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Saturated symmetric nuclear matter in strong magnetic fields
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Strongly magnetized symmetric nuclear matter is investigated within the context of effective baryon-meson
exchange models. The magnetic field is coupled to the charge as well as the dipole moment of the baryons
by including the appropriate terms in the Lagrangian density. The saturation density of magnetized, symmetric
nuclear matter ρ0(B) was calculated for magnetic fields of the order of 1017 gauss. For the calculated range of
ρ0(B) the binding energy, symmetry energy coefficient a4, and compressibility K of nuclear matter were also
calculated. It is found that with an increasing magnetic field ρ0(B) increases, while the system becomes less
bound. Furthermore, the depopulation of proton Landau levels leaves a distinct fluctuating imprint on K and a4.
The calculations were also performed for increased values of the baryon magnetic dipole moment. By increasing
the dipole moment strength ρ0(B) is found to decrease, but the system becomes more tightly bound while the
fluctuations in K and a4 persist.
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I. INTRODUCTION

Extremely strong magnetic fields cannot be produced in
laboratories, but these conditions can be found in stellar
environments. All stars are magnetized and the strongest
magnetic fields are found in the stars generically known as
neutron stars. They are observed as rapidly rotating, strongly
radio-emitting objects called pulsars with magnetic fields of
between 108 and 9 × 1013 G [1]. However, x-ray or γ -ray
emitting pulsars are also observed. They are assumed to be
highly magnetized neutron stars with magnetic fields between
1014 and 1015 G and are called magnetars. For a review of their
properties see Ref. [2].

The current model of magnetars assumes that the star’s
magnetic field is formed in the interior of the progenitor
through dynamo action [3]. Since the observed magnetic field
strengths are those on the surface of the star, the interior
magnetic field may well be larger. Using realistic equations
of states as well as a general relativistic description of rotating
magnetized stars, Kuichi and Kotake [4] calculated that a
magnetar surface magnetic field of about 1016 G would
increase to a maximum of over 1017 G in the interior. Frieben
and Rezzolla, using a similar approach, found the average
magnetic field in the magnetar interior to be of the order of 1017

G while the maximum value would be between 3.26 × 1017 G
and 8.05 × 1017 G, depending on the equation of state [5].
The current consensus seem to be that a magnetar cannot
sustain a magnetic field larger than between 1018 and 1019 G,
as summarized in Ref. [6].

It is an open question whether, and in what way, these strong
magnetic fields can influence the properties of the matter in
the magnetar interior. One assumption that is made about the
neutron star interior is that it contains nuclear matter in charge
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and beta equilibrium [7]. Peña Arteaga et al. concluded that,
depending on the specific nucleus, magnetic field strengths
of about 5 × 1016 G and larger could affect the nuclear shell
structure [8]. Although nuclear matter is homogeneous and
thus does not have a shell structure, the expected range of
the magnetic field in the magnetar interior could influence its
various other properties.

Due to the nuclear interaction being short ranged it saturates
at higher densities and favors isospin symmetry [7]. However,
owing to the condition of charge neutrality imposed on the
neutron star interior and the short half-life of free neutrons,
perfectly symmetric matter would not occur in the neutron
star interior. On the other hand, the equation of state and
characteristics of high density asymmetric nuclear matter is
unknown (see Ref. [9] for a recent review). Thus, in order
to get a first approximation of the behavior of nuclear matter
in strong magnetic fields, we turn our attention to symmetric
nuclear matter, since it has definite properties which are related
to finite nuclei and nuclear matter [7].

In this paper we investigate the impact that a very
strong, external magnetic field has on the properties of
cold, saturated symmetric nuclear matter for a range of
the baryon magnetic dipole moment strengths. In particular
we calculate the saturation density as a function of the
magnetic field strength. Furthermore the binding energy, the
compressibility, and the symmetry energy, all at saturation,
will also be investigated. These characteristic properties have
been established as indicators of the behavior of dense
nuclear matter and are generally used to constrain nuclear
matter models, such as quantum hadrodynamics (or QHD,
which is also known as the Walecka model) [10] and its
extensions [11].

In QHD the nuclear interaction between the baryons
stems from various meson exchanges, where each exchange
describes a different feature of the nuclear interaction. The
free parameters are the meson-baryon coupling constants, as
well as the meson self-coupling constants. We will make use
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of the QHD1 [10], NL3 [12], FSU (or FSUGold) [13], and
the more recent IU-FSU [14] parameter sets. QHD1 is one
of the earliest parameter sets and includes only the scalar
sigma and vector omega mesons in its description [10]. NL3
also includes the isovector rho meson and introduces a self-
coupling in the scalar meson field to improve the description
of nuclear matter [12]. FSU was parametrized to investigate,
among others, the nuclei away from nuclear symmetry. It
introduces a self-coupling in the vector field, as well as a
coupling between the vector and isovector mesons [13]. FSU
and IU-FSU share the same couplings, but the latter was
constrained to also satisfy astrophysical requirements [14].
Despite the fact that all QHD parameter sets are constrained
to reproduce the same nuclear matter properties at nuclear
saturation, they have very different behavior at densities above
saturation [11].

In order to perform calculations the system is approximated
using the relativistic mean-field (RMF) approximation. In the
RMF approximation the meson fields operators are replaced
by their ground state expectation values and become classical
fields [10]. As noted in Ref. [6], the RMF approximation is
at best a phenomenological description of nuclear matter. The
RMF approximation is very good when the meson interaction
length is much larger than the spacing between the baryons.
However, for the densities at which the approximation is
applied the distance between baryons is actually of the order
of the meson interaction length. Despite this inconsistency,
the calculated RMF nuclear properties have shown good
agreement with experimentally known properties of nuclei and
nuclear matter [11].

Various aspects of magnetized nuclear matter have already
been investigated using QHD in the RMF approximation, most
recently by Dong et al. [15]. In the latter work the density
dependence of the symmetry energy of magnetized matter was
investigated with the FSU parameter set at various densities
as well as proton and neutron ratios, while also adjusting
some of the coupling strengths in the parameter set. The
authors concluded that the parabolic isospin dependence on the
energy per nucleon remains valid for strong magnetic fields.
An overview of previous studies is also provided in Ref. [15]
and references therein.

Casali et al. [16] investigated the impact of magnetic fields
of 1017 and 1018 G on the symmetry energy coefficient at
densities below nuclear saturation using the NL3 and FSU
QHD parameter sets. They found that the Landau levels give
rise to discontinuities in the symmetry energy and influence the
composition of the neutron star crust. They also investigated
the effect of including the coupling between the magnetic
field and the baryon dipole moments and concluded that it
will only be appreciable in very strong magnetic fields at
subsaturation nuclear densities. However, it would appear that
the contribution of the magnetic field was not included in the
energy density of the neutron star matter. As pointed out by
Broderick et al. in Ref. [17], the magnetic contribution should
be included since it influences the equation of state and thus
the composition of the matter.

Broderick et al. [17] were also the first to point out the
importance and impact of including the coupling between
the dipole moment of the baryons and the magnetic field,

in addition to the coupling of the proton’s charge to the
magnetic field, in the description of magnetized matter. In
Ref. [17] this coupling is referred to as the anomalous magnetic
moment or “AMM” coupling with the coupling strength of
the applicable baryon’s magnetic dipole moment. We believe
this to be a somewhat misleading term since baryons are not
point particles like electrons, but have an internal structure of
quarks and gluons. The anomalous contribution to the electron
dipole moment arises from higher order photon couplings to
the electron charge. On the other hand, the baryon’s dipole
moment (partially or fully, depending on whether the baryon
is charged or not) arises from the photons coupling to the
baryon’s charged internal structure. Thus these “anomalous”
contributions to the baryon dipole moment are not higher
order contributions of the electromagnetic coupling, but an
expression of the fact that the baryons have internal structure.
However, not to confuse the reader we will also adopt this
naming convention.

Due to this particular origin of the baryon magnetic dipole
moment, more than anecdotal evidence would suggest that it
should not be constant under all conditions. One would expect
that the internal baryon structure would be affected by the
baryon density, especially at high densities. Since this structure
is the origin of the dipole moment, by extension the baryon
magnetic dipole moment would also be influenced. As dis-
cussed by Berryman [18], experimental investigations would
also suggest the proton dipole moment is altered at higher
densities. It is shown in Ref. [18] (based on data from Ref. [19])
that the dipole moment of copper, which has one proton
outside the closed Z = 28 proton shell, with an even number of
valence neutrons increases by about 50% over a mass number
range of 10. Furthermore, Ryu et al. in Ref. [20] investigated
the neutron star equation of state with density-dependent
dipole moments for the baryon octet using the quark-meson
coupling (QMC) models and extensions thereof. They found
that the neutron star equation of state is dependent on both the
strength of the magnetic field as well as that of the baryon mag-
netic dipole moment. Unfortunately the density dependence
of the baryon dipole moment at high densities is not known,
either experimentally or theoretically, which complicates the
calculations.

To achieve our stated goals the following calculations were
performed. First, the saturation density of symmetric nuclear
matter ρ0(B) was calculated at the density that minimizes
the binding energy per nucleon for a range of magnetic field
strengths B. Then the compression modulus and the symmetry
energy coefficient were calculated at these densities. Since the
density dependence of the baryon magnetic dipole moment
is not known, these calculations were repeated for a range of
values of the baryon magnetic dipole moment. Our results are
presented and discussed at the end of the paper. To start off we
present an overview of our formalism.

II. FORMALISM

The interacting part of the QHD RMF Lagrangian for
magnetized matter together with the free electromagnetic
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TABLE I. Coupling constants of different QHD parameter sets from Refs. [11] and [14]. All coupling constants are dimensionless, except
for κ which is given in MeV. The baryon mass m is taken as 939 MeV, while ms , mω, and mρ are given in MeV.

Model ms mω mρ g2
s g2

v g2
ρ κ λφ ζ 	v

QHD1 520 783 0.0 109.6 190.4 0.0 0.0 0.0 0.0 0.0
NL3 508.194 782.501 763.000 104.3871 165.5854 79.6000 3.8599 − 0.015 905 0.00 0.00
FSU 491.500 782.500 763.000 112.1996 204.5469 138.4701 1.4203 +0.023 762 0.06 0.030
IU-FSU 491.500 782.500 763.000 99.4266 169.8349 184.6877 3.3808 +0.000296 0.03 0.046

component is [14,15]

Lint = ψ̄

[
gsφ0 − γ μ

(
qb

1 + τ3

2
Aμ + gvV0 + gρ

2
τ3b0

)]
ψ

− κ

3!
(gsφ0)3 − λφ

4!
(gsφ0)4 + ζ

4!
(gvV0)4

+	v(gvV0)2(gρb0)2 − ψ̄
gb

2
Fμνσμνψ − 1

4
FμνFμν,

(1)

where ψ = [ ψp

ψn
] is the isodoublet baryon field operator where

subscript p and n indicate the proton and neutron components,
while φ0, V0, and b0 indicate the scalar, vector, and isovector
mesons. The mesons couple to the baryons via gs, gv , and
gρ while κ, λφ, ζ , and 	v are the meson self-coupling
strengths. The values of the couplings and meson masses
are given in Table I. Furthermore, τ3 is the isospin operator,
Aμ = (0, 0, Bx, 0) with B = |B|, while σμν = i

2 [γ μ, γ ν] are
the generators of the Lorentz group [21]. The strength of the
coupling between the baryons and Aμ is the baryon charge
qb = [ qp 0

0 qn
], while gb = [ gp 0

0 gn
] is the strength of the coupling

between the magnetic and baryon fields (with units of the
baryon magnetic dipole moment). Under normal conditions
the proton dipole moment is 2.793 μN while the neutron’s
is −1.913 μN (expressed in units of the nuclear magneton
μN ) [22]. In Ref. [23] it is shown that the values of gn and gp

equal to

gn = 1.913

2
μN = g(0)

n and gp = −0.793

2
μN = g(0)

p (2)

reproduce the normal values of the dipole moments in the
nonrelativistic limit. To adjust the baryon dipole moments by
a factor of x, gn and gp should become [23]

gn = 1.913x

2
μN = xg(0)

n and (3a)

gp = −2.793x − 2

2
μN = xg(0)

p . (3b)

The second and ninth terms of Lint (1) can be expanded to

−qpψ̄pγ μAμψp − gp

2
ψ̄p� · Bψp − gn

2
ψ̄n� · Bψn, (4)

where � = [ σ 0
0 σ ] are the baryon spin operators. The first

term in (4) leads to the well-known Landau problem, where
the single particle proton energy spectrum is quantized
and consecutive levels differ in energy by factor of |qpB|.
The last two terms represent the “AMM” coupling between
the magnetic field and the dipole density ψ̄�ψ of each

of the baryons. As shown in Ref. [23] and references therein,
the magnetized proton spectrum is

e(kz, λ, n) =
√

k2
z + (

√
m∗2 + 2|qpB|n + λgpB)2 + gvV

0

+ gρb0

2
, (5)

while the magnetized neutron spectrum is

e(k, λ) =
√

k2
z + (

√
k2
⊥ + m∗2 + λgnB)2 + gvV

0 − gρb0

2
,

(6)

where k2
⊥ = k2

x + k2
y , m∗ = (m − gsφ0) is the reduced mass,

λ = ±1, and n = (n′ + 1
2 − α λ

2 ) with n′ = 0, 1, 2, 3... and
α = sgn(qpB) are integers labeling the Landau levels.

When the magnetic field is orientated in the z direction (in
the 3-dimensional Landau problem) only the kz momentum
contributes to the proton energy. As in the nonrelativistic case,
the proton spectrum is degenerate and independent of the
choice of Aμ [24]. For neutrons the usual spherical symmetry
of the ground state is broken by the magnetic field and replaced
with cylindrical symmetry.

In (5) and (6) λ indicates the possible orientations of the
baryon dipole moment along ẑ. Since the Pauli matrices do
not commute, the Hamiltonian of magnetized matter does not
commute with the baryon spin operator �. Hence spin is not
a good quantum number and we rather refer to the orientation
of the dipole moment to distinguish between the two types
of baryons which are usually referred to as spin up or down.
Therefore, the “AMM” coupling induces a relative shift in the
energy spectrum of both protons and neutrons with opposite
values of λ.

For a system consisting of symmetric nuclear matter the
density of protons and neutrons must be equal. Furthermore it
is assumed to be at zero temperature and so the ground state
will consist of completely filled energy levels with energies
up to the Fermi energy. The deformation of the neutron Fermi
surface can be accounted for in the calculation of any neutron
density, or ground state expectation value, by considering the
directional momentum dependence of the Fermi energy (see
Ref. [23] for more details).

Due to the Landau quantization, any magnetized proton
density is expressed as a sum over the occupied Landau levels.
The degeneracy of each proton level is incorporated by adding
a prefactor |qpB|

4π2 to the contribution of the level. The prefactor
follows from a comparison of the fundamental magnetic flux
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per particle to the total magnetic flux through the level [24]
(also see Ref. [23] and references therein).

Consequently the energy density of magnetized symmetric
nuclear matter, including the contribution of the magnetic field,
is [23]

ε =
∑
λ,n

|qpB|
4π2

∫
ep(kz, λ, n) �[ μp − ep(kz, λ, n)]dkz

+
∑

λ

∫
dk

(2π )3
en(k, λ) �[ μn − en(k, λ)]

+ 1

2
m2

s φ
2
0 + κ

3!
(gsφ0)3 + λφ

4!
(gsφ0)4 − 1

2
m2

ωV 2
0

− ζ

4!
(gvV0)4 − 1

2
m2

ρb
2
0 − 	v(gvV0)2(gρb0)2 + 1

2
B2,

(7)

where � is the Heaviside step function. A simplified expres-
sion for ε can be found in Ref. [17].

III. RESULTS

Since the nuclear interaction is short ranged it saturates at
high densities. The saturation density is defined as the density
at which the binding energy per nucleon is at a minimum (we
follow the convention of the binding energy being negative)
and the system is most strongly bound. The binding energy
per nucleon is [10]

Eb = ε

ρ
− m, (8)

and most QHD parameter sets reproduce the unmagnetized
saturation density ρ0(0) at 0.148 fm−3 with a binding energy of
about −16.3 MeV [14]. We calculated the saturation density as
function of a strong magnetic field with gb = g

(0)
b . The results

are shown in Fig. 1.
From these plots we note that Eb(B) behaves very similarly

for all parameter sets: As the magnetic field increases the
system becomes less strongly bound. At B ≈ 3 × 1017 G,
which corresponds to a density of between 1.2 and 1.4 times

ρ0(0) (depending on the parameter set), the system becomes
unbound. Thus, albeit more weakly bound, the system can
accommodate much denser matter as it becomes magnetized.
The increase in ρ0(B) with B was first noted by Chakrabarty
et al. in Ref. [25]. However, in this paper the effect of the
“AMM” coupling was not studied and the authors found that
the system becomes more tightly bound with increasing B.

While the various Eb(B) curves are similar, the rate by
which ρ0(B) increases differs. As shown in Fig. 2, the various
baryon Fermi energies μb as well as the Landau occupation
numbers n(λ) do not differ significantly. Hence the Eb(B)
curves would also be similar since from Eq. (8) we deduce
that the binding energy goes like the Fermi energy. However,
m∗ and gvV0 do vary significantly between the parameter
sets. Since the underlying mechanisms are the same, these
differences stem from the parametrization and must be the
source of the variation in ρ0(B).

For QHD1 gsφ0 (from m∗ = m − gsφ0) and gvV0 have the
largest values and so, since the Fermi energies are essentially
the same, the QHD1 densities will be the lowest with the
fewest number of occupied Landau levels, as we see from the
n(λ) plot. Applying the same logic to the rest of the plots, it
is deduced that the FSU parameter set will have the highest
values of ρ0(B). This is not surprising since in Ref. [14] (and
references therein) it has been well established that FSU has the
softest equation of state (EoS). Since the EoS relates the energy
density to the pressure a stiffer EoS exhibits a more rapid
increase in pressure with density. Thus it can accommodate
higher (energy) densities with the (comparatively) smallest
increase in the pressure of the system.

Related to the stiffness of the EoS is the compression
modulus K of nuclear matter which gives an indication of
the compressibility of the matter. For magnetized matter the
compression modulus K(B) of the various QHD parameter
sets was calculated using [7]

K(B) = 9

[
ρ2 d2

dρ2

(
ε

ρ

)]
ρ=ρ0(B)

. (9)

We note that Eq. (9) is essentially the derivative of the pressure
as a function of density and thus an indication of the stiffness
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FIG. 1. (Color online) Plots of (a) the saturation density normalized with regards to the B = 0 values, and (b) the binding energy at
saturation for different QHD parameter sets with gb = g

(0)
b .
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FIG. 2. (Color online) Nuclear matter observables at saturation as a function of B: (a) the Fermi energy of the protons and neutrons
(although only the neutron Fermi energy is shown since it does not noticeably differ from the proton values), while in (b) n(λ) labels the Landau
level occupation of the protons for each value of λ. Since gp = g(0)

p < 0 the difference between n(1) and n(−1) is 1. Furthermore, since B > 0
the λ = 1 protons have the lowest energies and thus occupy the most levels. In (c) and (d) the values of gvV0 and m∗ are plotted, respectively.

of the EoS. Since ρ0(B) increases with B, so too should
K(B) since the higher the density the more incompressible
the system becomes. From Fig. 3(a) it is clear that QHD1 has
the stiffest EoS while FSU has the softest. In Fig. 3(b) the
normalized values of K(B), with respect to K(0), are shown.

However, the increase in K(B) does not happen smoothly,
but rather it fluctuates with an increasing amplitude (for small
B these fluctuations are not visible on the scale of the figure).
These fluctuations imply that as B increases the system varies
the degree to which it is compressible. This behavior is related
to the number of Landau levels occupied by the system.

In Fig. 4 the relation between the fluctuations of the NL3
K(B) and the depopulation1 of the occupied Landau levels are
shown. Variable behavior in a magnetized system of charged
particles is not unexpected, since in a (two dimensional)
quantum Hall system one observes dramatic variation of the
conductivity due to the population of the Landau levels [24].
Consequently the influence of the Landau levels on K should
not be entirely surprising. However, in this case the variability

1As B increases the number of occupied Landau levels will decrease
for a small change in density.

stems from the fact that the magnetic field influences the proton
densities in two ways: through the degeneracy factor |qpB|

4π2 and
the spacing between Landau levels which, from Eq. (5), goes
like gpB.

Therefore, as the magnetic field increases the degeneracy
factor also increases which makes the system more com-
pressible, but at the same time the energy gap between the
Landau levels becomes bigger which makes the system more
incompressible. Since the system is at its saturation density
(hence in its lowest energy configuration), the Landau levels
are depopulated one by one. As the occupation of the level
with energy closest to the Fermi energy decreases the system
becomes more compressible, since the particles from this level
are absorbed by the Landau levels at lower energies.

For neutrons B �= 0 only induces a relative shift in the
energy of particles with different orientations of their dipole
moments. For B > 0 the λ = −1 neutrons (gn > 0) become
the dominant particle since the λ = 1 neutrons will flip their
dipole moments in order to attain a lower energy λ = −1 state.
This contributes to the increase in K(B), but has no influence
on its fluctuations.

To establish the asymmetric tendencies of a magnetized
system the symmetry energy coefficient a4 is calculated. It
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FIG. 3. (Color online) The compression moduli of magnetized nuclear matter for gb = g
(0)
b for various QHD parameter sets are shown in

(a), while in (b) the normalized values with regard to their values at ρ0(0) are shown.

gives an indication of whether symmetric or asymmetric matter
is preferred [7]. This coefficient is calculated at ρ0(B) from

a4 = 1

2

∂2

∂t2

ε

ρb

∣∣∣∣
t=0

with

(
t ≡ ρn − ρp

ρb

)
. (10)

Since a4 is the coefficient of the (N−Z)2

N+Z
term in the semiem-

pirical mass formula [7], the larger a4 becomes, the more
symmetric matter is preferred in order to keep the energy at a
minimum.

The expression for a4 can be simplified, but care should be
taken since the baryon Fermi energies are also dependent on the
magnetic field. A simplified expression for a4 of magnetized
matter is given in Ref. [23]. The results of the calculation are
displayed in Fig. 5.

Similar to the other nuclear matter properties, a4 increases
with B which indicates that more symmetric nuclear matter
system is favored than when B = 0. The increase in a4 is
intermittently interrupted by a slight decrease, signaling a
preference for more asymmetric matter. Again this fluctuating
nature of a4 is related to the depopulation of Landau levels.
Its origin is best illustrated by considering the density of the
two types of protons (λ = ±1), in particular the difference be-

tween the proton densities �ρp(λ) = ρp(1) − ρp(−1) which
is shown in Fig. 6(b).

For neutrons, �ρn(λ) increases linearly with B since the
difference in the energy of neutrons with different orientations
of their dipole moment is 2gnB. For protons, �ρp(λ) is not
directly proportional to B since the difference in energy of
protons with opposite signs of λ depends on both 2gpB as
well as the number of filled Landau levels for a given λ.
When �ρp(λ) is at a local minimum �n(λ) = 1 (which is
the norm2), while at a local maximum (just before a Landau
level depopulates) �n(λ) = 2 and one choice of λ proton levels
is preferentially filled. In between these points in �ρp(λ), a4

decreases and more asymmetric matter is preferred since the
degenerate proton Landau levels can be filled at a lower energy
cost than the (nondegenerate) neutron energy levels.

Of further interest is to investigate the properties of
magnetized saturated nuclear matter for adjusted values of
the baryon magnetic dipole moments, which are adjusted

2In the Landau quantization the proton spectrum is such that the
lowest energy proton level is not paired with a level of opposite λ and
hence n(λ) differ by one (which choice of λ has greater n depends on
the sign of B). See Ref. [23] for more details.
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FIG. 4. (Color online) Analysis of NL3 K/K0 plot from Fig. 3(b) of which a section is shown in (a), while (b) shows the Landau level
occupation. The vertical guidelines denote the same values of the magnetic field in both plots.
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FIG. 5. (Color online) The nonnormalized (a) and normalized (b) values of a4 of magnetized nuclear matter for different QHD parameter
sets.

according to Eqs. (3b) and (3a). The strengths of the dipole
moments were changed symmetrically so that the proton and
neutron dipole moments are increased by the same factor; i.e.,
gb = 10g

(0)
b means that the strength of both the dipole moments

increased by a factor of 10. We observe that as gb is adjusted,
the responses of the different QHD parameter sets are very
similar. Hence only the results for the NL3 parameter set (an
arbitrary choice) will be plotted.

In Fig. 7 the values of the different properties for gb

equal to g
(0)
b , 10g

(0)
b , 20g

(0)
b , and 30g

(0)
b are shown. We do

not claim that these values of gb are necessarily feasible or
attainable for the plotted range of densities and magnetic
fields, but rather that they illustrate the full spectrum of
the possible behavior of magnetized matter under extreme
conditions.

It is observed that as gb increases the system becomes less
dense but more bound. The density decreases since the gap
between different dipole orientations of the protons and the
neutrons, as well as the separation of the proton Landau levels,
increases. Hence lower energies are attained at the cost of the
number of particles that the system can accommodate per unit
volume. For very large values of gb the relative shift between
the different λ proton and neutron energy levels is so large that

only one choice of λ (the one with the lowest energy levels) is
populated.

The bottom row in Fig. 7 shows a4(B) and K(B) as gb varies
for the NL3 parameter set. For both the fluctuating behavior
persists but their respective increases become less rapid as gb

increases, which mimics the manner in which ρ0(B) changes
with gb. For gb = 30g

(0)
b the last λ = −1 proton Landau level

depopulates at B ≈ 3 × 1017 G. Leading to this point both
K and a4 increase: K increases since the system becomes
much more incompressible because almost only λ = 1 Landau
levels are filled. On the other hand a4 shifts from asymmetric
(proton-rich) matter to more symmetric matter since only
λ = 1 protons are accommodated.

IV. DISCUSSION

From our results we conclude that for B < 1015 G the
saturation properties of symmetric nuclear matter are not
substantially influenced. However, as the value of qbB and/or
gbB comes (relatively) close to that of the baryon (reduced)
mass the system is undeniably influenced by the magnetic
field: For gb = g

(0)
b and B = 1015 G, gbB ≈ 3 keV and

qpB ≈ 30 keV while m∗ ranges between 500 and 580 MeV,
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FIG. 6. (Color online) Comparison of the NL3 a4 graph (a) and the difference in the proton densities (b). The vertical lines in both plots
denote the same values of the magnetic field.
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FIG. 7. (Color online) Magnetized nuclear matter properties for various values of gb, as multiples of g
(0)
b : (a) the saturation densities,

(b) the binding energies, (c) K(B), and (d) a4(B).

depending on the parameter set. Consequently we find that,
similar to nuclei [8], magnetic fields of the order of 1016 G
and up are needed to influence the properties of saturated
symmetric nuclear matter. However, it is important to note that
this is a question of energy scales (in particular the relation of
m∗ to qpB), rather than absolute value of the magnetic field
strength.

To establish the scope of the magnetic field’s influence, it is
useful to plot K(B) and a4(B) as a function of ρ0(B), shown
in Fig. 8. Shown there are the properties of saturated nuclear
matter for an increasing magnetic field. As the magnetic field
increases, so too does the saturation density. Although the
saturation density is still at the minimum of the binding energy
curve, the matter at this density becomes less bound as the
magnetic field and correspondingly ρ0(B) increase, as was
shown in Fig. 1(b).

The overall tendency of saturated matter to become more
incompressible as the density increases is expected, but the
smaller scale fluctuations in the increase are surprising. These
correlate with the depopulation of the proton Landau levels.
When the Landau levels depopulate the matter becomes more
compressible despite the increase in the density.

As B and ρ0(B) increase, a4 also shows an overall
increasing trend. As mentioned previously, the larger a4

becomes the more symmetric matter is preferred, according
to the semiemperical mass formula [7]. From this we deduce
that for higher B nuclear matter tends to be more symmetric,
thus having a larger proton fraction than expected since the
degenerate Landau levels can accommodate particles at a lower
energy cost. Once again the increase in a4 is not smooth and
there are sections where, despite the increase in ρ0(B), more
asymmetric (neutron rich) matter is preferred. These are also
shown to be related to the depopulation of proton Landau
levels.

Hence it is obvious that any sudden change in the magnetic
field will drastically alter the properties of the saturated
nuclear matter, since the configuration of the Landau levels
will change. These changes have a direct impact on the
compressibility of the system as well as the preferred mix
of protons and neutrons. In Fig. 7 we also showed that the
influence of the magnetic field persists when the magnetic
dipole moment increases.

In a naive way Fig. 8 can be seen as indicative of the
behavior of nuclear matter in a section of the magnetar interior,
assuming that the magnetic field increases with the depth.
We deduce that the compressibility as well as proton fraction
of nuclear matter in the stellar interior is dependent on the
magnetic field. Furthermore, if the magnetic field were to
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FIG. 8. (Color online) (a) K(B), and (b) a4(B) as a function of ρ0(B) for gb = g
(0)
b .

suddenly change, it could potentially significantly alter its
nuclear properties.

Highly magnetized neutron stars (magnetars) are known
for various types of flares/bursting activities (see Ref. [2]
for a review), some of which that are accompanied by
glitches (sudden increase in the rotation frequency of the
star) [26]. It has been reported by Woods et al. in Ref. [27]
that the flare in magnetar SGR 1900 + 14 was accompanied
by the reconfiguration of the stellar magnetic field. Hence
the changes in the stellar magnetic field, as well as the
accompanying changes in the conditions within neutron
star interior, may contribute to the observed properties of
magnetars.

If the reconfiguration of the magnetic field implies a change
in the magnetic field strength throughout the interior, the
changes in the compressibility can induce a compression wave
since the compressibility depends on the magnetic field in a
nonlinear, fluctuating fashion. If the changes in the magnetic
field happen over a short enough timescale, differential stresses
will build up in the interior due to the varying nature
of K .

From a4(B) in Fig. 8(b) changes in B might imply a change
in the preferred composition of nuclear matter with regards to
the ratio of protons and neutrons. Hence a change in B could
induce inverse or normal beta decay in nuclear matter. Not
only would such decay activities change the composition of
nuclear matter, but would also release energy which could be

the source of some of the sudden bursts of radiation observed
from magnetars.

V. CONCLUSION

We have presented some evidence that the composition and
properties of magnetized, saturated symmetric nuclear matter
start to depend on B for B � 1016 G. We have also shown that
the influence of the magnetic field persists even if the strength
of the baryon magnetic dipole moments changes.

We believe that the influence of the magnetic field is
important when studying the magnetar interior. However, since
the internal dynamics of the neutron star interior and, in
particular, the time dependence of the nuclear processes are
not known it is difficult to model dynamical behavior. If the
origin and behavior of the stellar magnetic field is known, then
we might have a chance of calculating the influence of any
changes on the interior. In a future publication we will consider
whether a ferromagnetic phase might be present in the neutron
star interior as the source of the magnetar magnetic field.
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