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Baryon photo-decay amplitudes at the pole
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We derive relations for baryon photo-decay amplitudes both for the Breit-Wigner and the pole positions. With an
updated SAID partial wave analysis, technically similar to the earliest Virginia Tech analysis of photoproduction
data, we compare photo-decay amplitudes at both resonance positions for a few selected nucleon resonances.
Comparisons are made and a qualitative similarity, seen between the pole and Breit-Wigner values extracted by
the Bonn-Gatchina group, is confirmed in the present study.
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Introduction. Baryon resonance properties, evaluated at the
pole position, are beginning to supersede and replace quantities
which have generally been determined using the Breit-Wigner
(BW) approach plus background parametrizations. This is
reflected in the most recent Review of Particle Properties [1],
with many pole values coming from the recent Bonn-Gatchina
multichannel analyses [2]. While the pole extraction is well-
defined and less model dependent than the Breit-Wigner
approach, the continuation of fit amplitudes to the pole is
itself a possible source of error. This has motivated numerous
studies involving speed plots, Laurent series representations,
regularization methods, and contour integration [3–8]. Here
we will compare Breit-Wigner and pole extractions, using
an early SAID fit form, with the focus on N* photo-decay
amplitudes.

As the amplitude itself becomes infinite at the pole, we
are interested in residues. We first clarify the connection
between multipole residues and the photo-decay amplitudes.
This can be related to a result published with the first SAID
photoproduction fits [9]. A comparison of recent results and
the first attempts tabulated in Ref. [9] reveals some large
discrepancies. We study and resolve this problem below.

The photo-decay amplitudes determined via Breit-Wigner
and pole methods, as given by the Bonn-Gatchina group [2],
tend to be very similar in modulus. We reproduce this trend
within the original SAID photoproduction model.

Breit-Wigner versus pole quantities. The total cross section
of pion photoproduction can be written in terms of helicity
multipoles by
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with q and k being the center-of-mass pion and photon
momenta. The factor C is

√
2/3 for isospin 3/2 and −√

3
for isospin 1/2. The helicity multipoles are given in terms of
electric and magnetic multipoles
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with J = � + 1/2 for ‘+’ multipoles and J = (� + 1) − 1/2
for ‘−’ multipoles, all having the same total spin J .

Comparing with the definition of the cross section from a
unitary amplitude [10]

σi,f = 4π

k2
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(2s1 + 1)(2s2 + 1)
|Ti,f |2, (7)

where k is the c.m. momentum in the initial state and s1

and s2 are the spins of the two incoming particles, allows
us to compare the (γN ) channel, in a consistent way, to other
inelastic channels.

For the polarized photoproduction cross section with
helicity h we have

σh
γ,π = 2π
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leading to the relation between unitary and helicity amplitudes

T h
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√
2kq Ah

α C. (9)

For a better understanding of the difference between Breit-
Wigner parameters and pole parameters, the unitary amplitude
can be written in terms of a propagator and initial and final
partial widths [10],

T h
γ,π (W ) = (�h/2)1/2 (�π/2)1/2

M − W − i�/2
. (10)

At the Breit-Wigner resonance position Wr = M the amplitude
becomes purely imaginary and the BW resonance amplitude
is defined as

T̃ h
γ,π = Im T h

γ,π (Wr ) (11)
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�
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At the pole position, Wp = M − i�/2, the amplitude
becomes infinite and the pole parameter is defined as the
residue
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which is in general complex. However, in our illustrative
example, the widths can be considered as constant, in which
case the residues are real. Note that, traditionally, the residues
of baryon resonances have been defined with a relative minus
sign compared to the standard mathematical definition. The
residue for γN → πN can be factorized into residues for
γN → γN and πN → πN

Rh
γ,π =

√
ResT h

γN (Wp)Res TπN (Wp). (15)

For these residues we will use in the following the short-hand
notation Resγ (h)N and ResπN .

At the BW position, the total photoproduction cross section
with helicity h is

σh
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�h �π

�2
(16)

and the unpolarized cross section is
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k2
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�2
. (17)

With the relation [11,12] between the electromagnetic width
and the photo-decay amplitudes A1/2, A3/2
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the total cross section takes the form

σγ,π (Mr ) = 2mN�π,r

Mr�2
r

(|A1/2|2 + |A3/2|2), (19)

where �r and �π,r are widths evaluated at the BW resonance
energy Mr and mN is the nucleon mass.

Equation (18) can be used as a definition for the photo-decay
amplitudes
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and by comparison with Eqs. (9) and (12) we obtain the
amplitudes at the Breit-Wigner position
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Similarly, a comparison with Eqs. (9), (14), and (15) leads to
the amplitudes at the pole position

A
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where the subscript p denotes quantities evaluated at the pole
position.

Finally, normalized residues, partial widths, and branching
ratios at the pole can also be determined in accordance to
the conventions of the PDG. The normalized residues are the
residues divided by the half-width at the pole,
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and obtain complex values, whereas the partial widths of the
πN and γN channels,
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and the branching ratios at the pole
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acquire real and positive numerical values.
A simple model test. In the first SAID analysis of pion

photoproduction data [9], multipoles were fitted using the form

M� = [Born + B(W )]
(
1 + iT �

πN

) + C(W )T �
πN, (28)

based on a simple K matrix approach [13]. This form had
the advantage that only the elastic πN T matrix was required
(T �

πN ), as connected to photoproduction via Watson’s theorem
below the ππN threshold, and continuing smoothly from
this constraint as the πN partial waves became inelastic.
In the above, � is the relative πN angular momentum.
Labels for isospin and total spin have been suppressed. The
phenomenological pieces, B(W ) and C(W ), were polynomials
in energy with the required threshold behavior and were fitted
for each partial wave.

In deriving Eq. (28), the inelasticity was assumed to be
dominated by a single channel. This simple approach has now
been improved [14]. However, given a known set of elastic
residues and pole positions for the underlying πN reaction,
the above form provides a simple test case for extracting
pole-related quantities in pion photoproduction, while giving
a reasonable fit to the data. This fit has been reproduced for
the present study.

The πN T-matrix terms in Eq. (28) contain informa-
tion regarding included resonances and opening thresholds
[15,16]. As a result, the energy-dependent pre-factors are
quite smoothly varying and can be represented by low-order
polynomials in energy. Here, and in Ref. [9], the multipole
residues were extracted from the known πN pole positions
and residues, and a straightforward evaluation of the energy-
dependent pre-factors at the pole position.

Beyond being just a toy model, the form in Eq. (28) was
fitted to data from the π+n threshold to a laboratory photon
energy of 2 GeV, sufficient to compare with the results of
Ref. [9] and other more recent determinations [2]. Results for
both Breit-Wigner plus background and pole determinations
are given in Table I. The form of background-resonance
separation is very similar to that used in the MAID fits [17]
and is detailed in Ref. [18]. Errors for the Breit-Wigner fits
were determined by fitting the multipoles from the form of
Eq. (28), using a Breit-Wigner resonance, over varying energy
ranges. For the pole determinations, the Born + B(W ) and
C(W ) were represented by two polynomials, α(W ) and β(W ),
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TABLE I. Breit-Wigner and pole values for selected nucleon resonances. Masses, widths, and residues are given in units of MeV, the helicity
1/2 and 3/2 photo-decay amplitudes in units of 10−3(GeV)−1/2. Errors on the phases are generally 2–5 degrees. For isospin 1/2 resonances
the values of the proton target are given.

Resonance Breit-Wigner values Pole values

(Mass, width) �π/2 A1/2 A3/2 (Re Wp , −2 Im Wp) Rπ A1/2 A3/2

	(1232) 3/2+ (1233, 119) 60 −141 ± 3 −258 ± 5 (1211, 99) 52 [−47◦] −136 ± 5 [−18◦] −255 ± 5 [−6◦]
N (1440) 1/2+ (1485, 284) 112 −60 ± 2 (1359, 162) 38 [−98◦] −66 ± 5 [−38◦]
N (1520) 3/2− (1515, 104) 33 −19 ± 2 +153 ± 3 (1515, 113) 38 [−5◦] −24 ± 3 [−7◦] +157 ± 6 [+10◦]
N (1535) 1/2− (1547, 188) 34 +92 ± 5 (1502, 95) 16 [−16◦] +77 ± 5 [+4◦]
N (1650) 1/2− (1635, 115) 58 +35 ± 5 (1648, 80) 14 [−69◦] +35 ± 3 [−16◦]

of varying orders, over a range of energies sufficient for
extrapolation to the pole. The stability of these results and the
errors from the πN elastic pole determinations were combined
in a representative error.

Results and conclusions. From Table I, we see that the pole
and Breit-Wigner determinations, for the states considered in
Ref. [9] plus a nearby state, are quite similar in modulus. In the
earlier determination, however, the pole widths, constructed
from squares of the helicity amplitudes, were found to
be qualitatively similar for the 	(1232) and N (1520), but
radically different for the N (1440) and N (1535), differing
in the latter cases by factors of about 2 and 5, respectively.
A possible cause of the discrepancy is seen in the N (1440)
and N (1535) pole positions and elastic residues. Since 1990,
the modulus of the elastic residue has shifted from 108 to
38 MeV for N (1440), and from 54 to 16 MeV for the
N (1535). For these states, the pole positions have also shifted
significantly.

For the pole amplitudes extracted in Table I, results are
generally quite similar to those from the Bonn-Gatchina
group [2]. An exception is the N (1535), where the simple
model of Ref. [9] is known to differ significantly from a more
sophisticated approach [2,14]. A substantial benefit from the
pole extraction is found for the nearby N (1650). BW fits to
the underlying πN amplitude have produced unreliable width
and elasticity values, which, in turn, have made BW fits to
photoproduction multipoles difficult and similarly unreliable.
None of these issues affect the pole determination.

Prior to the recent work of the Bonn-Gatchina group
[2], significant differences were seen in comparing pho-
toproduction amplitudes determined through BW and pole
determinations. These included the early fits of Ref. [9] as
well as determinations of the E2/M1 ratio [19,20] for the
	(1232). In the latter case, stability of this ratio at the pole
was found to be better than associated BW fits. Here we have
repeated the study of Ref. [9], finding results in qualitative if
not quantitative agreement with those of Ref. [2]. Results are
often quite similar to BW determinations, apart from a phase.
In cases where these values differ, the pole determination is
more reliable.
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the Deutsche Forschungsgemeinschaft (SFB 1044), and the
RFBR Grant No. 13-02-00425.

APPENDIX: EXAMPLES

The following examples will illustrate the derivation of the
photo-decay amplitudes at the pole position.

(i) For the 	(1232) resonance, we obtain a pole position of
Wp = (1.211 − i0.099/2) GeV with an elastic residue
of ResπN = 52 e−i47◦

MeV. For photoproduction, there
are two isospin 3/2 multipoles, for which we find the
residues

Res M
3/2
1+ = 2.96 e−i30◦

mfm GeV, (A1)

Res E
3/2
1+ = −0.16 ei35◦

mfm GeV. (A2)

With Eqs. (3) and (4) we obtain the residues of the
helicity multipoles

Res A1/2
1+ = −1

2

(
ResM3/2

1+ + 3 ResE3/2
1+

)
(A3)

= −1.40 e−i39◦
mfm GeV, (A4)

Res A3/2
1+ = −

√
3

2

(
ResM3/2

1+ − ResE3/2
1+

)
(A5)

= −2.63 e−i27◦
mfm GeV. (A6)

To obtain the photo-decay amplitudes, these residues
must be multiplied by a complex factor depending on
spin, isospin, kinematics at the pole, and the elastic πN
residue,

A
pole
h = N

Res Ah
1+

197 mfm GeV
, (A7)

N = C

√
qp

kp

2π (2J + 1)Wp

mNResπN

. (A8)

With the isospin factor C = √
2/3, qp/kp =

0.88 e−i3◦
, J = 3/2, the nucleon mass mN , giving

N = 19.2 ei21◦
GeV−1/2, we obtain the photo-decay
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amplitudes at the pole

A
pole
1/2 = −0.136 e−i18◦

GeV−1/2, (A9)

A
pole
3/2 = −0.255 e−i6◦

GeV−1/2. (A10)

The magnitudes are very close to the Breit-Wigner
values; the phases are considerably smaller than the
phases of the residues themselves, because a large phase
of the elastic residue is already taken out.

(ii) For the Roper resonance N (1440), we obtain a pole
position of Wp = (1.359 − i0.162/2) GeV with an
elastic residue of ResπN = 38 e−i98◦

MeV. For photo-
production, there is only one isospin 1/2 multipole, for
which we find the residue

Res M
1/2
1− = 0.35 e−i85◦

mfm GeV. (A11)

With Eq. (5) we obtain the residue of the helicity 1/2
multipole as

Res A1/2
1− = Res M

1/2
1− . (A12)

With the isospin factor C = −√
3 and qp/kp =

0.95 e−i1◦
, J = 1/2, the pole mass Mp = 1.359 GeV,

giving N = −37 ei47◦
GeV−1/2 we obtain the photo-

decay amplitude at the pole

A
pole
1/2 = −0.066 e−i38◦

GeV−1/2, (A13)

again a value with a magnitude close to the BW value
and a much smaller phase compared to the multipole
residue.

(iii) For the D13 resonance N (1520), we obtain a pole
position of Wp = (1.515 − i0.113/2) GeV with an
elastic residue of ResπN = 38 e−i5◦

MeV. For photo-
production, there are two isospin 1/2 multipoles, for
which we find the residues

Res E
1/2
2− = 0.442 ei10.5◦

mfm GeV, (A14)

Res M
1/2
2− = 0.196 ei4.5◦

mfm GeV. (A15)

With Eqs. (5) and (6) we obtain the residues of the
helicity 1/2 and 3/2 multipoles as

Res A1/2
2− = −1

2

(
ResE1/2

2− − 3 ResM1/2
2−

)
(A16)

= 0.078 e−i13◦
mfm GeV, (A17)

Res A3/2
2− = −

√
3

2

(
ResE1/2

2− + ResM1/2
2−

)
(A18)

= −0.55 ei9◦
mfm GeV. (A19)

With the isospin factor C = −√
3, qp/kp = 0.97 e−i0◦

,
giving N = −56 ei1◦

GeV−1/2 we obtain the photo-
decay amplitudes at the pole

A
pole
1/2 = −0.024 e−i7◦

GeV−1/2, (A20)

A
pole
3/2 = +0.157 ei10◦

GeV−1/2, (A21)

also values with magnitudes very similar to the BW
values.

(iv) For the S11 resonance N (1535), we obtain a pole
position of Wp = (1.502 − i0.095/2) GeV with an
elastic residue of ResπN = 16 e−i16◦

MeV. For photo-
production, there is only one isospin 1/2 multipole, for
which we find the residue

Res E
1/2
0+ = 0.25 e−i3◦

mfm GeV, (A22)

With Eq. (3) we obtain the residue of the helicity 1/2
multipole as

Res A1/2
0+ = −Res E

1/2
0+ . (A23)

With the isospin factor C = −√
3, qp/kp = 0.97 e−i0◦

,
giving N = −60 ei7◦

GeV−1/2 we obtain the photo-
decay amplitude at the pole

A
pole
1/2 = 0.077 ei4◦

GeV−1/2, (A24)

a value with a magnitude which differs about 20% from
the BW value.
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