Mass of ¹¹O

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (Received 2 June 2013; published 21 June 2013)

A recent parametrization of two-proton separation energies in O and Ne nuclei allows a prediction of the energy of ¹¹O(g.s.): $S_{2p} = -5.41(11)$ MeV, which is considerably more unbound than another recent estimate.

DOI: 10.1103/PhysRevC.87.067306

PACS number(s): 21.10.Dr, 21.10.Sf, 21.60.Cs, 27.20.+n

I recently considered a series of N = 8 and 10 neutronexcess nuclei and their Z = 8 and 10 proton-excess mirrors [1]. The N = 8 and 10 nuclei included were those whose ground states (g.s.) consisted of a two-neutron configurationmixed 0⁺ pair coupled to a predominantly *p*-shell core. The mirror energy difference (MED) was defined as the difference between the two-neutron separation energy in the neutronexcess nucleus and the two-proton separation energy in the proton excess mirror:

> $MED = S_{2n} (neutron-excess nucleus)$ $- S_{2p} (proton-excess mirror).$

I noted that these MED's could be well described by a simple parametrization,

$$MED = [a + bS_{2n} - cP(s^2)]Z_{<}/A^{1/3},$$

where $P(s^2)$ is the fractional parentage in the $2s_{1/2}$ orbital, normalized such that $P(s^2) + P(d^2) + P(p \text{ shell}) = 1$, and $Z_{<}$ is 6 and 8 for O and Ne nuclei, respectively. Values of S_{2p} computed [1] from the fit agreed remarkably well with experimental S_{2p} 's [2]. I used the fit to estimate $P(s^2)$ for ¹³B and to predict the mass excess of ¹⁵Ne(g.s.). Here, I apply the procedure to the ¹¹Li/¹¹O mirror pair.

The nucleus ¹¹Li [3] is by far the most studied of the so-called halo nuclei. Most treatments consider it as a loosely bound 2n pair ($S_{2n} = 0.369$ MeV [2]) coupled to a *p*-shell ⁹Li core. Calculations and opinions vary as to the amount of s^2 in the 2n wave function and as to whether a d^2 component should be included. A recent summary [4] included the relevant references. Estimates of $P(s^2)$ vary from about 0.23 to about 0.50, although values of 0 and 1 have also been considered. Examination of the matter radius [5–7] led us to suggest $P(s^2) = 0.33(6)$ [4]. With this value of *P* and the fit from Ref. [1], the expected S_{2p} is -5.41(11) MeV. If $P(s^2)$ were 1, the value would be -4.12 MeV. These results are listed in Table I.

Charity *et al.* [8] recently observed the double-isobaricanalog state (DIAS) of ¹¹Li in ¹¹B at an excitation energy of TABLE I. Two-nucleon separation energies (MeV) of $^{11}\mathrm{Li}/^{11}\mathrm{O}$ ground states.

Experimental			Calculated		Reference
Nucleus	S_{2n}^{a}	$P(s^2)$	Nucleus	S_{2p}	
¹¹ Li	0.369	0.33(6) ^b	¹¹ O	$-5.41(11)^{d}$	Present
		1.0 ^c		-4.12^{d}	Present
				$-3.21(84)^{e}$	Charity et al. [8]

^aReference [2].

^bReference [4].

^cLimiting value.

^dFrom fit in Ref. [1].

^eUsing IMME and energies of lowest T = 5/2 states in ¹¹Li, ¹¹Be, and ¹¹B [8].

33.57(8) MeV. They fitted the masses of the three known A = 11, T = 5/2 states (¹¹Li, ¹¹Be^{*}, and ¹¹B^{**}) to the quadratic form of the isobaric multiplet mass equation (IMME) and then used the resulting parameters to compute the mass excess of ¹¹O. Their result was a mass excess of 46.70(84) MeV, which corresponds to $S_{2p} = -3.21(84)$ MeV (Table I). Their value and mine differ by about 2.6σ . This large difference is unsettling. Their result is 1.1σ away from my result at the extreme of $P(s^2) = 1$. Their use of the quadratic IMME may be somewhat suspect because the masses of the A = 9, T = 3/2 cores require a small nonzero cubic term ($d \neq 0$). This fact might affect the ¹¹O calculation.

Because the ¹¹O energy is so large, and because some of the relevant ¹⁰N states are at relatively lower energy [9], the decay of ¹¹O will primarily be sequential 2*p* decay through one or more of the ¹⁰N resonances. The decay width will depend sensitively on the ¹¹O mass and on the energies and widths of the ¹⁰N resonances—at least the lowest two *s*-wave (1⁻ and 2⁻) and perhaps the two lowest *p*-wave (1⁺ and 2⁺) resonances. As pointed out by the compilers [9], the 1⁺ is probably the state known [10] at $E_p = 2.64(40)$ MeV. The lowest *s*-wave state should be at about $E_p = 1.8$ MeV [9,11]. Nothing is known about the other two ¹⁰N resonances.

- [1] H. T. Fortune, Phys. Lett. B **718**, 1342 (2013).
- [2] G. Audi and W. Meng (private communication).
- [3] J. H. Kelley, E. Kwan, J. E. Purcell, C. G. Sheu, and H. R. Weller, Nucl. Phys. A 880, 88 (2012).
- [4] H. T. Fortune and R. Sherr, Eur. Phys. J. A 48, 103 (2012).
- [5] I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985).
- [6] A. Ozawa, T. Suzuki, and I. Tanihata, Nucl. Phys. A 693, 32 (2001).
- [7] J. S. Al-Khalili and J. A. Tostevin, Phys. Rev. Lett. 76, 3903 (1996).
- [8] R. J. Charity *et al.*, Phys. Rev. C **86**, 041307(R) (2012).
- [9] D. R. Tilley et al., Nucl. Phys. A 745, 155 (2004).
- [10] A. Lépine-Szily et al., Phys. Rev. C 65, 054318 (2002).
- [11] R. Sherr and H. T. Fortune, Phys. Rev. C 87, 054333 (2013).