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Shell and isospin effects in nuclear charge radii
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The shell effect and isospin effect in nuclear charge radii are systematically investigated, and a four-parameter
formula is proposed for the description of the root-mean-square (rms) charge radii by combining the shell
corrections and deformations of nuclei obtained from the Weizsacker-Skyrme mass model. The rms deviation
with respect to the 885 measured charge radii falls to 0.022 fm. The proposed formula is also applied for the
study of the charge radii of superheavy nuclei and nuclear symmetry energy. The linear relationship between the
slope parameter L of the nuclear symmetry energy and the rms charge radius difference of the 3°S-*Si mirror
pair is clearly observed. The estimated slope parameter is about L = 54 &£ 19 MeV from the coefficient of the

isospin term in the proposed charge radius formula.
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As one of the basic nuclear properties, the root-mean-
square (rms) charge radii of nuclei are of great impor-
tance for the study of nuclear structures [1,2] and nucleus-
nucleus interaction potentials [3,4]. On one hand, the rms
charge radii of nuclei can be self-consistently calculated
by using microscopic nuclear mass models, such as the
Skyrme-Hartree-Fock-Bogoliubov (HFB) model [5,6] and
the relativistic mean-field (RMF) model [7,8]. The HFB21
model [6] can reproduce the 782 measured charge radii [9]
with an rms deviation of 0.027 fm. On the other hand, the
rms charge radii of nuclei are also frequently described by
using mass- and isospin-dependent (or charge-dependent) phe-
nomenological formulas [10-15]. Although these microscopic
and phenomenological models can successfully describe the
nuclear charge radii of most nuclei, the parabolic charge radii
trend in the Ca isotope chain due to the shell closure of
N =20 and N = 28 cannot be reasonably well reproduced
[2]. The shell effect directly influences the deformations of
nuclei and, thus, affects the nuclear rms charge radii. To
consider the shell effect, an empirical shell correction term,
which is a function of the numbers of valence nucleons,
was introduced in the phenomenological charge radius for-
mulas [9,15] by assuming the proton magic numbers Z =
2,6, 14,28, 50, 82, (114) and neutron magic numbers N =
2,8, 14, 28, 50, 82, 126, (184). Obviously, the fine structure of
the nuclear charge radii for nuclei with semimagic numbers,
such as Z,; = 40, 64, 108 and N, = 56, 162 cannot be well
described by the parametrized formulas. Microscopic shell
corrections and the influence of nuclear deformations should
be considered in the formula.

In addition to the shell effect, the isospin effect also plays
a role for the nuclear charge radii. The nuclear symmetry
energy, in particular, its density dependence, has received
considerable attention in recent years [16-23]. The nuclear
symmetry energy probes the isospin part of the nuclear force
and intimately relates to the structure character of neutron-rich
and neutron-deficient nuclei. The density dependence of the
nuclear symmetry energy has been extensively investigated by
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using various models and experimental observables, such as
the microscopic dynamics models [16,17], the nuclear mass
models [6,15,24-26], the pygmy dipole resonance [27,28], the
neutron star observations [21,29,30], and so on. In particular,
the neutron skin thickness of 2%8Pb is found to be a sensitive
observable to constrain the slope parameter L of the nuclear
symmetry energy at the saturation density since the linear
relationship between the slope parameter L and the neutron
skin thickness AR,, of *Pb was clearly observed [20,31].
However, it is difficult to precisely measure the neutron
radius of 2®Pb in experiments, which results in a large
uncertainty of the extracted slope parameter. By comparing
with the neutron radii of the nuclei, the rms charge radii of
the nuclei can be measured with relatively high accuracy. It
would be helpful if the slope parameter could be determined
from the charge radii of the nuclei. It is known that, in
the absence of Coulomb interactions between the protons, a
perfectly charge-symmetric and charge-independent nuclear
force would result in the binding energies of mirror nuclei
(i.e., nuclei with the same atomic number A but with the
proton number Z and neutron number N interchanged) being
identical [32,33]. In this case, the neutron skin thickness
of a neutron-rich nucleus approximately equals the proton
radius difference (in absolute value) of this nucleus and its
mirror partner. It is, therefore, interesting to investigate the
correlation between the charge radius difference of the mirror
nuclei and the slope parameter L of the nuclear symmetry
energy.

In this Rapid Communication, we attempt to propose a
phenomenological formula for the global description of the
nuclear rms charge radii by combining the deformations and
shell corrections of nuclei obtained from the Weizsacker-
Skyrme (WS*) mass model [24,25], which is based on the
macroscopic-microscopic method together with the Skyrme
energy-density functional and mirror constraint from the
isospin symmetry.

Based on the consideration of the nuclear saturation
property, the nuclear charge radius R, is usually described
by the A'/3 law: R. = ryA'/3, where A is the mass number.
By considering the quadrupole B, and the hexadecapole B4
deformations of the nuclei, the rms charge radius r¢, of a
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FIG. 1. (Color online) (a) Nuclear rms charge radii of Ca isotopes
[35]. (b) Shell corrections of Ca isotopes obtained from the WS* mass
model [25]. The open circles in (a) denote the calculated results in
this Rapid Communication with Egs. (1) and (2).

nucleus can be approximately written as [11]

3 5
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For a better description of the charge radii of light nuclei and
nuclei far from the B-stability line, the mass- and isospin-
dependent radius coefficient ry was introduced [10], i.e.,
R. = rgA"3(1 4+ k/A — aI) with the isospin asymmetry I =
(N — Z)/A. In addition to the mass and isospin dependence
of the nuclear charge radii, it is found that the shell effect
also plays a role for some nuclei [15]. In Fig. 1, we show the
rms charge radii of Ca isotopes and the corresponding shell
corrections of nuclei from the WS* mass model [25]. One sees
that the parabolic trend of the rms charge radii of Ca isotopes
between N = 20 and 28 seems to be consistent with that of the
corresponding shell corrections, which implies that to consider
the shell effect could be helpful for a better description of the
nuclear charge radii.

By considering the influence of the shell effect in nuclei, we
propose a modified four-parameter formula for the description
of the nuclear charge radius R,

R.=roA"® + 1A 41 I(1 = D+ 1y AEJA,  (2)

where AE denotes the shell corrections of the nuclei from
the WS* mass model with which the 2149 known masses in
AME2003 [34] can be reproduced with an rms deviation of
441 keV and the shell gaps for the magic nuclei can also
be well reproduced. The r, term in Eq. (2), which is different
from the isospin term in the available phenomenological radius
formulas, will be discussed later. Based on the 885 measured
rms charge radii for nuclei [35] with A > 16 together with
the deformations f,, B4 and shell corrections AE of nuclei
obtained from the WS* mass model [25] and searching for the
minimal rms deviation

Lo
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between the experimental data and model calculations, we
obtain the optimal values for the four parameters which are
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TABLE 1. Parameters of the charge radius formula R, and the rms
deviation o with respect to the 885 measured rms charge radii [35].
The unit for r; is MeV ™! fm, and those for the others are femtometers.

o r Fg ra o

1.2260(9) 2.86(9) —1.09(3) 0.99(17) 0.022

listed in Table I. By comparing with the rms deviation between
the 885 measured radii and the HFB21 calculations [6],
which is 0.026 fm, the corresponding result in this Rapid
Communication falls to 0.022 fm. With the microscopic shell
corrections, the rms deviation in the charge radii can be reduced
by 17%. From Fig. 1(a), one sees that the known rms charge
radii of the Ca isotopes can be reproduced reasonably well.
For the isospin term in the charge radius formulas, the
forms 1%, TA'/3 and (I — Iy)A'/? were proposed in Ref. [15],
Ref. [10] and Ref. [9], respectively. Here, Iy~ 0.4A/
(A 4 200) denotes the corresponding isospin asymmetry of
nuclei along the B-stability line. We note that the rms deviation
can be further reduced by about 15% with anew form I(1 — I)
by comparing with the result that uses the form IA'/3. In
Fig. 2, we show the isospin dependence of the relative rms
charge radii. Here the relative rms charge radius of a nucleus

is given by érep = r:l’;p — \/g(rko +r AT 4 rqAE/A)
without considering the influence of nuclear deformations.
By comparing with the linear form, the form /(1 — I) gives
relatively better results for the extremely neutron-rich nuclei
since the decreasing trend of the charge radii gradually
weakens with the increase in isospin asymmetry. We also
note that the value of nuclear radius constant ry in Eq. (2),
which relates to the saturation properties of symmetric nu-
clear matter and neutron matter, is very close to the value
(1.2257 fm) proposed in Ref. [36].

Based on the proposed four-parameter nuclear charge radius
formula, the known experimental data are systematically
investigated. In Fig. 3, we show the difference between the
experimental data and the model calculations for the 885 rms
charge radii of the nuclei. From the results of the two quite
different models, one sees that the trends in the differences
are similar to each other, which is due to the fact that the
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FIG. 2. (Color online) Relative rms charge radii of nuclei as a
function of isospin asymmetry /.
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FIG. 3. (Color online) Difference between the experimental data
and the model calculations for the 885 rms charge radii of nuclei [35].
The squares and solid circles denote the results of the HFB21 model
and those in this Rapid Communication, respectively. The error bars
denote the uncertainty of the experimental data.

obtained deformations of the nuclei with the HFB21 mass
model are comparable with the results from the WS* mass
model. The calculated rms deviation with the proposed formula
is only 0.022 fm, which is smaller than the results of the
HFB21 model by 15%. Here, we also present the results of
the microscopic RMF model in Fig. 4 for comparison. In
Ref. [7], the rms charge radii of even-even nuclei with Z > 10
are systematically calculated by using the RMF model with
the force NL3. For the measured rms charge radii of 343
even-even nuclei, the rms deviation with the proposed formula
is 0.016 fm, which is significantly smaller than the result
(0.026 fm) of the RMF calculations. For nuclei with charge
numbers Z < 20 and Z &~ 78, the results of the proposed
formula are better than those of the RMF calculations. It
is partly due to the fact that the shell corrections and the
deformations for the nuclei with the new magic numbers, such
as N = 14, 16 and for the nuclei with the subshell closure are
reasonably well described by the WS* mass model.

In Fig. 5, we show the comparisons of the rms charge
radii for Ca, Ni, Zr, and Pb isotopes from three models.
For the Ca isotopes, neither the HFB21 model nor the RMF
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FIG. 4. (Color online) Difference between the experimental data
and the model calculations for the rms charge radii of 343 even-even
nuclei [35]. The squares and circles denote the results of the RMF
model [7] and those in this Rapid Communication, respectively.
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model reproduce the trend of the experimental data. For
the Ni isotopes, the experimental data are systematically
overpredicted by the HFB21 model and are underpredicted
by the RMF model. For the doubly magic nucleus °Ni,
the calculated quadrupole deformation of the nucleus is
B> = 0.16 with the HFB21 model. For other Ni isotopes,
the obtained B, values from the HFB21 calculations are
significantly larger than the results of WS*, which results
in the overpredicted results for the Ni isotopes. According
to the RMF calculations, we note that the binding energies
of 8:60.6264Nj are systematically underpredicted by about
4 MeV, which might affect the reliable description of the rms
charge radii. For the Zr isotopes, one sees that the rms charge
radii for nuclei with N = 50, 56, and 58 can be remarkably
well reproduced with the proposed formula since the shell
corrections and deformations of these nuclei (with shell or
subshell closure) are reasonably well described by the WS*
mass model. For the neutron-deficient Pb isotopes, the rms
charge radii are significantly overpredicted by the HFB21
calculations, and the kink at N = 126 cannot be reproduced.
The global trend of the rms charge radii for the nuclei in
Fig. 5, especially the kinks at the magic numbers, can be well
described by using the proposed nuclear charge radius formula.

In Fig. 6, we show the predicted rms charge radii with the
proposed formula for some superheavy nuclei. The solid curve
denotes the results of the HFB21 model for Hs (Z = 108)
isotopes, which are comparable with the predictions of this
Rapid Communication (the deviations are smaller than 0.05 fm
in general). For the superheavy nuclei %114 and >°116, the
extracted rms charge radii from the experimental «-decay data
are rop = 6.24 £ 0.14 and 6.13 £ 0.16 fm [37], respectively.
The predicted results in this Rapid Communication for these
two nuclei are 6.17 and 6.19 fm, respectively, which are
comparable with the extracted results in Ref. [37].

In this Rapid Communication, we simultaneously inves-
tigate the correlation between the nuclear symmetry energy
and the isospin term of the charge radius formula. We study
the difference in the rms charge radii between mirror nuclei,
such as the 3°S-3°Si pair. Because of the influence of the new
magic numbers N = 14, 16, the calculated deformations of
these two nuclei are very small with some different mass
models, such as the Weizsacker-Skyrme mass model, the finite
range droplet model [38], and the HFB calculations [5], which
adopt three widely used Skyrme forces SLy4, SkP, and SkM*.
We systematically calculate the difference in the rms charge
radii Arg, between S and *Si by using the Skyrme-Hartree-
Fock model with 62 different Skyrme forces in which the
corresponding incompressibility coefficient for the symmetry
nuclear matter is K, = 210-280 MeV and the saturation
density is pp = 0.15-0.17 fm~>. From Fig. 7, one can clearly
see the linear relationship between the slope parameter L and
the difference in the rms charge radii Ar.,. The Pearson (linear)
correlation coefficient r of L with Arg, for the 62 Skyrme
forces is 0.95, which is comparable with the corresponding
value (0.97) of L with the neutron skin thickness of 2%Pb for
the same forces. The values of Ar¢, for measured mirror pairs,
such as 3*S-**Ar and '30-'8Ne are also investigated with the
deformed configurational Skyrme-Hartree-Fock calculations
[39]. We note that the obtained linear correlation coefficients
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r for these two pairs are 0.58 and 0.69, respectively, which
are significantly smaller than the value for the mirror pair
308-308i. It indicates that the linear relationship between L
and Arg, for the two pairs 34834 Ar and '80-!8Ne are not as
good as that for the mirror pair **S-*Si due to the influence of
the new magic numbers N = 14, 16. By considering the fact
that the experimental uncertainty for the rms charge radius
measurement is much smaller than that for the rms neutron
radius, precise measurements of the rms charge radii for
the pair of mirror nuclei 3°S-3°Si, especially the unmeasured
308, could be very helpful for the extraction of the slope
parameter.

Due to the perfectly charge-symmetric and charge-
independent nuclear force, the deformations and shell cor-
rection of a nucleus approximately equal those of its mirror

nucleus [25,40]. Based on the proposed nuclear charge radius
formula, one obtains Arg, =~ \/§2rsl by neglecting the influ-

ence of the nuclear deformations. For the 3°S-3°Si mirror pair,
the estimated value of Ar, is about 0.113 £ 0.003 fm, and the
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FIG. 6. (Color online) Predicted rms charge radii with the
proposed formula for some superheavy nuclei. The solid curve
denotes the results of the HFB21 model for Hs (Z = 108) isotopes.

Neutron number

corresponding slope parameter is about L = 54 4+ 19 MeV,
which is consistent with the recently extracted results from
the Fermi-energy difference in nuclei [41] and from modeling
x-ray bursts and quiescent low-mass x-ray binaries [42,43]. In
addition, the extracted slope parameter L = 52.5 £ 20 MeV
from the Skyrme-Hartree-Fock calculations together with the
neutron skin thickness of Sn isotopes [44] and L = 52.7 &+
22.5 MeV from the global nucleon optical potentials [45] are
in good agreement with the estimated result in this Rapid
Communication.

To summarize, by combining the Weizsacker-Skyrme
mass model, we propose a four-parameter nuclear charge
radius formula in which the microscopic shell correction and
nonlinear isospin terms are introduced. The 885 measured
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FIG. 7. (Color online) Slope parameter of the nuclear symmetry
energy as a function of the rms charge radius difference between
308 and 3°Si. The squares denote the calculated results by using the
Skyrme-Hartree-Fock model with 62 different Skyrme forces. The
solid line with shadows is a linear fit to the squares. The dashed
horizontal lines denote the estimated slope parameter according to
the r, value of the proposed charge radius formula.

011301-4



SHELL AND ISOSPIN EFFECTS IN NUCLEAR CHARGE RADII

rms charge radii of the nuclei are reproduced with an rms
deviation of 0.022 fm. For the measured even-even nuclei,
the rms deviation is only 0.016 fm. The parabolic charge
radii trend in the Ca chain due to the shell effect and the
trend of Ni, Zr, and Pb isotopes are reasonably well described
with the formula. Through a study of the difference in the
rms charge radii Arg, between mirror nuclei by using the
Skyrme-Hartree-Fock model with 62 different Skyrme forces,
the linear relationship between slope parameter L and Ar, for
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the mirror pair 3°S-3'Si is clearly observed, which would be
helpful for the extraction of the slope parameter of the nuclear
symmetry energy. The estimated slope parameter from the
coefficient r; of the isospin term in the proposed formula is
about L = 54 £ 19 MeV.
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