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Examining potential shortcomings in using phase shifts as a link between experiment and QCD
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Lüscher [M. Lscher, Commun. Math. Phys. 105, 153 (1986); Nucl. Phys. B 354, 531 (1991)] has shown
that in the single-channel problem (where the elastic region is below the first inelastic threshold) there exists a
direct link between the discrete value of the energy in a finite QCD volume and the scattering phase shift at the
same energy. However, when the theorem is extended to the baryon resonance sector (multichannel situation in
the inelastic region above first inelastic threshold), eigenphases (diagonal multichannel quantities) replace phase
shifts (single-channel quantities). It is necessary to stress that the renowned π/2 resonance criterion is formulated
for eigenphases and not for phase shifts, so the resonance extracting procedure has to be applied with utmost care.
The potential instability of extracting eigenphases from experimental data that occurs if an insufficient number
of channels is used can be reduced if a trace function that explicitly takes the multichannel aspect of the problem
into account is used instead of single-channel phase shifts.
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Because a central task of baryon spectroscopy is to establish
a connection between resonant states predicted by QCD and
hadron scattering observables, the discovery that QCD can
produce a “scattering theory” quantity—the scattering phase
shift—has attracted a lot of attention, particularly among
experimental physicists. Lüscher’s theorem [1,2] provided this
possibility. It is well known that resonances do not correspond
to isolated energy levels in the (discrete) spectrum of the
QCD Hamiltonian measured on the lattice, so an additional
effort is needed to extract resonance parameters (mass, width,
residua/branching fractions) from the lattice data. In the single-
channel case, i.e., in the case of elastic scattering, the pertinent
procedure is well known as the Lüscher framework [1,2]. In
this framework, for a system described by a given quantum-
mechanical Hamiltonian, one relates the measured discrete
value of the energy in a finite volume to the scattering phase
shift at the same energy for the same system in the infinite
volume. Consequently, studying the volume dependence of
the discrete spectrum of the lattice QCD gives the energy
dependence of the elastic scattering phase shift and eventually
enables one to locate the resonance pole positions.

However, because the original Lüscher’s derivation has
been carried out for energies below the first inelastic threshold,
it is not directly applicable for scrutinizing the baryon spec-
trum. To overcome this problem, this formalism has recently
been generalized to multichannel scattering and the required
baryon resonance energy range. This was first done in Ref. [3]
on the basis of potential scattering theory, while later on in
Refs. [4–10] nonrelativistic effective field theory (EFT) was
used for this purpose. Finally, even more general extensions
of the theorem beyond a single-channel theory have been very
recently reported [11,12]. In all cases the conclusions remained
very similar to those for the single-channel case, but with one
very important difference. Eigenphases replaced phase shifts.
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And it is very important to emphasize that this seemingly minor
change represents a fundamental difference between Lüscher’s
approach in the elastic situation and its generalization to the
inelastic situation: whereas in the former, one aims at the
extraction of a single-channel quantity (the scattering phase
shift), which is in principle obtainable from the single-channel
measurement, the latter case is a multichannel problem. Not
one, but several scattering phases have to be extracted, and
scattering matrix diagonalization has to be performed in order
to obtain eigenphases. Hence, one has to be very careful to
apply resonance criteria properly and correctly.

The intention of this Brief Report is to stress the dif-
ference between using phase shifts and eigenphases and
to discuss interrelations among phase shifts, eigenphases,
K-matrix poles, and T -matrix poles as potential resonance
criteria for quantifying resonance parameters (mass, width,
and residua/branching fractions). The main purpose is to avoid
confusion and misunderstandings by using physical phase
shifts instead of eigenphases. The secondary task is to restore
awareness about the importance of a trace function as a tool to
remove the instabilities in the resonance extraction procedure
with eigenphases and K-matrix poles by manifestly imposing
multichannel features. I believe that this paper is important
because it stresses the principal features of Lüscher’s approach
and its generalization to the inelastic domain with the motive
to avoid unjustified simplifications in identifying resonances
as has been done in recent, renowned experimental work by
Dürr et al. [13]. In Dürr et al. [13], it has been explicitly stated
that “The ππ scattering phase δ11(k) in the isospin I = 1,
spin J = 1 channel passes through π/2 at the resonance
energy. . . ,” so the well-known π/2 criterion to obtain the
resonance mass has been used directly on phase shifts. This
is, however, incorrect. The scattering eigenphase, and not the
scattering phase, passes through π/2 at the resonance energy.
Single-channel measurement of only one phase shift is simply
not enough, and this assumption, even when being fairly rea-
sonable as in the mentioned case, is not generally true. Instead,
one should either use eigenshifts, eigenshift traces, or standard
pole determination methods to extract T -matrix poles from the

067001-10556-2813/2013/87(6)/067001(5) ©2013 American Physical Society

http://dx.doi.org/10.1007/BF01211097
http://dx.doi.org/10.1016/0550-3213(91)90366-6
http://dx.doi.org/10.1103/PhysRevC.87.067001


BRIEF REPORTS PHYSICAL REVIEW C 87, 067001 (2013)

energy-dependent phase shifts, and not phase shifts directly.
Using phase shifts only is erroneous. Therefore, I strongly
encourage the use of approaches like those in Refs. [4–10],
where Lüscher’s formalism has been used to obtain phase
shifts and an accurate determination of the resonance pole
positions in the multichannel scattering has been made.

Beginning to fulfill the outlined task first brings us to the
well-known issue of defining what a resonance actually is
in scattering theory. A precise definition of a resonance is
in principle a nontrivial, and even ill-defined, mathematical
problem [14], but for practical purposes it is sufficient to
discuss only two alternative definitions as has been suggested
by Exner and Lipovský [15]: we may either define resonances
via scattering resonances, which are characterized by the
prolonged time two particles spend together with respect to the
standard scattering process,1 or through resolvent resonances,
which are characterized by the existence of a pole of the
scattering matrix. However, even when these two definitions
definitely differ, Exner and Lipovsky [15] stress that they
do coincide for most physical situations. So, this allows us
to restrict our discussion to only one of them: we use the
existence of scattering matrix poles as a fairly robust criteria
for identifying the resonant state.2

In the context of discussing scattering matrix poles, Dalitz
and Moorhouse [16] have also introduced scattering matrix
eigenphases and extensively discussed the concept that the
behavior of the resonance eigenphase can be taken as a
resonance signal. I quote: “ . . . Dalitz (1963)3 and Dalitz
& Moorhouse (1965)4 considered the eigenphases δα and
eigenstates φα of the unitary matrix S, as is certainly always
permissible. It then appeared plausible that the (real) resonance
energy E0 corresponded to one of these eigenphases increasing
rapidly through π/2.”

The most important point is that π/2 resonance criteria
for phases is introduced for eigenphases, and not for physical
channel phase shifts.

In addition to introducing eigenphases as a concept, Dalitz
and Moorhouse in further analysis also illustrated how this
simple π/2 criterion actually works in reality for a multichan-
nel theory. They have shown that a multichannel character
and a no-crossing theorem strongly predetermine the delicate
behavior of eigenshifts in the vicinity of resonance energy. A
simple three-channel model with constant background phases
has been used to show that π/2 criterion combined with a no-
crossing theorem causes all channels to have a rapid variation
near the resonance, but only one of them traverses through
π/2. When the energy of the system approaches the resonance
value, the first eigenphase experiences a rapid change and
approaches the second one. But, instead of crossing it and
continuing through π/2, because of the no-crossing theorem

1The lifetime of the particle-target system in the region of interaction
is larger than the collision time in a direct collision process causing a
time delay.

2For further reading I recommend Dalitz and Moorhouse [16],
where these issues have been extensively elaborated.

3See Ref. [17]
4See Ref. [18].

it just “bumps” into it, “repels” transferring the “momentum”
to the second phase shift, and continues smoothly on towards
the constant background value of the second phase shift. The
second one, however, takes over the rapid energy variation
and keeps on changing fast. A similar event happens when
the second eigenphase “meets” the next one. Thus, near the
resonance energy all three eigenphases are required to undergo
rapid energy variations over energy ranges that are small
compared with the width r of the resonance at energy E0,
but actually only one traverses through π/2.

This behavior has also been examined in detail by Goebel
and McVoy [19] and by McVoy [20], who show that these rapid
energy variations are due to the existence of branch cuts in all
channel eigenphases δα(E) and corresponding eigenvectors φα

on the unphysical sheet of the E plane, and lying much closer
to the physical axis than does the resonance pole. It is important
to notice that these branch cuts do not occur in the complete
S matrix S = ∑

α φαe2iδα φ̃α , but only in channel eigenphases
separately, and therefore do not have any physical significance.
And the way out has been found by realizing that the only way
this can happen is that the occurrence of these branch cuts
in the φα and δα must be just such that all these branch cuts
exactly cancel out in the full S-matrix combination. Because
of that Goebel and McVoy [19,20] conclude that, with such a
complexity of branch cuts without physical significance, the
eigenphase representation for the S matrix is not generally a
useful representation for the scattering in the neighborhood of
a resonance.

Now we are faced with a situation where we have to
consider both poles and eigenphases.

I believe that four major facts in relating poles and
eigenpahses should be stressed:

(i) eigenphase π/2 criterion is equivalent to K matrices
having poles at resonant energies (the rapid increase
of the eigenphase through π/2 is equivalent to the fact
that the corresponding eigenvalue of the reaction matrix
K = i(S − 1)/(S + 1) has a pole at this energy, see
Ref. [21]);

(ii) resonance parameters obtained from K and T matrix
poles are quantitatively different (despite being interre-
lated at least for a meromorphic type of background—
see Ref. [22]);

(iii) as a direct corollary of (i) and (ii) we have to conclude
that resonance parameters obtained from eigenphases
and from T matrix poles must be quantitatively differ-
ent; and

(iv) while the T -matrix poles are, in principle, single-
channel quantities (it is sufficient to measure observ-
ables between only one initial channel and only one
final channel to reconstruct the T -matrix between
these channels), K-matrix poles and consequently
eigenphases are multichannel quantities (one needs
to know reactions between all channels to reliably
reconstruct single-channel K-matrix elements like the
full coupled-channel T -matrix inverse has to be done).5

5An illustration: one needs to measure all observables only for
the πN → ηN reaction to obtain the πN → ηN T matrix, but one
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In literature we usually find three resonance quantification
criteria for resolvent resonances: a pole of the scattering
matrix, a pole of the K matrix, and the energy when the
eigenphase increases rapidly through π/2. However, it is
rarely said that the second criterion and the third criterion
are identical but different from the first one, and very rarely
said that the second criterion and the third criterion tend to be
unstable if too small a number of channels is analyzed.

Let me now pay some attention to K-matrix poles, phase
shifts, eigenphases, and eigenphase instability, to its origin and
its implications.

In the case of elastic scattering (single-channel theory), like
in the original Lüscher approach, the physical channel phase
shift is identical to the S-matrix eigenshift, and single-channel
measurement suffices. However, for the inelastic region, a
multichannel theory is needed to obtain all phase shifts, and
the physical scattering matrix has to be diagonalized to get
eigenphases. So, eigenchannels and physical channels differ,
and to obtain one or all eigenphases one has to know all
physical channels at the same time.

This seems to be a good moment to illustrate this interplay
of physical phase shifts and eigenphases in a simple, two-
channel toy model.

Let us introduce a two-channel model where processes
in channels 1 → 1 and 1 → 2 are described by a single,
inelastic resonance and the 2 → 2 process is described by
a constant phase shift. Following Goebel and McVoy [19], Eq.
(3), we can write down the manifestly unitary scattering matrix
S(w) in terms of the physical channel phase shifts δ1(w) and
δ2(w) as

S(w) =
(

η e2 ı δ1(w) ı
√

1 − η2 eı [δ1(w)+δ2(w)]

ı
√

1 − η2 eı [δ1(w)+δ2(w)] η e2 ı δ2(w)

)
.

Let us observe that matrix elements of S(w) are di-
rectly obtainable from experiment, so δ1(w) and δ2(w) are
experimentally obtainable phase shifts. However, to obtain
eigenphases we have to diagonalize this matrix:

SE(w) = U † · S(w) · U =
(

e2 ı δE
1 (w) 0

0 e2 ı δE
2 (w)

)
.

For the following choice of input parameters,

δ1(w) = Arg

(
1 + 2 ı

�
2

M − w − ı �
2

)
,

δ2(w) = α = 1,

M = 1.5,
�

2
= 0.2 , η = 0.7,

the results for physical phase shifts and eigenphases are shown
in Fig. 1.

In Fig. 1(a) we see the physical phase shifts directly
obtainable from single-channel 1 → 1, 1 → 2, and 2 → 2

needs to measure observables for all πN → X Y processes to obtain
the πN → ηN K matrix (inversion of the full coupled-channel T

matrix is needed). Inverting only the πN → ηN T matrix gives an
incorrect result.

FIG. 1. (Color online) Phase shifts and eigenphases for two-
channel toy model.

processes, and in Fig. 1(b) we see eigenshifts obtained by
diagonalizing the scattering matrix S(w) and at the same time
obtainable from lattice QCD.6

So, experiments measure Fig. 1(a), and lattice QCD is used
to calculate Fig. 1(b). To obtain directly comparable quantity,
we first have to measure Fig. 1(a) and then diagonalize it. And,
to do this, we need all the channels.

So, nature cannot be cheated. If knowing all channels
is needed in one approach, knowing them all in any other
approach is needed as well.

As a direct consequence of these considerations, all criteria
formulated on K matrices and eigenphases tend to be unstable
if only one channel or too few channels are measured. In other
words, while small changes of single-channel data can result
only in small changes of T -matrix poles (T -matrix poles being
a single-channel quantity), small changes of single-channel
data can indeed produce big changes of K-matrix poles and
eigenphases, because other nonobserved, hence not controlled,
channels can be drastically different. So, in the matrix inversion
procedure for obtaining the K matrix or in the diagonalization
procedure to obtain eigenshifts, notable changes in individual
members can be introduced even when one channel is kept
almost fixed.

Let me illustrate this fact in our toy model. If we measure
the physical phase δ1(w) only, we will never be able to reliably
predict the eigenphase δE

1 (w) which is to be compared with
Lüscher’s lattice QCD prediction, because it is obtained by
diagonalization of S(w) with the completely unknown physical
phase δ2(w). So, if we take something else instead of a
constant for δ2(w) (a resonance for instance), Fig. 1(b) will
look drastically different, and without measuring the 2 → 2
channel we will not be able to say anything at all.

This instability, and the multichannel feature of eigen-
phases, was the main reason why a trace function (in this
particular case eigenphase trace) has been introduced. Namely,
as it has previously been stated, Goebel and McVoy [19] and
McVoy [20] have demonstrated that the individual branch cuts
in each channel eigenphase must exactly cancel out in the full
S matrix, so a trace of eigenphases being a sum of eigenphases
must also be free of these individual branch cuts. Following an
old idea of Macek’s [23], Hazi [24] has explicitly shown that
for an isolated resonance in a multichannel problem the sum
of the eigenphases δα (eigenphase trace), and not individual
eigenphases, satisfies the usual formula appropriate for the

6Observe that eigenshifts respect the Von Neumann-Wigner no-
crossing theorem as was to be expected.
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elastic phase shift: tr(δα) = �0 + tan−1[r/2(E0 − E)], where
�0 is the sum of the background phases. This sum (the trace)
explicitly enforces the multichannel character of the problem,
so standard techniques used for phase shifts in a single-channel
theory can be explicitly used for eigentrace in a multichannel
theory. This feature has also been explicitly discussed recently
by Ceci. et al. [25] who demonstrated that a K-matrix trace
can be used to relate K-matrix poles and standard T -channel
Breit-Wigner parameters in a background-independent way.
These issues have been recently recognized by several groups,
and each of them has offered their own way to overcome the
problem.

One of them is the GWU group [26] where the authors have
analyzed the influence of different K-matrix parametrizations
on eigenphases and T -matrix poles. They have shown that,
regardless of whether the Chew-Mandelstam K-matrix is
parametrized either in the form of a polynomial or in the
form of poles with nonsingular background, T matrices are
very similar. However, they show that eigenphases are very
different. It is very important that they are able to relate the
origin of this difference to the fact that they fit only πN -elastic
and η-production channels, so uncertainties in other channels
cause eigenphases (and K-matrix poles consequently) to vary.
They also introduce the trace function (but not for eigenphases
but for their derivatives) and demonstrate its advantages over
individual channel quantities.

The second group is the Bonn-Jülich-Valencia Collabora-
tion, where they have used a framework based on unitarized
chiral perturbation theory (UCHPT) for the extraction of the
scalar resonance parameters. This model was very successful
with regard to the infinite volume considerations and repro-
duced well the ππ/πη and KK̄ data up to 1200 MeV [5]. Later
on it was also extended to the finite volume considerations [9]
with considerable success. The most important point of all
is that they recognize the fact that π/2 resonance criteria
cannot be used to extract pole positions, but they extract
them directly from the T -matrix poles. They address two
main issues. The first one is the use of fully relativistic
propagators in the effective field theory framework in a finite
volume, and the second one is to discuss in detail the analysis
of “raw” lattice data for the multichannel scattering. They
supplement lattice data with a piece of the well-established

prior phenomenological knowledge that stems from UCHPT,
in order to facilitate the extraction of the resonance parameters.
In particular, they show that, with such prior input, the
extraction of the pole position from the data corresponding
only to the periodic boundary conditions is indeed possible.
To verify the above statements, they analyze “synthetic” lattice
data. To this end, they produce energy levels by using UCHPT
in a finite volume, assume Gaussian errors for each data point,
and then consider these as the lattice data, forgetting how they
were produced (e.g., forgetting the parameters of the effective
chiral potential and the value of the cutoff). In the analysis of
such synthetic data, they test their approach, trying to establish
resonance masses and widths as scattering matrix poles from
the fit to the data.

As only two two-body channels are nowadays fairly well
known (πN elastic scattering and η production), the use
of trace formalism is unfortunately practically impossible.
Consequently, using trace function is rather neglected, and
single-channel K matrices or single-channel eigenphases
are very often erroneously used instead of K-matrices and
eigenphase traces. This, however, only stresses the critical lack
of experimental data in inelastic channels and shows that new
measurements of all possible hadronic reactions in the baryon
resonance energy range 1.5 GeV � E � 2.5 GeV are badly
needed. So I strongly endorse a new proposal for the J-PARC
experiment at the 50-GeV Proton Synchrotron [27].

As a summary I would just like to remind the physics
community that using Lüscher’s theorem to establish a
connection between QCD and experiment via phase shifts
has to be done with care in the real baryon resonance energy
range. Eigenphases (diagonal multichannel and not single-
channel quantities) replace phase shifts, so the well-known
π/2 criterion to obtain the resonance mass cannot be used
directly on phase shifts as has been suggested in a well-known
Dürr et al. paper [13]. I would also like to stress the importance
of using traces instead of using single-channel quantities
when K matrices or eigenphases are analyzed, as delicate
cancellations are needed to remove the influence of individual
branch cuts in each channel separately [16]. Single-channel
analysis for K-matrix elements or eigenphases should be by all
means avoided, and a trace function (basically a multichannel
quantity) should be used instead.
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[9] M. Döring, U.-G. Meissner, E. Oset, and A. Rusetsky, Eur. Phys.
J. A 47, 139 (2011).
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