1− is found,
which is close to the 0+ state. However, this might be a simple
spurious state because the real state of 1− may not be a cluster
state. The expected theoretical decay width does not reproduce
the experiment so much as a whole.

Although it is difficult to evaluate the accuracy of our model
only by having investigated a few nuclei, we would like to
mention that our results were reasonably satisfactory. For the
sake of proving the effectiveness of our model we can only
continue to predict unknown states which are not measured yet.
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