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Effects of density-dependent lepton fraction on the properties of protoneutron stars

A. Sulaksono1 and L. Satiawati2
1Departmen Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia
2Program studi Fisika, FTS, Universitas Nasional, Jakarta 12520, Indonesia

(Received 24 February 2013; published 10 June 2013)

The density-dependent lepton fractions approach that is used to describe the properties of matter with neutrino
trapping is systematically studied. It is found that two sets of the ratio of trapped neutrinos to leptons parameters—
i.e., one for a relativistic mean field parameter set with stiff equation of state and one for a parameter set with soft
equation of state—yield particle composition profiles at high densities similar to those predicted by the standard
fixed lepton fraction approach. However, these sets of parameters produce significantly different behavior at low
densities compared to those of standard approach. The consequences of applying the density-dependent lepton
fractions approach to some properties of PNS, such as the particle composition, equation of state, the onset of
low-density instability, the mass-radius relation, and the mean free path of electron neutrino, are investigated. By
comparing the results with those of the standard approach, we obtain the result that the PNS equation of state
is not significantly influenced by the low-density behavior difference between the two approaches. However,
the density-dependent lepton fractions approach yields a smaller onset of low-density instability matter and
core-crust transition density but a slightly larger maximum mass as well as a larger radius of canonical mass
than those predicted by the standard approach. The estimated minimum PNS mass and its radius are apparently
also sensitive to the parameter used for the ratio of trapped neutrinos to leptons. For electron neutrino transport
in PNSs, matter with density-dependent lepton fractions is more transparent than matter with fixed lepton
fractions.

DOI: 10.1103/PhysRevC.87.065802 PACS number(s): 26.60.−c, 25.30.Pt, 13.15.+g

I. INTRODUCTION

It is generally believed that a hot and dense protoneutron
star (PNS) is formed just after the core collapse of a massive
star in a type-II supernova explosion. The iron core of such
a star collapses when its mass reaches the Chandrasekhar
limit [1],

MCh ∼ 5.8Y 2
e

(
1 +

(
se

πYe

)2)
M� ∼ 1.2–1.5M�, (1)

where Ye denotes the electron number per baryon which
depends on the mass of the progenitor star, and se is the
electron entropy per baryon (in units of Boltzmann’s constant).
In precollapse iron cores, typical values of Ye are around 0.42
at the center and 0.48 at the outer edge [2]. For example,
by putting Ye = 0.45 and se = 0.52 of a progenitor star with
M = 15M� into Eq. (1), then MCh = 1.34M� is obtained [3].
The formed PNS is a lepton-rich star, with a matter density of
ρ = 2–6 × 1014 g/cm2 and a temperature of T = 5–40 MeV,
where, in this condition, neutrinos are temporarily trapped in
the PNS core and the electron-lepton fraction is essentially
fixed [1,4]. The following PNS evolution is dominated by
neutrino diffusion. In this stage, the star is first heated,
deleptonized, and subsequently cooled. Then, it becomes a
neutron star (NS) at practically zero temperature without
trapped neutrinos [4–6]. We note that the microphysics input
for stellar core collapse simulation come essentially from
the neutrino-matter interaction rates and deleptonization, i.e.,
electron capture and the equation of state (EOS) [7]. To
construct the EOS is indeed not easy because quite wide
ranges of density (104–105 g/cm3), temperature (0–100 MeV),
and composition with proton fraction (0–0.6) should be taken

into consideration. Within these ranges, the characteristics
of nuclear matter change dramatically, from an ideal gas of
different nuclei up to uniform strongly interacting matter. Even
a transition to deconfined quark matter should be included.
Presently, two hadronic EOS exist which are commonly used
in core collapse simulations, i.e., by Lattimer and Swesty [8]
and by Shen et al. [9]. These two EOS use different kinds of
nuclear interactions but both take into account noninteracting α
particles, a single heavy nucleus, and free nucleons, in addition
to the electron, positron, and photon gas. At low densities, the
composition of matter becomes much more complicated due
to the large number of different nuclei involved [10], while
at high densities recently a quark-hadron phase transition
was indicated [11]. The effects of exotic particles such as
hyperons, kaons, etc., have been discussed by many authors,
e.g., Refs. [7,12]. It is worth noting that PNS cooling and
convection are sensitive to the symmetry energy [13]; the
nuclear symmetry energy and its density dependence have
attracted much attention due to their importance in nuclear
physics and astrophysics (see Ref. [14] and references therein).
The mass of the PNS plays a crucial role as a unique constraint
to determine the minimum NS mass [15–17].

In the standard calculations of the earliest stages of PNS
evolution, the balance equations for the chemical potentials,
charge neutrality, baryon number conservation, and fixed
lepton fractions, all at fixed temperatures or in an isentropic
process, are commonly used. In these stages, the time scale
of the weak interaction is much smaller than the evolutionary
time scale, i.e., neutrino diffusion time or the neutrino cooling
time. The gravitational collapse calculations of the electron-
degenerate core of a massive star indicate that at the onset of
trapping the electron-lepton fraction YLe = Ye+Yνe

≈ 0.4 [6],
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where Y e and Yνe
are the fractions of electrons and electron

neutrinos, respectively. The precise value of YLe depends on
the efficiency of electron capture reactions during this initial
collapse stage. When electron neutrinos become trapped, the
fraction of muon leptons must be conserved, so the constraint
YLμ = Yμ − Yν̄μ

≈ 0 is usually also imposed [6]. Here, Yμ and
Yν̄μ

are the fractions of muons and muon antineutrinos. Note
that t ∼ 50–100 ms after core bounce stage is characterized by
a hot shocked envelope with an entropy per baryon of s ∼ 4–5
for densities ρ < 0.02 fm3, an unshocked core with s ∼ 1 for
densities ρ > 0.1 fm3, and a transition region between these
densities. At t ∼ 0.5–1 s after core bounce stage, except in
some outer regions, the entropy per baryon is approximately
constant throughout the star (s ∼ 2). This stage is modeled
with a neutrino transparent envelope with densities ρ < ρenv =
6 × 10−4 fm3 and a neutrino opaque core with densities
ρ > ρcore, and the transition region between ρenv and ρcore

is called the neutrino sphere (see Ref. [18] and references
therein).

The fixed YLe and YLμ are a very good approximation for
the high-density part of the core of the above PNS stages.
However, in the region close to the surface, the probability
of the neutrinos being trapped might depend sensitively on
density and temperature. This is due to the fact that, in this
region, the neutrino mean free path changes rather significantly
due to the change of density and temperature and since the ratio
of neutrinos to leptons determined from β equilibrium depends
also on the density and temperature. Thus, it is quite reasonable
to assume that the electron lepton fraction is decreasing in
the region near the surface of the PNS [19]. Furthermore, at
the envelope (crust) region the matter loses neutrinos very
fast during the PNS evolution and, as a consequence, the
trapping condition YLe = 0.4 does not apply any more in
this region [17]. Therefore, the view of smoothly decreasing
electron neutrinos near the edge physically looks more natural
than the one with an abrupt change in the transition region.

To properly describe the transition from the low-density
core to the envelope in PNS matter with standard fixed YLe,
the neutrino sphere concept should be introduced. From recent
studies, however, it is known that the location of the neutrino
sphere is uncertain [15–17,20]. Typical model-dependent val-
ues for the location of the neutrino sphere found in the literature
are 2 × 103 fm3 [15], 6 × 104 fm3 [18], and 2 × 105 fm3 [20].
The authors of Ref. [17] choose the cutoff procedure; i.e., by
imposing the condition YLe = 0.4 at any density in a certain
threshold density range ρν ≈ 105–106 fm3 until the electron
fraction Ye becomes 0.4, the neutrinos disappear naturally. This
means that the minimum mass of the (P)NS predicted by using
the standard fixed YLe approach for the core is also sensitive to
the model of neutrino sphere used. If the YLe in the low-density
part of the core is density dependent and significantly smaller
than 0.4, the natural smooth transition from the core to the
envelope can be more easily reached and its impact might
shed light on the neutrino sphere uncertainty problem.

Recently, Ryu et al. [19] studied the EOS of the core of the
early stage of a PNS by using the relativistic mean field (RMF)
model with the density-dependent fractions of lepton (DDYL)
approach for the isentropic process and the entropy density
s = 2. The EOS is obtained by assuming that the ratio of

trapped neutrinos to leptons as a function of baryon density
fulfills the following relations: ρνe

≡ xe(ρB)ρe and ρνμ
≡

xm(ρB)ρμ, where xi(ρB) reads [19]

xi(ρB) = x0i{1 − exp[−β(ρB/ρ0)γ ]}, i = e,m. (2)

The specific values x0e = x0m = x0 ≡ 0.3, β ≡ 0.05, and γ ≡
2 were used in that work in order that the ratio xi(ρB) = x(ρB)
produce a smooth smearing of leptons at the surface of a PNS
while maintaining x < 0.5 in all regions of the PNS [19].
They stated that the profile of neutrino population at high
density which is found is consistent with those calculated
by using the neutrino transport theory [21,22], and they also
used this approach to study the change of the spin period
due to the neutrino emission from the PNS [23]. However,
there is one thing that attracts our attention from their results.
The parameter value x0 ≡ 0.3 in Ref. [19] obtained due to
their EOS is very soft, but the predicted YLe is about 0.4
at high densities; or their EOS is moderately soft but YLe

is less than 0.4 at high densities. By using a set of well
known RMF parameter sets from the literature and the T = 0
approximation, it is found that x0 is quite sensitive to the
parameter set used; in order to maintain YLe ∼ 0.4 at high
densities, x0 should be �0.3 for all RMF parameter sets used.

In the present work, we explore the acceptable value of
each parameter in Eq. (2) by taking a different way than
the one used in Ref. [19]. The equality between x0e and
x0m is relaxed to provide more flexibility of the xi(ρB). For
determining x0e and x0m, physical constraints are used, i.e.,
YLe ≈ 0.4 at high densities and YLμ ≈ 0 at all densities.
These constraints are more restricted the one used in Ref. [19]
so that the constraint in Ref. [19] is automatically fulfilled
and the right density for the appearance of the first muon is
properly predicted. The β and γ parameters are adjusted to get
a result closer to the one predicted by using the conventional
constant lepton fractions (CYL) approach [6,18]. In this way,
we can get predictions of the fraction of every constituent at
high densities similar to the ones obtained by the standard
CYL approach but with significantly different behavior at low
densities. Note that in this work we used ρν̄μ

≡ xm(ρB)ρμ

instead of ρνμ
≡ xm(ρB)ρμ. We also investigate the behavior

of xi(ρB) with respect to the variation of x0m, β, and γ
parameters to check the limitation of the parametrization.
Because x0e is quite sensitive to the parameter set used,
two RMF parameter sets are employed, i.e., NL3 [24] which
represents a stiff EOS, and IUFSU* [25] which represents
relatively soft EOS. To demonstrate the sensitivity of the
xi(ρB) parameters with respect to the parameter set variation,
the fractions of leptons predicted by BSP [25], G1 and G2 [26],
GM1 [27], and FSU [28] parameter sets are also calculated. To
see the explicit effects of implementing the DDYL approach
in PNS observables, the low-density instability of PNS matter,
the PNS mass-radius relation, and the electron-neutrino mean
free path are calculated and the results are compared to the
ones obtained by using CYL.

Note that, unlike the case of NS matter (matter without
neutrino trapping) where some efforts have been devoted
(Ref. [29] and references therein), the core-crust transition
density ρt and the onset of the instability region for matter
with neutrino trapping are rarely explored. For the case of
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matter with neutrino trapping using the CYL approach, it is
known that ρt and the onset of the unstable region are relatively
larger than the ones for matter without neutrino trapping
[30–32]. A quite strong Coulomb interaction produced by
the interaction among protons and electrons at low density,
which is larger than the repulsive isovector interaction created
by the asymmetry in the nucleon numbers at this density,
is the agent to make this happen. However, why a strong
Coulomb interaction can be present in low-density matter with
trapped neutrinos is not yet fully understood. We also need to
note that neutrino mean free paths in a PNS are significantly
altered by the effect of the strong interaction and by the
multicomponent nature of dense matter [22]. The importance
of correlations in neutrino transport in dense and hot matter
has been also discussed by many authors (see Ref. [33] and
references therein), and for a PNS with CYL it was reported
in Ref. [34] that the random phase approximation (RPA)
corrections with respect to the mean field approximation are
only 10% to 15% at high density. However, it has been known
for some time that the RPA corrections indeed could lead to
significant changes in mean free path, compared to the mean
field approximation (see, e.g., Refs. [35,36]). The effect of
neutrino electromagnetic form factors on the neutrino cross
section in a PNS with CYL has been already discussed in
Ref. [37].

Since in this work we focus on the effect of DDYL
on the compositional variables of PNS matter, the T = 0
approximation is used just to simplify the analysis. This
approximation is quite reasonable because, in a P(NS), the
compositional variables of the EOS play a more important
role than the temperature [6], and the DDYL has significant
effect only in the relatively low-density region which is also
much colder than the center of the core. For the same reason,
in the calculation of the electron-neutrino mean free path, the
RPA correlation, finite-temperature effect, hyperons, and other
exotic contributions are not considered.

Section II presents the formulation of the DDYL matter
model and a discussion on the particle composition in matter
with neutrino trapping. Low-density instability is discussed in
Sec. III, the mass-radius relation of a PNS is discussed in
Sec. IV, while the electron-neutrino mean free path in a
PNS is discussed in Sec. V. Finally, conclusions are given in
Sec. VI.

II. DENSITY-DEPENDENT LEPTON FRACTION
AND MATTER MODEL

In this section, the effect of DDYL on the particle composi-
tion in matter with neutrino trapping is systematically studied.
The β equilibrium conditions and the Lagrangian density that
are used to describe the system are given and after that the
calculation results are discussed.

To determine the fraction of every constituent in matter with
neutrino trapping, the following constraints are used

(i) Balance equations for chemical potentials:

μn + μνe
= μp + μe, μe − μνe

= μμ + μν̄μ
. (3)

(ii) Charge neutrality:

ρe + ρμ = ρp. (4)

(iii) Conservation of total density of baryons:

ρB = ρn + ρp. (5)

In addition, for the conventional CYL approach, the following
values are usually adopted:

YLe = Ye + Yνe
≈ 0.4, (6)

YLμ = Yμ − Yν̄μ
≈ 0, (7)

while in the case of DDYL, because ρνe
= xe(ρB)ρe and

ρν̄μ
= xm(ρB) ρμ are assumed, then

YLe = [1 + xe(ρB)] Ye (8)

and

YLμ = [1 − xm(ρB)] Yμ. (9)

To describe PNS matter in the mean field approximation,
the following RMF Lagrangian density is employed:

L = Llin
N + Llin

M + Lnonlin + LL,

where the first three terms are used to describe the nucleons
(p, n) and the last term is the free Lagrangian for leptons
(e, μ, νe, and ν̄μ). The first term is the standard linear
Lagrangian for nucleons, where each nucleon interacts with
the others via meson exchange. The second is the linear
meson Lagrangian (σ , ω, and ρ) and the third is the nonlinear
mesons self-interaction Lagrangian. The general nonlinear
meson self-interaction Lagrangian is [25]

Lnonlin = − κ3

6M
gσm2

σ σ 3 − κ4

24M2
g2

σm2
σ σ 4

+ 1

24
ζ0g

2
ω(ωμωμ)2 + η2ρ

4M2
g2

ωm2
ρ(ωμωμ)(ρνρ

ν)

+ η1

2M
gσm2

ωσ (ωμωμ) + η2

4M2
g2

σm2
ωσ 2(ωμωμ)

+ ηρ

2M
gσm2

ρσ (ρμρμ) + η1ρ

4M2
g2

σm2
ρσ

2(ρμρμ),

(10)

where σ , ω, and ρ are the meson fields while gσ , gω, and gρ

are their corresponding coupling constants. mσ , mω, mρ , and
M are the σ , ω, ρ, and nucleon masses while κ3, κ4, ζ0, η1,
η2, ηρ , η1ρ , and η2ρ are the nonlinear meson self-interaction
parameters, respectively.

In the present calculation, we use NL3 as a representation of
the stiff EOS and IUFSU* as a representation of the soft EOS
parameter sets for thorough investigations while, to observe
the effect of the parameter set variation on each fraction of all
leptons involved by using the DDYL approach, G1, G2, GM1,
FSU, and BSP parameter sets are used. These parameter sets
differ from each other due to the nonzero terms in Eq. (10).

In the following, we will discuss how to obtain the
parameters of xi(ρB) used in this work. As was already
mentioned in Introduction, the constraint YLe ∼ 0.4 at high
densities makes the predicted x0e depend on the parameter
set used. For NL3, x0e ∼ 0.08 is needed, but for IUFSU*,
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FIG. 1. (Color online) The effect of the X0m variation on the
fractions of leptons. The NL3 parameter set and DDYL approach are
used. The fraction of (a) electron leptons, (b) electrons, (c) muon
leptons, and (d) muons.

x0e ∼ 0.2 is needed to fulfill this constraint, while the values
of other parameters of xi(ρB) indeed depend on their corre-
sponding x0e value. In the case of NL3, for instance, if we
use x0e = 0.08 and choose γ = 2 and β = 5, only a typical
value x0m ∼ 1.0 can fulfill the YLμ ∼ 0 requirement. This x0m

value fixes also the average Yμ prediction at high densities.
This condition is clearly captured in Fig. 1. As is shown in
Fig. 2, in the case of IUFSU*, if we use x0e = 0.2 and choose
for instance γ = 0.5 and β = 1.03, an increase in x0m causes a
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FIG. 2. (Color online) Similar to Fig. 1 but predicted by the
IUFSU* parameter set.
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FIG. 3. (Color online) The effect of the β variation on lepton
fractions predicted by the NL3 parameter set using the DDYL
approach.

decrease in YLμ at high densities. However, up to x0m ∼ 0.3 the
change of YLμ becomes less significant by increasing x0m, and
around this x0m value at ρB � 6 ρ0 the YLμ is already about
10−5. Therefore, in the IUFSU* case we can fix x0m ∼ 0.3.
However, different from the NL3 case, the variation of x0m

in the case of IUFSU* does not significantly influence Yμ. In
Figs. 3 and 4, the β and γ variations in xi(ρB) for the NL3
case are presented by using x0e ∼ 0.08 and x0m ∼ 1.0 while in
Figs. 5 and 6 are those for the case IUFSU* by using x0e ∼ 0.2
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FIG. 4. (Color online) The effect of the γ variation on lepton
fractions predicted by the NL3 parameter set using the DDYL
approach.

065802-4



EFFECTS OF DENSITY-DEPENDENT LEPTON FRACTION . . . PHYSICAL REVIEW C 87, 065802 (2013)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Y
L
e

0 1 2 3 4 5 6 7 8

(c)

5
10-2
2

5
10-1
2

5

1

Y
e

0 1 2 3 4 5 6 7 8

=1
=0.5
=0.2
=0.14

=0.11
=0.06
=0.01
=0.001

(d)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Y
L
(1
0-
2 )

0 1 2 3 4 5 6 7 8
B/ 0

X0e =0.2, X0m=0.3, =1.03

(a)

10-7

10-5

10-3

10-1

10

Y

0 1 2 3 4 5 6 7 8
B/ 0

(b)

FIG. 5. (Color online) Similar to Fig. 3 but predicted by the
IUFSU* parameter set.

and x0m ∼ 0.3. For the NL3 case, it is obvious, if β = 5 is
taken, that YLμ and Yμ are almost unaffected by a relatively
large range of γ variation (up to γ < 100). For γ � 100, an
unnaturally sharp peak of the “appearing and disappearing”
muons presents even at ρB < ρ0. However, the low-density
behaviors of YLe and Ye are quite sensitive with respect to γ
variation, and the effect becomes significant for γ � 4. On
the other hand, if we take γ = 2, the fractions of all leptons
are quite sensitive to β variation. The requirement YLμ ∼ 0 is
reached if β � 0.5 is taken. No significant change in Yμ has
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FIG. 6. (Color online) Similar to Fig. 4 but predicted by the
IUFSU* parameter set.

been observed by varying β � 10. Therefore, for the NL3 case,
β = 5 and γ = 2 is a quite appropriate choice. This choice
already takes into consideration that the prediction of the first
muon appearance is closer to the one predicted by the CYL
approximation. In the case of IUFSU* on the other hand, the
fractions of all leptons are quite sensitive to β and γ variations.
If for instance γ = 1.03 is chosen, it can be observed that YLe

is quite sensitive to β variation. Only by using β � 0.5 can
the requirement YLe ∼ 0.4 at high densities be ensured. In this
typical range, YLμ is not significantly affected by β variation,
even though the starting density of the appearance of the first
muon rather depends on this parameter. On the other hand,
if we take β = 0.5 then YLμ becomes quite sensitive to γ
variation, and, starting form γ = 1, YLμ significantly decreases
when γ is increased. Similarly, in order that appearance of
the first muon predicted by this model be closer to the one
predicted by the CYL approximation, the parameters β = 0.5
and γ = 1.03 are chosen for the IUFSU* case. Therefore, we
can conclude that by observing the changes of YLe, Ye, YLμ,
Yμ with respect to the all parameters of xi(ρB) variations, the
suitable parameters in Eq. (2) can be obtained. For the NL3
case, x0e = 0.08, x0m = 1.0, β = 5, and γ = 2, while for the
IUFSU* case x0e = 0.2, x0m = 0.3, β = 0.5, and γ = 1.03.
It also becomes obvious that the parameters β and γ control
how fast and how smoothly YLe

reaches a constant value at high
density. These parameters play a role also as a “fine tuner” to
determine the correct density for the first muon appearance.

The fractions of each constituent which are predicted by
the DDYL approach using the above xi(ρB) parameters for
both parameter sets are compared to the corresponding ones
predicted by the conventional CYL approach. The results are
shown in Fig. 7. As expected, for each parameter set used, both
approaches yield similar fraction predictions for every particle
involved at high densities, including a quite correct density
at which the first muon appears. However, at low densities,
the DDYL approach yields significantly different behavior
compared to that of CYL. In DDYL, the electron-neutrino
population decreases when the baryon density approaches
zero, while in CYL it slightly increases when the density
approaches zero. Thus, for applications that need a transition
from the inner crust with no trapped neutrinos to the low
density of the core with trapped neutrinos, DDYL becomes
more natural than CYL because a smooth transition between
both regions can be more easily reached by the DDYL
approach. In DDYL, the numbers of each charged particle
(e and p) decrease faster compared to the ones of CYL
when the baryon density approaches zero. DDYL predicts
also increasing neutrons with a larger rate compared to the
ones of CYL when the baryon density approaches zero.
The immediate consequence of this “low density” difference
appears in the stability of matter at low densities. We will
discuss further in Sec. III. These similarities and differences
in density profiles of electrons, muon populations, as well
as proton and neutron populations can be understood from
the trend of the electron, muon, and lepton chemical potentials
predicted by both approaches that are shown in Fig. 8. One can
observe, for each parameter set, the similarity in the density
evolution trend of the muon chemical potential for all densities
as well as of the electron and lepton chemical potentials at
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FIG. 7. (Color online) The effect of DDYL on PNS composition
where the particles involved are νe, ν̄μ, e, μ, n, and p. IUFSU* and
NL3 parameter sets are used. The fraction of (a) electron neutrinos,
(b) muon antineutrinos, (c) electrons, (d) muons, (e) neutrons, and
(f) protons. The corresponding results for the CYL approach are also
given for the sake of comparison. The T = 0 approximation is used
in the calculation.

high densities predicted by DDYL and CYL. The difference
in the electron and lepton chemical potentials at low densities
predicted by both approaches can be also clearly seen.

Note, from the studies of the luminosities and spectra of
supernova neutrinos of different flavors [38] as well as the
asymmetric neutrino emission driven by active-sterile neutrino
oscillations in the PNS [39], it is evident that in the PNS the
radius of the nonelectron neutrino sphere is shorter than the
radius of the electron neutrino sphere. Therefore, the muons
and taus cannot be present in the low-density region of PNS
matter [6,17,40]. Thus, based on this fact, IUFSU* predicts a
more reasonable fraction of muons than NL3 independently of
the lepton fractions treatment used.

In the literature, there are many RMF parameter sets, which
are introduced for different purposes. However, they can be
classified roughly into two different stiffness characters of
the EOS by looking at how fast the energy density of the
corresponding EOS increased by increasing the pressure. It is
known that the stiffest one is NL3 and the softest one is FSU,
and the EOS stiffnesses of other parameter sets are in between
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FIG. 8. (Color online) PNS lepton chemical potentials of (a)
muons (μμ), (b) electrons (μe), and (c) leptons (μL). Other details as
in Fig. 7.

the ones predicted by both parameter sets. Therefore, to see
the effect of parameter set variation on particle populations
predicted by the DDYL approach, beside NL3 and FSU,
G1, G2, GM1, BSP, and IUFSU* are chosen to present the
parameter sets with EOS stiffness less than that of NL3 but
larger than that of FSU. We have found that roughly the x0e

of NL3, G1, G2, and GM1 are quite similar, i.e., x0e ∼ 0.08
while x0e of IUFSU*, BSP, and FSU are x0e ∼ 0.2, so that we
can use the xi(ρB) parameters of the NL3 and IUFSU* cases to
calculate the particle populations using those parameter sets.
The results are shown in Fig. 9. It is obvious that there is not any
deviation observed of YLe, Ye, YLμ, Yμ trends due to parameter
set variation. Therefore, rough analysis above is valid also for
these parameter sets. However, for G1, G2, GM1, BSP, and
FSU parameter sets, a finer treatment of the location where the
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FIG. 9. (Color online) Lepton fractions predicted by some RMF
parameter set representations using the DDYL approach.

muon appears for the first time, and a finer adjustments of γ
and β parameters, are still needed.

Because the EOS of the PNS core is not too sensitive
to the behavior at low densities, as expected, the difference
due to the treatment of lepton fractions in the EOS cannot
be observed. It happens not only in the case of soft EOS
(IUFSU*) but also in the case stiff EOS (NL3). This is shown
in Fig. 10. However, this result does not guarantee that both
lepton fraction treatments (DDYL and CYL) produce identical
PNS mass-radius relations or neutrino mean free paths in the
PNS. These matters will be discussed in Secs. IV and V.

III. ONSET OF LOW-DENSITY INSTABILITY OF THE PNS

In this section we will discuss the effects of xi(ρB)
parametrization in matter stability with respect to small density
fluctuations, which in the thermodynamic method framework
is usually called, loosely, mechanical stability [41].
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FIG. 10. (Color online) The effect of DDYL on the PNS EOS.
Other details are as in Fig. 7.

Note that there are several methods to study the instability
due to small density fluctuations in matter, such as the
thermodynamic method [41–44], the relativistic [45,46] and
nonrelativistic [47–49] dynamical methods, as well as the
relativistic RPA based on the Green function formalism
[50–52]. The thermodynamic method requires matter to fulfill
not only the mechanical but also the chemical stability
conditions [41,44]

−
(

∂P

∂v

)
μ

> 0

(11)

−
(

∂μ

∂qc

)
v

> 0,

where v and qc are the volume and charge per baryon number,
while P and μ are the pressure and chemical potential. For
dynamical models, the instability region of matter can be
determined by examining when the convexity of the free-
energy curvature is violated [45–49]. It was shown by Xu
et al. [44] that thermodynamic stability is the limit of the
nonrelativistic dynamical model as k → 0 (long-wavelength
limit) when the Coulomb interaction is neglected. On the
other hand, it was known [45,46] that instabilities predicted by
the relativistic dynamical method within the Landau-Vlasov
formalism are indeed equivalent to those of teh relativistic RPA
method. The relativistic RPA method requires longitudinal and
transverse dielectric functions εL and εT > 0 when the time
component of four-momentum q0 = 0 to ensure the stability
conditions, while in the low-density region the transverse
instability part is absent. At high densities, the stabilities
depend on the RMF nonlinear and isovector terms used (see
more detail in Ref. [51]). Because the xi(ρB) parametrization
is important only in the low-density region, here we focus only
on small density fluctuation instability of the PNS matter in
the low-density region.

The transition from the core to inner crust in the P(NS)
matter takes place when the uniform ground state of matter
which is used to describe the core becomes unstable to small
density fluctuations with the momentum transfer q. This
happens when [52]

εL = det [1 − DL(q)�L(q, q0 = 0)] � 0. (12)

In Eq. (12) q0 is the time component of the four-momentum
transfer qμ = (q0, �q ) and q = |�q |. The onset of instability can
be extracted from this condition, and the transition density
from core to inner crust ρt can be approximated as the
largest density for which the above condition has a solution.
The explicit form of each element in the longitudinal meson
propagator and longitudinal polarization matrices DL(q) and
�L can be seen in Refs. [30,31,52].

As briefly mentioned in the Introduction, matter with
neutrino trapping within the CYL approach predicts a rela-
tively larger ρt than that predicted by matter without neutrino
trapping. However, the ρt difference predicted by both types of
matter is rather model dependent. For example, RMF models
which use nonlinear terms including mixing between vector
isoscalars and vector isovectors predict relatively smaller ρt

difference compared to that of the RMF models which do not
use this mixing term. Furthermore, the difference becomes
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FIG. 11. (Color online) The effect of DDYL on the onset of PNS
longitudinal instability at low densities as a function of the ratio
between baryon and nuclear saturation densities and perturbation
momentum. Other details are as in Fig. 7.

insignificant if a relatively large coupling of this mixing term
is used [30]. In general, the onset of instability of matter with
neutrino trapping is significantly larger than that of matter
without neutrino trapping. In contrast to the unstable region
predicted by matter without neutrino trapping, the unstable
region predicted by matter with neutrino trapping is only
modestly influenced by symmetry energy behavior at high
density. From the point of view of interactions among the
constituents involved at low density, these results can be
understood [31,32]. The consequence of suppressing electron
and proton populations at low densities by using the DDYL
approach is that the onset of instability in PNS matter becomes
significantly reduced while the narrowness of the unstable
region depends on the parameter set used. NL3 yields a
narrower unstable region compared to the one predicted by
IUFSU*. As expected, CYL yields a broader unstable region
and is almost independent of the parameter set used. These
results are shown in Fig. 11. Note that the unstable region also
depends on temperature. For the CYL case, it is known that the
ρt decreases by increasing temperature and the unstable region
becomes narrower when the temperature increases [53].

The ρt and Pt results can be seen in Table I. For both
parameter sets, CYL yields larger ρt compared to the one
predicted by DDYL, but the effect appears more significantly
for NL3 case than that for IUFSU* case. The Pt result is
rather model dependent. A parameter set with stiff EOS yields
larger Pt than that of a soft EOS. If the PNS ρt predicted by

both approaches are compared to the ρt of NS, then for each
parameter set, it is obvious that the ρt predicted by DDYL is
closer to the corresponding ρt of NS compared to that of CYL.
The difference in ρt and Pt predictions of CYL and DDYL
will yield observed effect for PNS radius. This matter will be
discussed in the next section.

IV. MASS-RADIUS RELATION OF THE PNS

In this section, the effect of the DDYL approach on mass and
radius of the PNS is qualitatively investigated. The static T = 0
PNS mass-radius relation is calculated by solving the Tolman-
Oppenheimer-Volkov (TOV) equation. The outer crust region
of the PNS is roughly assumed to have the same form as the
one used for a NS, i.e., by using the outer crust EOS of Rüster
et al. [54]. This EOS is a recent version of the one introduced by
Baym, Pethick, and Sutherland [55]. Because the detailed EOS
of the neutrino sphere (inner crust) is not certain, the relation
of polytrophic pressure to energy density usually used for a NS
calculation is used here also to interpolate the EOS for regions
between the outer crust and the core [28]. The core of the PNS
is calculated by using the IUFSU* and NL3 parameter sets, and
for lepton fractions treatment the CYL and DDYL approaches
are employed. The polytrophic parameters A and B of the inner
crust are determined from the pressures and energy at ρt of the
core and ρmax of the outer crust, where their explicit values can
be seen in Table I. Note that the PNS properties based on the
RMF model using the CYL approach for an isentropic process
with s = 1 and 2 have been discussed in many places, e.g.,
Refs. [6,56]. The temperature correction in the PNS maximum
mass to the one obtained by zero-temperature approximation is
around αs2Mmax(0) [6], where the parameter α depends on the
EOS used and, in general, α is around 10−2. Thus it seems that
the temperature correction for the s = 1 case plays less of a
role for increasing PNS maximum mass. The effect of DDYL
with varied constituents involved and the isentropic process
has been also discussed in Ref. [19]. The importance of the
presence of hyperons is also included in that paper. However,
they used a different way of xi(ρB) parametrization than the
one used in this work.

The PNS mass-radius plots which are calculated by using
NL3 and IUFSU* parameter sets as well as by implementing
DDYL and CYL approaches to treat the lepton fractions are
shown in Fig. 12. For the sake of comparison, NS mass-radius
results are also shown. It is obvious that NL3 yields larger

TABLE I. Tabulation of some PNS crust properties such as density and pressure at the core-crust transition region and
polytrophic EOS parameters A and B at the inner crust. All properties are calculated by using the T = 0 approximation.
For the sake of comparison, the values of these properties for NS matter are also provided.

Force Pt (MeV fm−3) ρt (fm−3) A (MeV fm−3) B (MeV1/3fm−1)

IUFSU* DDYL 0.7005 0.0846 1.725 × 10−4 2.019 × 10−3

IUFSU* CYL 0.8170 0.0856 1.353 × 10−4 2.248 × 10−3

IUFSU* NSM 0.3015 0.0810 3.505 × 10−4 0.919 × 10−3

NL3 DDYL 1.0917 0.0734 −1.182 × 10−4 3.814 × 10−3

NL3 CYL 1.0375 0.0840 0.243 × 10−4 2.934 × 10−3

NL3 NSM 0.2135 0.0540 3.063 × 10−4 1.192 × 10−3
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FIG. 12. (Color online) PNS mass-radius relation for various
matter compositions. NS results (NSM) are also shown for the sake
of comparison. Other details are as in Fig. 7.

maximum masses for all cases than those of IUFSU* because
the EOS of NL3 are significantly stiffer than that of IUFSU*.
For each parameter set, the radius of the PNS is larger than
the one of the NS because the transition density and its
corresponding pressure of the PNS are larger than the ones
of the NS, so the PNS has a wider transition region (inner
crust) between core and the outer crust (see Table I for explicit
values). However, the important thing here is the significant
effects observed if we compare the DDYL with the CYL
results. For each parameter set, DDYL yields slightly larger
maximum mass and larger radius for canonical mass (1.4M�).
For the case of radius, the effect is more dramatic when
the EOS is stiffer. Note that many works have been devoted
recently to constrain the mass and radius of an NS from nuclear
physics and astrophysics points of view [57–62]. However,
unlike the NS case, there is no existing phenomenological
constraint that can be compared to the PNS mass or radius
calculation results.

In the case of PNS minimum mass, to obtain an accurate
result one should treat consistently the finite-temperature effect
of the EOS as well as an appropriate EOS for the outer crust
to obtain the correct property prediction of the minimum mass
of the PNS. However, because we want only to estimate
qualitatively the effect of DDYL in the core region close to
the crust, the following discussion seems in order. Recent
studies in this direction by using Brueckner theory can be
found e.g., in Ref. [17]. They found the minimum mass 0.58 �
Mmin � 0.60 M� with 38 � Rmin � 44 km for the case s = 1.
Moreover, 0.70 � Mmin � 0.77 M� with 42 � Rmin � 52 km
for the case s = 2. The center density for s = 1 is around ρc

≈ ρ0 and for s = 2 around ρc ≈ 0.9ρ0. In both cases, the
results depend significantly on the low-density EOS used. In
Table II, the NS masses, radii, as well as Yνe

’s of NL3 and
IUFSU* parameter sets using DDYL and CYL approaches
at fixed center density ρc ≈ ρ0 are shown. The masses and
radii are relatively smaller than the results of Ref. [17]. The
important thing is that, for each parameter set, the DDYL
approach yields larger minimum mass but shorter radius
compared to the ones predicted by CYL. For the mass case, the
effect is more pronounced for a parameter set with stiff EOS,
but for the radius case the effect is more significant for soft
EOS. It can be observed that PNS matter with DDYL predicts

TABLE II. Tabulation of some PNS properties at ρc/ρ0 ≈ 1 such
as neutrino fraction at the center, masses as a function of solar mass
(M�), and radii in km for DDYL and CYL approaches. All properties
are calculated by using the T = 0 approximation.

Force Pc (MeV fm−3) Yνe M/M� R (km)

IUFSU* DDYL 3.76 1.3 × 10−2 0.34 21.67
IUFSU* CYL 3.21 8.2 × 10−2 0.32 26.74
NL3 DDYL 5.73 1.7 × 10−2 0.74 26.18
NL3 CYL 4.13 7.3 × 10−2 0.46 26.73

more less one order of magnitude smaller Yνe
at the center of

the PNS compared to that of CYL, while it is known that the
center density is sensitive to Yνe

. Thus, the difference in mass
and radius predictions between CYL and DDYL are mainly
due to the Yνe

difference at center between the one of CYL
and the one of DDYL. We believe that this behavior might
be retained if we properly take into account finite temperature
effects.

In addition, we need to note that many works have been
devoted to study the convective instability in the PNS using
different methods [63–66]. A negative gradient in the lepton
number has been known to lead to convection during the
cooling phase of the PNS [63,64]. However, the recent study
by the authors of Ref. [13] using the requirement that the
linear growth rates which are obtained from Ledoux analysis
ω2 > 0, has found that the negative entropy gradients always
yield a destabilizing effect. The sign and magnitude of the
( ∂lnP
∂lnYL

)
ρB,S

in the second term of the growth depend strongly

on the nuclear symmetry energy. Therefore, negative gradients
in lepton number can either stabilize or destabilize matter
with respect to the convection, and the degree of stabilization
depends on the RMF parameter set used. Off course, this field
of study is important, but it is already outside the scope of this
present work. However, here, we only want to argue that the
xi(ρB) parametrization might also influence the gradient of
the lepton number for the PNS because, unlike the one of
CYL, the YL of DDYL is decreasing when it reaches the edge
of the star, and if it is included in a realistic calculation it
might provide the observed effect. We plot the lepton fraction
as a function radius and mass developments of a PNS with
M = 1.9M�, where its center density is varied depending on
the parameter set used, in the lower and upper panels of Fig. 13
to show this effect.

V. ELECTRON NEUTRINO MEAN FREE PATH IN THE PNS

In this section we will discuss how the neutrino mean free
path is affected by xi(ρB) parametrization. A brief formulation
of the neutrino mean free path is given then the result is
discussed.

For electron-neutrino matter interactions based on the
standard model of weak interaction, the differential scattering
cross section has the form

1

V

d3σ

d2�′dE′
ν

= − GF

32π2

E′
ν

Eν

Im(Lμν�
μν). (13)
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FIG. 13. (Color online) PNS lepton fractions as a function of PNS
(a) mass and (b) radius. Other details as in Fig. 7.

Here Eν and E′
ν are the initial and final neutrino-electron

energies, respectively. GF = 1.023 × 10−5/M2 is the weak
coupling, and M is the nucleon mass. The explicit forms of
electron-neutrino tensor Lμν and polarization tensor �μν in the
mean field approximation can be seen for example in Ref. [67].
The matter effects enter into calculation through �μν because
each component of �μν depends on the effective mass and
effective energy of each constituent of matter. The electron-
neutrino mean free path (λ) in the T = 0 approximation as
a function of initial neutrino energy at a certain density is
obtained by integrating the cross section into the time and
vector components of the neutrino momentum transfer, i.e,

1

λ(Eν)
=

∫ 2Eν−q0

q0

d|�q|
∫ 2Eν

0
dq0

|�q|
E′

νEν

2π
1

V

d3σ

d2�′dE′
ν

.

(14)

The electron neutrino mean free path (λ) results for NL3 and
IUFSU* parameter sets by using DDYL and CYL approaches
in treating the lepton fractions as a function of baryon density
as well as the PNS radius for a PNS with M = 1.9M� are
shown in Fig. 14. Here Eνe

= 5 MeV and Eνe
= 10 MeV are

taken and the T = 0 approximation is used. It can be observed
from panel (c) of Fig. 14 that the difference in λ predicted
by NL3 and IUFSU* appears in region ρ0 � ρB � 4ρ0. NL3
yields rather irregular behavior of λ, i.e., λ increases up to
a certain density and then decreases again with respect to
increasing baryon density, while the one of IUFSU* do not
show such behavior. This means that the λ in PNS matter is
quite model dependent. However, our interest here is mainly at
ρB � ρ0, where for each parameter set DDYL yields relatively
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FIG. 14. (Color online) The mean free path (λ) of electron
neutrinos using DDYL and CYL approaches which are predicted by
IUFSU* and NL3 parameter sets. (a) λ as a function of PNS radius
in the case Eνe = 10 MeV and M = 1.9M�. (b) λ as a function of
PNS radius in the case Eνe = 5 MeV and M = 1.9M�. (c) λ as a
function of the ratio between baryon and nuclear saturation densities
with Eνe = 5 MeV. Other details are as in Fig. 7.

larger λ compared to that of CYL. From the plot in panel (c)
of Fig. 14, it can be observed that the effect does not seem
too significant, but if we look at λ as a function of star radius
with fixed mass, e.g., M = 1.9M�, as shown in panels (a) and
(b), then the effect can be seen more clearly. However, the
effect depends strongly on the parameter set used. For NL3
the effect is small but for IUFSU* it becomes quite significant.
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The neutrino energy affects only the magnitude but not the
trend of λ with respect to the baryon density evolution.
However, if the mass of the star is changed, the trend of λ with
respect to the baryon density evolution is slightly changed,
but still the DDYL yields larger λ compared to that of CYL.
Therefore, in general, the effect of DDYL on the PNS EOS
compared to CYL is that the matter is more transparent with
respect to electron-neutrino transport, where the degree of the
transparency of the matter depends on parameter set used. This
fact might influence neutrino emission from a newly born NS
or PNS cooling.

VI. CONCLUSION

We have studied systematically the DDYL approach which
is proposed by Ryu et al. [19] in the T = 0 approximation.
Two sets of the neutrino-to-electron ratio parameters of this
approach are found. One can be used for the RMF parameter
set with stiff EOS and the other for soft EOS. They yield
profiles of particle composition at high densities similar to
the corresponding results predicted by the conventional CYL
approach. However, at low densities, the DDYL approach
yields significantly different profile behavior than that of CYL.
The DDYL produces a decreasing neutrino-electron number
when the baryon density goes to zero. Therefore, it seems quite
natural to describe a smooth transition from the inner crust
without neutrino trapping to the core with neutrino trapping
by using the DDYL approach. To obtain the parameters of the
neutrino-to-lepton ratio in Eq. (2), the constraints YLe ∼ 0.4 at
high densities, YLe ∼ 0 for all densities, as well as a parameter
fine-tuning in order that the first muon appears at a quite
appropriate density, are used. To see impacts of DDYL on
some PNS properties where the information might be useful
for core-collapse modeling, the EOS, low-density instability of

matter, mass-radius relation of the star, and electron neutrino
mean free path in this matter are calculated. The results are
compared to the ones obtained by using the conventional CYL
approach. The DDYL yields smaller onset of low instability
and core-crust transition density ρt than the ones of CYL
because DDYL predicts fewer leptons at low densities. The ρt

which is predicted by DDYL is closer to that obtained for a NS
than that of CYL. These effects are, however, rather sensitive
to the RMF parameter set used. Therefore, even DDYL only
modestly influences the EOS, the radius of canonical PNS mass
yielded by using the DDYL approach is larger than that of CYL
due to the ρt difference predicted by the two approaches. The
explicit manifestation of this difference is in the size difference
of the PNS inner crust. Concerning the PNS minimum mass,
even this is rather parameter-set dependent, but in general
the DDYL approach yields larger minimum mass but shorter
radius compared to those predicted by CYL. This effect is
due to, in the PNS center, DDYL yielding a Yνe

which is
more less one order of magnitude larger than the one predicted
by CYL. A possibility that DDYL also influences the PNS
convective instability is also discussed. For electron-neutrino
transport in the PNS, even though the result is also rather
parameter-set dependent, it is found that the matter obtained
by using DDYL is more transparent than that obtained by using
CYL. We want to point out that, in the present work, the finite
temperature correction is not included, which is important for
more quantitative results. However, we believe that the effects
that we have already discussed in this work are still retained
for a realistic calculation.
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