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Framework for maximum likelihood analysis of neutron β decay observables to resolve the limits of
the V − A law
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We assess the ability of future neutron β decay measurements of up to O(10−4) precision to falsify the standard
model, particularly the V − A law, and to identify the dynamics beyond it. To do this, we employ a maximum like-
lihood statistical framework which incorporates both experimental and theoretical uncertainties. Using illustrative
combined global fits to Monte Carlo pseudodata, we also quantify the importance of experimental measurements
of the energy dependence of the angular correlation coefficients as input to such efforts, and we determine the pre-
cision to which ill known “second-class” hadronic matrix elements must be determined in order to exact such tests.
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I. INTRODUCTION

Inspired by the pioneering global fits of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix developed by the CKM-
fitter Group [1,2] and the UTfit Collaboration [3–7] for the
interpretation of flavor-physics results from the B factories
and the Tevatron, we outline the prospects for the elucidation
of physics beyond the standard model (BSM) via a global fit
of neutron β decay observables, including the lifetime and
the energy-dependence of the angular correlation coefficients.
Our global fit, which we term nFitter, employs a maximum
likelihood statistical framework which accounts for both
experimental and theoretical uncertainties, with the latter
arising primarily from the poorly known weak hadronic
second-class currents.

The elucidation of a “V − A” law [8,9] in the mediation
of low-energy weak interactions played a crucial role in
the rise of the standard model (SM) [10]. A variety of
well-motivated SM extensions speak to the possibility of new
dynamics at the Fermi scale, which we identify via v =
(2

√
2GF )−1/2 ≈ 174 GeV, and, concomitantly, to tangible

departures from the V − A law in low-energy weak processes,
be it through scalar or tensor interactions, or right-handed
currents. Alternatively, e.g., new, light degrees of freedom
could appear and yield violations of the V − A law—if
probed at sufficient experimental resolution. At the same
time, an ongoing vigorous experimental program for precision
measurements of neutron β decay observables with cold and
ultracold neutrons [11–17] exists with an overarching goal of
realizing bettered assessments of the limits of the SM. The
experimental effort focuses on measurements of two general
types of observables: angular correlation coefficients, which
parametrize the angular correlations between the momenta
of the various decay products and/or the spin of the initial
state neutron or electron in the differential decay rate, and the
neutron lifetime τ . Of the future experimental plans reviewed
in Refs. [11–19], the claim of ultimate precision rests with the
PERC experiment [20], for a sensitivity of up to 10−4 precision.
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The angular correlation coefficients a, b, A, B, and D [21],
of which only a, A, and B are measured to be nonzero [22],
describe the distribution in electron and neutrino directions
and electron energy in neutron decay. Since the nucleon mass
is markedly larger than the neutron-proton mass difference, a
recoil expansion of the differential decay rate of the neutron in
terms of the ratio of various small energy scales to the nucleon
mass is extremely efficient. The a, A, and B correlation
coefficients in this order, which we denote with a “0” subscript,
are functions only of λ ≡ gA/gV > 0 in the SM, where gA and
gV are the weak axial-vector and vector coupling constants;
this is tantamount to the V − A law. Note that, for consistency
with earlier work [23–25], we employ a λ > 0 sign convention,
so that the sign of the γ5 terms in the weak currents are
chosen opposite to that of the Particle Data Group [22]. We
also assume that λ is real, which has been established beyond
our assumed level of sensitivity in the observables we consider
[26,27]. Thus, extractions of a0, A0, and B0 from the measured
parameters a, A, and B determine λ in the SM, which, by itself,
is a fundamental parameter of the weak interaction. Using the
measured values for τ and λ determines gV and gA inde-
pendently. The former, once radiative corrections are applied
[28,29], yields the CKM matrix element Vud . A neutron-based
value for Vud [22] is not yet competitive with the result
extracted from measurements of the f t values in superallowed
0+ → 0+ nuclear β decays [30,31]. Such efforts are neverthe-
less well-motivated in that they are not subject to the nuclear
structure corrections which must be applied in the analysis of
0+ → 0+ transitions. We set such prospects aside and focus
on the possibility of discovering dynamics beyond the SM
through an assessed quantitative violation of the V − A law.

We consider neutron beta decay observables exclusively,
though the framework—and fits—we employ can readily be
enlarged to encompass all low-energy semileptonic processes
involving first-generation quarks. This is possible because we
can employ, rather generally, a single, quark-level effective
Lagrangian, at leading power in v/� [32,33], for all such
processes [34,35], where we refer to Ref. [18] for a review. To
realize this we need only assume that new physics appears at
an energy scale � in excess of the scale v, crudely that of the
W and Z masses. This allows the construction of an effective
Lagrangian in terms of operators of mass dimension d with
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d > 4 [36], where the nonobservation of non-SM invariant
operators in flavor physics [2,7,37], allows us to impose SM
electroweak gauge invariance in its construction. At leading
power in v/�, there are then precisely ten dimension-six
operators describing the semileptonic decay of the d quark.
The coefficients of these operators can be determined, or at
least constrained, through a global fit of β decay observables—
in neutrons and nuclei—and of meson decay observables
as well. This quark-level description, upon matching to a
nucleon-level effective theory [38], yields a one-to-one map to
the terms of the effective Hamiltonian constructed by Lee and
Yang [39], admitted by Lorentz invariance and the possibility
of parity violation [39]. The latter framework is employed in
the usual analysis of the angular correlations in beta decay [21].
The construction of the underlying quark-level effective theory
allows the inclusion of meson observables on the same footing.

Global fits of the Lee-Yang coefficients have been made
to beta decay observables, particularly of the phase-space-
integrated angular correlation coefficients [12,40]. As we
develop explicitly, the advantage of the current approach is that
we can take theory errors into direct account in the optimization
procedure. We focus on the simultaneous fit of the angular
correlation coefficients a and A in neutron decay and of the
neutron lifetime to limit the appearance of tensor and scalar
interactions from physics BSM, in part because the theory
errors in this case are spanned by the ill known nucleon matrix
elements of particular local operators, which presumably and
eventually can be computed in QCD using the techniques of
lattice gauge theory.

The empirically determined correlation coefficients and
neutron lifetime, fixed to some precision, can be used to set
limits on new dynamics. In this regard it is natural to focus on
the Fierz interference term b because it is linear in new physics
couplings. That is, it is possible to discover evidence of scalar
or tensor interactions, through a measurement of b in excess of
the ∼10−3 level expected in the SM from recoil-order effects
[24]. To date there have been no published results for b in neu-
tron β decay, although several efforts are underway. Searches
for scalar and tensor interactions have also been pursued via
measurements of the decay electron’s transverse polarizations
with respect to the neutron spin [41,42], though no new
experiments of such ilk are currently planned. Information
on b can be gleaned in different ways. Its presence modifies
the shape of the electron energy spectrum in the differential
decay rate, and direct searches probe that. It is also subsumed
in measurements of the energy dependence of the a, A, and
B correlation coefficients [38,43], so that we wish to consider
the additional experimental observables offered by (electron)
energy dependence with some care. The latter pathways offer
“indirect” access to b and require greater statistical control than
spectral shape measurements for fixed sensitivity to scalar and
tensor interactions. However, they are also less sensitive to
systematic errors, both experimental and theoretical. In this
first paper we focus on access to scalar and tensor interactions
through measurements of a, A, and τ , as we now explain.

The V − A description of neutron β decay includes
contributions from six possible weak hadronic currents which
give rise, at recoil order, to energy-dependent expressions for
the angular correlation coefficients. However, the most recent

extractions of λ from A [44–48], which yield, at present, the
most precise determination of λ, have assumed the validity of
the conserved-vector-current (CVC) hypothesis (i.e., the CVC
value for the weak magnetism coupling) and neglected second-
class currents. This is certainly reasonable at the current level
of experimental precision, although measurements of A at the
∼0.5% level of precision are, in principle, sensitive to the weak
magnetism coupling, which contributes to the asymmetry at
the ∼1.5% level. With the anticipated increased sensitivity
to a, A, and B in next-generation experiments, we note that
precise measurements of the energy dependence of the a and
A correlations offer the possibility to test CVC and to search
for second-class currents independently [25]. In nFitter we fit
the energy dependence of the angular correlation coefficients
directly and thus need not assume either the validity of the CVC
hypothesis or the absence of second-class currents, yielding
a framework for a robust test of the validity of the V − A
description of neutron β decay.

The outline of the remainder of this paper is as follows.
First, we review the formalism for the analysis of neutron
β decay observables in Sec. II. We then briefly review in
Sec. III the experimental status of, or limits on, the various
SM parameters relevant to our global fit, such as second-
class currents. We then describe the maximum likelihood
approach to our global fit in Sec. IV, where we discuss
the construction of our likelihood function, as well as the
inclusion of experimental and theoretical uncertainties. We
illustrate the prospects of our global fit with a few numerical
examples employing the frequentist, or specifically Rfit [1,2],
statistical procedure, reserving the use of alternative statistical
procedures for later work. We then show examples of the
results from nFitter fits to Monte Carlo generated pseudodata
in Sec. V under various scenarios, and we quantify via these
examples the statistical impact that future improvements in
the precision of neutron β decay observables should have on
the assessment of the validity of the SM. We also discuss the
extent to which theoretical uncertainties in the presently poorly
known second class contributions limit such assessments, and
we can extract from such studies the precision to which
they should be established to obviate that impact. Finally, we
conclude with a brief summary in Sec. VI.

II. FORMALISM FOR NEUTRON β-DECAY
OBSERVABLES

If we suppose the low-energy, effective weak interaction,
employing explicit n and p degrees of freedom, is mediated
by the ten dimension-six operators enumerated by Lee and
Yang [39], then the differential decay rate for neutron β decay
takes the form [21]

d�

dEed�ed�ν

= 1

(2π )5
peEe(E0 − Ee)2ξ

×
[

1 + b
me

Ee

+ a
�pe · �pν

EeEν

+ 〈�σn〉 ·
(

A
�pe

Ee

+ B
�pν

Eν

+ D
�pe × �pν

EeEν

)]
,

(1)
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where we refer to Ref. [21] for the explicit form of ξ and
the correlation coefficients in terms of the parameters of the
Lee-Yang Hamiltonian [39], noting Ref. [18] for a discussion
of the connection to modern conventions. We use Ee (Eν) and
�pe ( �pν) to denote, respectively, the electron’s (antineutrino’s)
total energy and momentum, where E0 is the electron endpoint
energy, and 〈�σn〉 is the neutron polarization.

The Coulomb corrections to Eq. (1) are also known [49]
and modify the expression most notably in terms of a
multiplicative Fermi function F (Z,Ee) [50]. The phase-space
integrated Fermi function and corrections to it have been
studied in great detail [51,52]; we omit it, as well as the
outer radiative correction [53], in the generation of the Monte
Carlo pseudodata for our decay correlation studies as we are
interested in a(Ee) and A(Ee), which are accessed through
asymmetry measurements for which such effects only lead to
a slight modification of the relative statistics (via the spectral
shape).

The D term is a naively time-reversal-odd observable:
a value for D in excess of the ∼10−5 level attributed to

SM final-state interaction effects [54,55] would reveal the
existence of new CP-violating interactions at the Lagrangian
level (assuming CPT holds). The current level of experimen-
tal precision places stringent constraints on any such new
effects [26,27].

In what follows we report expressions for the correlation
coefficients which include the tree-level new physics of the
Lee-Yang Hamiltonian and the contributions of the usual
V − A terms through recoil order. In realizing this the strong
interaction plays an essential role: the matrix elements of the
vector V and axial-vector A currents are described by six
distinct form factors. We find it immensely useful to note
the quark-level effective theory which underlies the Lee-Yang
couplings [34,35,38]; it makes clear the separation of the
QCD physics which underlies the hadronic matrix element
calculation from the nominally higher-energy physics encoded
in the effective low-energy constants. As per Refs. [35,38]
we map the Lee-Yang effective couplings Ci, C

′
i with i ∈

{V,A, S, T } to C
(′)
i ≡ (GF /

√
2)VudC̃

(′)
i and note the hadronic

matrix elements needed in β decay are [56]

〈p(p′)|ūγ μd|n(p)〉 ≡ up(p′)
[
f1(q2)γ μ − i

f2(q2)

M
σμνqν + f3(q2)

M
qμ

]
un(p), (2)

〈p(p′)|ūγ μγ5d|n(p)〉 ≡ up(p′)
[
g1(q2)γ μγ5 − i

g2(q2)

M
σμνγ5qν + g3(q2)

M
γ5q

μ

]
un(p), (3)

〈p(p′)|ūd|n(p)〉 ≡ up(p′)gS(q2)un(p), (4)

〈p(p′)|ūσμνd|n(p)〉 ≡ up(p′)
[
gT (q2)σμν + g

(1)
T (q2)(qμγ ν − qνγ μ) + g

(2)
T (q2)(qμP ν − qνP μ)

+ g
(3)
T (q2)(γ μ/qγ ν − γ ν/qγ μ)

]
un(p), (5)

where q ≡ p′ − p denotes the momentum transfer, P ≡
p′ + p, and M is the neutron mass. In neutron β decay,
the q2-dependent terms are of next-to-next-to-leading order
(NNLO) in the recoil expansion, noting f1(0) and g1(0) appear
in leading order (LO), and hence are of negligible practical
relevance. Consequently, we replace, as usual, the form factors
with their values at zero momentum transfer. We note f1(0) ≡
gV is the vector coupling constant given by gV = 1 under
CVC; f2(0) ≡ f2 is the weak magnetism coupling constant
given by (κp − κn)/2 under CVC, noting κp(n) is the anomalous
magnetic moment of the proton (neutron); f3(0) = f3 is the
induced scalar coupling constant; g1(0) = gA is the axial
vector coupling constant; g2(0) = g2 is the induced tensor
coupling constant; and g3(0) = gP is the induced pseudoscalar
coupling constant. The CVC predictions have SM corrections
in NNLO. The contributions of f1, f2, g1, and g3 to the
hadronic current are termed first-class currents, whereas those
of f3 and g2 are termed second-class currents, due to their
transformation properties under G parity [56]. The latter
quantities, f3 and g2, vanish in the SM up to quark mass effects
which break flavor symmetry; we discuss their estimated size
in Sec. III.

Of particular interest to us are the scalar and tensor interac-
tions, as establishing their existence at current experimental
limits would signify the presence of physics BSM. The
matching of the quark-level to nucleon-level effective theories
at LO in the recoil expansion yields

C̃S = gS(εS + ε̃S), C̃ ′
S = gS(εS − ε̃S),

(6)
C̃T = 4gT (εT + ε̃T ), C̃ ′

T = 4gT (εT − ε̃T ),

where the ε coefficients are the low-energy constants of
the quark-level effective theory of Refs. [35,38]. We have
neglected the matrix elements g

(i)
T with i ∈ 1, 2, 3 in realizing

this expression and thus, for consistency, shall neglect the
scalar and tensor contribution to recoil order terms in all that
follows. Bhattacharya et al. [38] have employed a Rfit scheme
to determine the impact of improved lattice estimates of gS

and gT on the limits on the quark-level low-energy coeffcients
for given experimental sensitivities to C̃

(′)
S,T .

In unpolarized neutron β decay, the unpolarized differential
distribution relevant for a measurement of a, neglecting
terms beyond next-to-leading order in the recoil expansion
but accounting for all six possible form factors, is of the
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form [57]

d3�

dEed�eν

∝ M4R4βx2(1 − x)2�

[
1 + 3Rx + Rx

(
4λ(1 + κp − κn)

1 + 3λ2

)

− 2R

(
λ2 + λ + λ(κp − κn)

1 + 3λ2

)
− 4R

(
λg2

1 + 3λ2

)
− ε

Rx

(
1 + 2λ + λ2 + 2λ(κp − κn)

1 + 3λ2

)

+ 2
ε

Rx

(
f3 − λg2

1 + 3λ2

)] [
1 + bBSM

me

Ee

+ a1β cos θeν + a2β
2 cos2 θeν

]
, (7)

where θeν is the electron-antineutrino opening angle and β ≡
| �pe|/Ee. The structure of this expression serves as a de facto
definition of a ≡ a1 + a2β cos θeν and bBSM in recoil order. It
follows that of Ref. [21] if recoil terms are neglected and is
that of Ref. [58] if bBSM = 0. Note that in writing the recoil
contributions we have neglected terms of O(εSgS, εT gT )R.
Moreover,

a1 = a0 + 1

(1 + 3λ2)2

[
4λ(1 + λ + λ2 + λ3 + 2f2 + 2f2λ

2)R

+ (1 + 2λ − 2λ3 − λ4 + 4f2λ − 4f2λ
3)

ε

Rx

−[8λ(1 + 2f2 + λ2 + 2f2λ
2) + 3(1 + 3λ2)2]Rx

+ [2(λ − λ3)g2 + 2(λ2 − 1)f3]
ε

Rx
+ 8λ(1 + λ2)g2R

]
,

(8)

a2 = 3(λ2 − 1)

(1 + 3λ2)
Rx, (9)

with λ = gA/gV > 0 in the SM, and the kinematic factors ε,
R, and x are defined according to

ε =
(me

M

)2
, R = E0

M
, x = Ee

E0
. (10)

The computations of Ref. [59] have been repeated in deriving
these forms, and the results are consistent up to the f3 terms
[25]. They are also consistent with Ref. [24], as well as with
Ref. [58], noting f3 = g2 = 0 in the latter. These comparisons
are all within the context of V − A theory.

We use R itself, noting R ≈ 1.37 × 10−3, to characterize
the efficacy of the recoil expansion. Both SM and BSM
couplings appear in �, a0, and bBSM, namely [21]

� = 1 + 3λ2 + (gSεS)2 + 3(4gT εT )2, (11)

a0 = (1 − λ2) − (gSεS)2 + (4gT εT )2

(1 + 3λ2) + (gSεS)2 + 3(4gT εT )2
, (12)

bBSM = 2(gSεS) − 6λ(4gT εT )

(1 + 3λ2) + (gSεS)2 + 3(4gT εT )2
, (13)

where we employ Eq. (6).
Our recoil-order expression for the term proportional

to ε/Rx ∝ me/Ee appearing within the first set of square
brackets in the differential distribution of Eq. (7) is equivalent

to the term labeled “bSM” employed in Refs. [38,60]. However,
it should be noted that the second-class currents f3 and g2 yield
an additional me/Ee term which is proportional to (f3 − λg2).
Simply for the sake of notation, we label this term “bSCC”,
where we then have, in summary,

bSM = −me

M

1 + 2λ + λ2 + 2λ(κp − κn)

1 + 3λ2
,

(14)

bSCC = 2
me

M

f3 − λg2

1 + 3λ2
.

In polarized β decay, the differential distribution relevant
to a measurement of A is of the form

d3�

dEed�e

∝ M4R4βx2(1 − x)2 1

(1 + ε − 2Rx)3
h(x)

×
[

1 + bBSM
me

Ee

+ Aβ cos θe

]
, (15)

where θe is the angle between the momentum of the electron
and the polarization of the neutron. Here, too, the structure of
this expression follows that of Refs. [58] and [21] in suitable
limits and serves as a definition of A in recoil order; note that
we neglect recoil contributions to bBSM, so that “bBSM” is the
same quantity here and in Eq. (7). The complete expression
for h(x) can be found in Ref. [57] and is in agreement with
Ref. [23]. To LO in the recoil expansion, h(x) is of the form

h(x) = g2
V + 3g2

A + (gSεS)2 + 3(4gT εT )2. (16)

Working to LO in the S and T terms and to NLO in the V − A
terms,

h(x)

(1 + ε − 2Rx)3

= (1 + 3λ2)

[
1 + 3Rx + Rx

(
4λ(1 + κp − κn)

1 + 3λ2

)

− 2R

(
λ2 + λ + λ(κp − κn)

1 + 3λ2

)
− 4R

(
λg2

1 + 3λ2

)

− ε

Rx

(
1 + 2λ + λ2 + 2λ(κp − κn)

1 + 3λ2

)

+ 2
ε

Rx

(
f3 − λg2

1 + 3λ2

)]
+ (λ2 − 1)

(
Rx − ε2

Rx

)
+(gSεS)2 + 3(4gT εT )2, (17)
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and A is of the form

A = A0 + 1

(1 + 3λ2)2

{
ε

Rx
[4λ2(1 − λ)(1 + λ + 2f2)

+ 4λ(1 − λ)(λg2 − f3)]

+R

[
2

3
[1 + λ + 2(f2 + g2)](3λ2 + 2λ − 1)

]

+Rx

[
2

3
(1 + λ + 2f2)(1 − 5λ − 9λ2 − 3λ3)

+ 4

3
g2(1 + λ + 3λ2 + 3λ3)

]}
, (18)

with

A0 = 2λ(1 − λ) + 2(4gT εT )2 + 2(gSεS)(4gT εT )

(1 + 3λ2) + (gSεS)2 + 3(4gT εT )2
. (19)

Our expressions in the context of V − A theory agree with
those of Ref. [24]—and with those of Ref. [58] if f3 = g2 = 0.

As a final topic we revisit the computation of the neutron
lifetime and focus particularly on the role of recoil-order
corrections. In the current state of the art [28,29], Vud , �,
and τ are related by

τ = 4908.7(1.9) s

|Vud |2� , (20)

where � = 1 + 3λ2 in the absence of new physics. Employing
Vud = 0.97425 and λ = 1.2701 [22] yields a lifetime of 885.6
s. The numerical value reported in Eq. (20), as per Ref. [29],
incorporates an improved treatment of electroweak radiative
effects, including certain O(α2) contributions [28,29]. Note
that the calculation embeds a value of gA = 1.27 in matching
the short- and long-distance radiative corrections [28,29].
The numerical value also includes the phase space factor f
which incorporates the Fermi function and various recoil-order
terms [51]; many small terms involving hadronic couplings
other than gV and gA can enter in recoil order. Reference [51]
analyzes neutron β decay to 0.001% in precision and finds
the latter corrections negligible save for the possibility of that
from g2. In that work [51] contributions proportional to f3

are assumed to be strictly zero from CVC, though such can
also be engendered by SM isospin violation. We can evaluate
the various small contributions to the total decay rate by
integrating the terms of Eq. (17) over the allowed phase space
of Eq. (15). We denote a contribution relative to that from � by
Cgigj

, where gi and gj are the couplings it contains. Defining
W0 = Emax

e /me, W = Ee/me, pW = √
W 2 − 1, and finally

Im =
∫ W0

1
dWpWW (W0 − W )2Wm, (21)

the small contributions to the decay rate, relative to that
mediated in LO by �, are

CgAg2 = −λg2

�

me

M

(
4W0 + 2

I−1

I0

)
,

CgV f3 = 2f3

�

me

M

I−1

I0
,

CgAf2 = λ(κp − κn)

�

me

M

(
4I1 − 2W0I0 − 2I−1

I0

)
, (22)

CgV gA
= λ

�

me

M

(
4I1 − 2W0I0 − 2I−1

I0

)
,

CgAgA
= −λ2

�

me

M

(
2W0I0 + I−1

I0

)
,

where we note the appendix of Ref. [51] for a useful tabulation
of the integrals Im. In our current study, in which we
assume that the entire range of possible electron energies
is experimentally accessible, both CgAf2 and CgV gA

vanish
up to contributions nominally of O(αR) ∼ 1.0 × 10−5 and
O(R2) ∼ 1.9 × 10−6 in size, both of which are negligible at
0.001% precision. Using the masses reported in Ref. [22],
specifically M = 939.565379 MeV, M ′ = 938.272046 MeV,
and me = 0.510998928 MeV, the remaining terms evaluate to

CgAg2 = −6.21 × 10−3 λg2

�

CgV f3 = 7.12 × 10−4 f3

�
, (23)

CgAgA
= −3.11 × 10−3 λ2

�
.

Using λ = 1.2701 [22] we find CgAgA
= −8.58 × 10−4. If λ

changes within ±0.10, we note that CgAgA
changes negligibly

at the precision to which we work, so that we can regard
CgAgA

as a fixed constant in the optimizations to follow. This
particular contribution should already be embedded in the
numerical constant of Eq. (20); however, the terms involving
second-class currents have not been. To include such small
corrections in the lifetime we need only replace � with
�(1 + Cgigj

), so that to retain g2, e.g., we write

τ = 4908.7 s

|Vud |2[� − (6.21 × 10−3)g2λ]
(24)

It is worth noting that finite experimental acceptance plays
an important role in the assessment of the recoil corrections
to the lifetime. For example, if the accessible electron kinetic
energy were limited to the interval [100, 700] keV from the
allowed range of [0, Emax

e − me ≈ 781.5] keV, then CgAf2 and
CgV gA

would no longer vanish in O(R). The integrals are
still analytically soluble and evaluate to CgAf2 = 7.47 × 10−4

and CgV gA
= 2.02 × 10−4, where we use f2 = (κp − κn)/2 =

1.8529450 [22] as well. Taken together, they yield a con-
tribution some 100 times larger than our earlier assessment,
which was set by O(αR). Including these effects in the manner
of Eq. (24), they reduce the determined neutron lifetime
for fixed λ by 0.8 s to yield 884.8 s. Such considerations
differentiate neutron lifetime experiments which (i) count
surviving neutrons from those which (ii) count decay products.
The existing tension between the latter, “in beam” experiments
and the former, “bottle” experiments [17,22]—though there is
also tension between the results of the most precise bottle
experiments [17,22]—make the observation intriguing. How-
ever, the most precise in-beam neutron lifetime experiment
[61,62] counts decay protons, rather than electrons, so that our
numerical analysis is not directly relevant. Indeed, in such
experiments, there are no threshold effects, and the entire
proton recoil spectrum is empirically accessible [61,62]. On
the other hand, experimental concepts which detect the decay
electrons have been under development [63,64].
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III. SURVEY OF THEORETICAL UNCERTAINTIES

In the SM the corrections to the predictions of the
CVC hypothesis, gV = 1, f2 = (κp − κn)/2, and f3 = 0 are
parametrically known to be of O(md − mu)2 [65] for gV and
of O(md − mu) for f2 and f3. The coupling g2 does not vanish
under CVC, but rather from its G-parity properties; it, too, is
nominally nonzero at O(md − mu).

The CVC hypothesis is assumed (i.e., gV = 1) in extracting
values for Vud from measured f t values in superallowed
0+ → 0+ nuclear β decay, and the universality of gV in
these decays has been tested to 1.3 × 10−4 at 68% confidence
level (CL) with a concomitant constraint of mef3/MgV =
−(0.0011 ± 0.0013) [30], implying f3 is constrained to only
O(1). Direct computation reveals the deviation of gV from
unity to be smaller still [66]. Decay correlation measurements
invariably conflate tests of the CVC prediction for the weak
magnetism form factor [67] with those which would limit
second-class currents; currently the CVC value of f2 is tested
to the level of some 6% [12,68] at 68% CL. We note, however,
there has not, to date, been a published measurement of f2

in neutron β decay, such as, e.g., could be extracted from the
linear energy dependence of a, or A if g2 = 0 is assumed.
The second-class couplings f3 and g2 have also not been
probed experimentally in neutron β decay. The comparison
of f t values in mirror transitions can also test for second-class
currents; in that context the weak magnetism form factor
does not enter but an isospin-breaking additive correction
from the axial form factors can. Such experiments give
the strongest empirical constraints on second-class currents
[69,70] although additional theoretical uncertainties enter. A
survey of nuclear β decay data gives the limit |g2/f2| < 0.1 at
90% CL, yielding |g2| < 0.2 at 90% CL [71].

Some theoretical studies of g2 exist, particularly in the case
of strangeness-changing transitions. A bag model estimate
gives g2/gV ∼ 0.3 [72] in |�S| = 1 semileptonic transitions.
More recently, nonzero second-class currents have been
observed in quenched lattice QCD calculations of form factors
which appear in the hyperon semileptonic decay �0 →
�+�ν̄, yielding f3/gV = 0.14(9) and g2/gA = 0.68(18) [73].
Turning to the nucleon sector, we expect these estimates to be
suppressed, crudely, by md/ms ∼ 0.1. This makes them nearly
compatible in scale with the value for g2 determined using
QCD sum rule techniques, g2/gA = −0.0152 ± 0.0053 [74].

The same lattice study has explored SU(3) breaking in
the f2 coupling as well, finding [f2/f1]�0→�+ = 1.16(11) ×
[f2/f1]n→p, a result somewhat different from the predictions
of common models of SU(3) breaking [73]. Applying a scaling
factor of md/ms ∼ 0.1 we would suppose that CVC breaking
in f2 is no larger than a few percent. It is notable that the
experimental limits on f2, f3, and g2 are all rather lax with
respect to theoretical expectations of CVC breaking and SCC
from SM physics.

In what follows we explore the impact of a nonzero g2, as
well as of values of f3 and f2 which are not fixed precisely
by the CVC prediction. These form factors all appear in recoil
order; the usual first assumption of uncorrelated errors suggests
that the impact of these form factors on the potential discovery
of BSM physics ought be modest. This turns out to be not so

because the fit parameters, rather, are highly correlated, as we
shall see.

IV. MAXIMUM LIKELIHOOD ANALYSIS

A. Construction of the likelihood function

Having reviewed the formalism for neutron β decay, the
starting point for our maximum likelihood analysis of neutron
β decay observables is the frequentist Rfit framework of the
CKMfitter Group [1,2]; in future work we will explore the
other analysis schemes outlined by the CKMfitter Group [1,2]
and the UTfit Collaboration [3–7], such as Bayesian analyses.
We review CKMfitter’s Rfit analysis in sufficient detail to
provide sufficient context for the discussion of our global
fit. Complete details on the Rfit statistical framework can,
of course, be found in their original papers [1,2].

Our global fit includes two different types of experimental
observables: (i) results for angular correlation coefficients as
a function of (binned) electron energy and (ii) the neutron
lifetime. We consider each of the bin-by-bin results for the
angular correlation coefficients to constitute a separate result.
Adopting the notation of the Rfit framework, we label each
of these experimental measurements xexp,i . Each of them are
then compared with a corresponding theoretical calculation
of that quantity, xtheo,i . These theoretical calculations are
each a function of Nmod model parameters, the set of which
we denote as {ymod}. Of these Nmod parameters, Nfree �
Nmod are experimentally accessible “free parameters” of the
model, the set of which we denote as {yfree}. The remaining
Ncalc = Nmod − Nfree “calculated parameters,” for which there
have been no prior experimental measurements and which
are not accessible in the current experiments (noting, e.g.,
second-class currents), must be calculated within the context
of the model, subject to various assumptions. The set of these
calculated parameters we denote as {ycalc}.

The set of experimental observables {xexp} includes binned-
in-energy measurements of Aexp,i(Ee,j ) and aexp,i(Ee,j ) (where
we use the subscripts i and j to label the particular experiment
and the energy bin, respectively) and results for the neutron
lifetime, τexp,i , from different experiments,

{xexp} = {Aexp,1(Ee,1), Aexp,1(Ee,2), . . . , aexp,1(Ee,1),

aexp,1(Ee,2), . . . , τexp,1, τexp,2, . . .}. (25)

These are then to be compared, one-by-one, with a correspond-
ing set of theoretical calculations,

{xtheo(ymod)} = {Atheo,1(Ee,1), Atheo,1(Ee,2), . . . ,

atheo,1(Ee,1), atheo,1(Ee,2), . . . ,

τtheo,1, τtheo,2, . . .}, (26)

which depend on the set of {ymod} parameters. Under the SM,
the set of {ymod} parameters would include

{ymod} = {λ, f2, f3, g2, g3, Vud}, (27)

though we note that g3 does not appear in β decay observables
computed through NLO precision. Consequently we set g3 =
0 in all that follows; we refer the reader to the reviews
of Refs. [75,76] for information on this quantity. In the
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next section where we show results from example fits for
different scenarios, we define for each scenario which of the
ymod,i parameters are to be considered a free or calculated
parameter. We note a subtlety in regards to λ: if it is a fit
parameter, rather than a calculated one, it can be modified
by the appearance of a right-handed coupling emergent from
physics BSM [38]. Thus the determined value of λ from a fit
of neutron beta decay observables need not be equivalent to
the calculated value of λ = gA/gV . However, present lattice
calculations of gA are of rather poorer precision than empirical
determinations. The above sets could, of course, be trivially ex-
panded to accommodate measurements of other observables;
for example, the {xexp} set could include measurements of the
neutrino asymmetry B and (direct) measurements of the Fierz
interference term bBSM (via spectral shape measurements),
and/or the {ymod} set could include bBSM.

As per the usual prescription [22], we define our χ2 function
in terms of a likelihood function L(ymod) for the {ymod}
parameter set as

χ2(ymod) = −2 lnL(ymod). (28)

Following the Rfit framework [1,2], we define L(ymod) to be
the product of an “experimental likelihood” function,Lexp, and
a “theoretical likelihood” function, Lcalc,

L(ymod) = Lexp({xexp}, {xtheo(ymod)})Lcalc({ycalc}). (29)

The experimental likelihood function is defined in the usual
way to be the product of the likelihood functions for each of
the Nexp experimental results,

Lexp({xexp}, {xtheo}) =
Nexp∏
i=1

Lexp,i , (30)

where, in the ideal case, the individual likelihood functions are
taken to be Gaussian,

Lexp,i = 1√
2πσ 2

exp,i

exp

[
− (xexp,i − xtheo,i)2

2σ 2
exp,i

]
, (31)

where σexp,i denotes the statistical uncertainty of the ith
experimental result. Of course, the individual experimental
likelihood functions must account for systematic errors, and
the formalism for the inclusion of such within the context of the
Rfit framework is described in detail in Refs. [1,2]. However,
a detailed discussion of the impact of experimental systematic
errors is beyond the scope of this paper, as the focus of our
first paper is on the statistical impact of a global fit and the
limitations on such from theoretical uncertainties.

In principle, a theoretical likelihood function could simi-
larly be defined as the product of likelihood functions for each
of the ycalc,i calculated parameters,

Lcalc({ycalc}) =
Ncalc∏
i=1

Lcalc,i , (32)

and under the assumption that the ycalc,i values are Gaussian
distributed, the theoretical likelihood would, by definition,
contribute to the χ2. Such a formulation might not be

appropriate for the treatment of the ycalc,i parameters, for
which the underlying probability distributions are certainly
not known. However, it may well be possible to bound the
value of each ycalc,i parameter on theoretical grounds, such
that the parameter may reasonably assume any value over an
allowed range of [ycalc,i − δycalc,i , ycalc,i + δycalc,i]. It would
be highly unlikely that the true value of the parameter would
fall outside of this range.

Thus, given the lack of knowledge on the underlying
distributions of the ycalc,i parameters, the proposal of the Rfit
scheme [1,2] is to redefine the χ2 function so that the theoret-
ical likelihood does not contribute to the χ2, while the ycalc,i

parameters are permitted to vary freely within their predefined
allowed ranges. In particular, the χ2 is redefined to be

χ2 =
Nexp∑
i=1

(
xexp,i − xtheo,i

σexp,i

)2

− 2 lnLcalc({ycalc}), (33)

where

−2 lnLcalc({ycalc}) ≡
{

0, ∀ ycalc,i ∈ [ycalc,i ± δycalc,i],

∞, otherwise

Thus, under the Rfit scheme, each of the ycalc,i parameters
are bounded, but all possible values of the parameters within
their predefined ranges are treated equally. That is, the value
of χ2 is scanned over the available {yfree} parameter space,
while the values of the {ycalc} parameters are permitted to
vary freely over their predefined ranges at each point in the
{yfree} parameter space. Thus, the central challenge of such
an analysis in Refs. [1,2] is to define the [ycalc,i ± δycalc,i]
allowed ranges carefully because (i) the fit results for the
{yfree} parameters can be interpreted as valid only if the “true”
values for the {ycalc} parameters fall within the allowed ranges;
and (ii) choosing the allowed ranges to be too wide (i.e., too
conservative) could mask the discovery of new physics.

After construction of the χ2, a global fit can be then be
pursued under two different types of analyses: (i) determining
values for the SM parameters; and (ii) assessing the validity
of the SM.

B. Determining standard Model parameters

Here the goal is neither to assess the validity of the
SM nor to search for evidence of new physics. Instead, the
SM is assumed to be valid, and the global fit is employed,
optimally, to determine values for all of the {ymod} parameters.
In this case, the minimum value of χ2(ymod), computed
according to Eq. (28), is obtained by allowing all of the
Nmod parameters to freely vary. The resulting minimum value
is denoted χ2(ymod)min. Confidence levels, P(ymod), on the
values of the parameters obtained at χ2(ymod)min are calculated
according to

P(ymod) = Prob(�χ2(ymod), Ndof), (34)

where, as usual,

�χ2(ymod) = χ2(ymod) − χ2(ymod)min, (35)

and Prob(· · · ) denotes the probability for a value of χ2 >
�χ2(ymod) for Ndof degrees of freedom.
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However, in practice, it may not be possible, or feasible, to
determine values for all of the {ymod} parameters. The {ycalc}
parameters, notably the second-class couplings, f3 and g2, and
the induced pseudoscalar coupling g3, serve as examples. We
let {ya} denote the Na � Nmod subset of {ymod} parameters for
which the goal is to determine confidence levels; the remainder
of the Nμ = Nmod − Na parameters are denoted {yμ}. Note that
the set of {yμ} parameters may not be identical to the set of
{ycalc} parameters.

Confidence levels on the {ya} parameter set are then deter-
mined by first computing at each point in the {ya} parameter
space the minimal value of the χ2 function, χ2({ya}; {yμ})min,
obtained by allowing the {yμ} parameters to vary. The minimal
value of �χ2 at that point in the {ya} parameter space is then
computed according to

�χ2({ya}) = χ2({ya}; {yμ})min − χ2(ymod)min. (36)

The confidence levels are then obtained from

P({ya}) = Prob(�χ2({ya}), Ndof). (37)

C. Assessing the standard model

Under the minimization scheme just described for the
determination of SM parameters, the SM is assumed to be
valid by definition. In principle, a test statistic for assessing the
validity of the SM would be the value of χ2(ymod)min obtained
when all of the Nmod are varied, where a confidence level on
the SM could be defined as

P(SM) � Prob(χ2(ymod)min, Ndof). (38)

In practice, an assessment of the validity of the SM can
be obtained via a Monte Carlo calculation according to the
following scheme. Values for the set of {xexp} experimental
results are sampled in the Monte Carlo from their correspond-
ing set of theoretical expressions, {xtheo}, assuming the fitted
values for the {ymod} parameter set. For each set of {xexp}
values, a χ2 value is computed, as before, by allowing the
ymod parameters to vary. This is repeated, and from this a
(normalized) distribution of χ2 values, p(χ2), is constructed.
A confidence level for the SM is then deduced from this
distribution according to

P(SM) �
∫

χ2�χ2(ymod)min

p(χ2)dχ2. (39)

V. EXAMPLE FIT SCENARIOS

We now illustrate, via several examples of nFitter fits to
Monte Carlo pseudodata, the impact that simultaneous fits to
the energy dependence of the a and A angular correlation
coefficients have on an assessment of the validity of the SM
and the extent to which theoretical uncertainties can limit such
an assessment.

A. Monte Carlo data sets and statistics

We generated Monte Carlo pseudodata by sampling the
relevant recoil-order differential distributions for measure-
ments of a and A, Eqs. (7) and (15), respectively, employing
the complete expression for h(x) in Ref. [57] in the latter
case—only the terms of Eq. (17) are appreciably nonzero. We
generated two different data sets. The first data set, which
we term our “Standard Model” data set, consists of 5 × 109

simulated events for a measurement of a, and a separate data
set consisting of 5 × 109 simulated events for a measurement
of A. Both data sets employ the current Particle Data Group
average value for λ = 1.2701 [22] and the CVC value for
f2 = (κp − κn)/2 = 1.8529450 [22], and assume all of the
other small terms are zero, f3 = g2 = g3 = 0.

The second data set, which we term our “New Physics”
data set, again consists of 5 × 109 simulated events for a
measurement of a, and 5 × 109 events for a measurement of
A. This data set is identical to the earlier one, save for the
inclusion of a nonzero value for a tensor coupling, namely,
gT εT = 1.0 × 10−3, close to the strongest empirical limit on
this quantity, which comes from a Dalitz study of radiative pion
decay [18,77]. Specifically, we note the extracted 90% CL limit
on Re(εT ) [18,77] can be combined with gT = 1.05(35) [38],
or gT < 1.4, both in the MS scheme at a renormalization scale
of 2 GeV, to yield −1.5 × 10−3 < gT Re(εT ) < 1.9 × 10−3.
The most stringent limit on gSRe(εS), which comes from the
analysis of 0+ → 0+ nuclear decays [30], is of a comparable
magnitude. However, as can be seen from Eq. (13), for
approximately equal values of gSεS and gT εT , bBSM is
significantly more sensitive to tensor couplings; hence, we
have decided to illustrate our methods using a nonzero tensor
coupling exclusively. A summary of our input parameters and
the resulting values for �, a0, A0, bBSM, and τ are given in
Table I. Note that we calculate τ as per Eq. (20), assuming
the central value for the superallowed 0+ → 0+ value of
Vud = 0.97425(22) [22].

Our pseudodata consists of 5 × 109 events, because such is
needed for the anticipated level of statistical precision in the

TABLE I. Summary of parameters for the “Standard Model” and “New Physics” Monte Carlo pseudodata sets. We note under CVC that
f2 = (κp − κn)/2 = 1.8529450 [22].

Input parameters λ f2 f3 g2 g3 gSεS gT εT

Standard Model PDG: 1.2701 CVC: (κp − κn)/2 0 0 0 0 0
New Physics PDG: 1.2701 CVC: (κp − κn)/2 0 0 0 0 1.0 × 10−3

Calculated parameters � a0 A0 bBSM τ

Standard Model 5.83946 −0.105002 −0.117495 0 885.631 s
New Physics 5.83951 −0.104998 −0.117489 −0.00522 885.624 s
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FIG. 1. (Color online) Simulated data from the Standard Model data set for aexp/( 1
2 β) [panel (a)] and Aexp/( 1

2 β) [panel (b)] plotted as a
function of Te. The solid red line is the result of a simultaneous fit to the a and A data.

most ambitious of the next generation of decay correlation
experiments. Specifically, we would be able to determine
the value of λ in an a measurement to 0.010% (equivalent
to a 0.037% determination of a0) and to 0.008% in an A
measurement (0.032% determination of A0). The stated goals
on a and A in the upcoming PERC experiment [20] are to
achieve statistical and systematic errors on the level of 0.03%.

The numerical results presented hereafter employ the full
Ee energy range (i.e., kinetic energies 0 � Te � T0). Of
course, in a real experiment, the lower energy range will
necessarily be in excess of zero due to hardware thresholds
and/or analysis cuts. Also, considerations of systematics may
limit the upper energy range because energy loss effects
become disproportionately more important as the electron
energy increases; see, e.g., Refs. [46–48]. Such details would,
of course, be included in a global fit to actual data; the point
of this paper is to illustrate the method.

B. Examples: Fits to the Standard Model data set

For our first example, we consider fits to the Standard Model
data set. As an illustration of our methods, we show our simu-
lated data for a and A as a function of Te in Fig. 1, employing
79 10-keV bins from 0–790 keV, as the endpoint is T0 =
781.5 keV. We plot the “experimental asymmetries” aexp and
Aexp, scaled by the nominal 1

2β electron-energy dependence of
the asymmetries, where the factor of 1

2 results from the angular
integral 〈cos θe,eν〉 = 1

2 on a hemisphere. These experimental
asymmetries aexp and Aexp are calculated from the simulated
data in a manner similar to how actual experimental data would
be analyzed in a typical “forward/backward” asymmetry
measurement (see, e.g., [78]), where

aexp ≡ N (cos θeν > 0) − N (cos θeν < 0)

N (cos θeν > 0) + N (cos θeν < 0)

= 1

2
β

a1

1 + bBSM
me

Ee
+ 1

3a2β2
, (40)

Aexp ≡ N (cos θe > 0) − N (cos θe < 0)

N (cos θe > 0) + N (cos θe < 0)

= 1

2
β

A

1 + bBSM
me

Ee

. (41)

Sensitivity to bBSM from A(E) and a(E) have been previously
considered by Refs. [38,43,79]. In a real experiment the effects
of O(α) radiative corrections [80] would have to be removed
to interpret Aexp in terms of the simple theoretical expressions
we employ, noting Eqs. (8) and (18), in our fits. We avoid
this now for simplicity, and we are able to do so because
said correction incurs no additional hadronic uncertainty.
Moreover, for similar reasons we drop the a2 term from our fits
as well; they are simply trivially small. The fits shown in Fig. 1
are the result of a simultaneous fit to the a and A data, in which
{xexp} = {a,A}, noting {a,A} is shorthand for the complete
set of the binned-in-energy results for aexp and Aexp, and
{ya} = {λ}. We fix f2 to its CVC value and set all second-class
couplings to zero, so that bBSM vanishes. As a validation of
our methods, the fit result for λ = 1.27009(8) agrees with the
input value to within −0.1σ with a χ2

min/Ndof = 135.3/157,
yielding a perfectly acceptable Prob(χ2 > χ2

min) = 0.89.
Relaxing the assumption that second class currents are zero,

we apply the Rfit scheme to a fit in which {ya} = {λ}, and
f3 and g2 comprise the {yμ} parameter set, which are then
permitted to vary simultaneously over some prescribed range,
as per the prescription discussed in Sec. IV B. Of the other
{ymod} parameters, f2 is again fixed to its CVC value, and
bBSM is fixed to zero. The resulting 68.3% CL on λ for different
assumptions on the permitted theory ranges for f3 and/or g2

are compared in Table II. Note that we determine a 68.3%
CL as per the requirement �χ2({ya}) = χ2({ya}; {yμ})min −
χ2(ymod)min = 1, where in this case {ya} = {λ} and {yμ} =
{f3, g2}. Referring to Table II, unless g2 can be constrained to
O(0.1), theory uncertainties in g2 would limit the precision to
which λ can be extracted from experiments aiming to measure
a and A to the level of 0.03%. Even at this level, the range
of the 68.3% CL on λ is ∼50% larger than the case in which
second-class currents are taken to be exactly zero. In contrast
the fits are almost completely insensitive to the value of f3;
this is because the latter appears only in the ε/Rx terms.

Alternatively, in the absence of a theory bound on g2, one
could fit directly for λ and g2. In what follows we neglect the
small f3 contribution, setting f3 = 0, which is reasonable, as
we show in Table II. Results from a fit in which {ya} = {λ, g2},
with no yμ parameters, are shown in Table III, where the
errors on λ and g2 are defined by �χ2 = 2.30, i.e., the 68.3%
CL for a joint fit of two free parameters [22]. As one would
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TABLE II. Fitted values for λ from a simultaneous fit to the
{a,A} Standard Model data set under the inclusion of the indicated
theoretical uncertainties in f3 and g2. The fitted values for λ are
defined by the location of the overall χ 2

min, while the 68.3% CL is
defined by �χ 2 = 1. An asymmetric CL about the χ 2

min value is
indicated by asymmetric upper (+) and lower (−) error bars. Recall
that the input value for λ = 1.2701 [22].

f3 range g2 range Fitted λ

0 0 1.27009(8)

0 [−0.1, 0.1] 1.27036(+7)(−17)
[−0.1, 0.1] 0 1.27009(8)

0 [−0.5, 0.5] 1.27056(31)
[−0.5, 0.5] 0 1.27007(+11)(−7)

[−0.1, 0.1] [−0.1, 0.1] 1.27035(+9)(−17)
[−0.5, 0.5] [−0.5, 0.5] 1.27054(+32)(−31)

expect, the error on λ from a two-parameter simultaneous fit
to the {a,A} data set is a factor of ∼6 larger than that from a
single-parameter fit for λ alone; and, it is worth noting that g2

can be determined from such a fit to O(0.2). However, what
is more interesting are the errors on λ and g2 extracted from a
fit to the {a} data set alone: the error on λ is a factor of ∼300
larger than that from a single-parameter fit for λ alone, and the
error on g2 is of O(10). The origin of this effect is clear: g2

appears in a1 only in the expansion for a, Eq. (8), namely via
the combination 2(λ − λ3)(1 + g2). Therefore, λ and g2 are
directly correlated in a small recoil-order term in a, with only
the fitted value of a0 ultimately limiting the �χ2 range and,
hence, the λ and g2 errors. In Table III, we also show the “Pull,”
which we define as Pull = (xfit − xinput)/(σfit) for a parameter
x. In the event of asymmetric errors, we average the two errors
to form σfit. For completeness, the correlation coefficients ρλg2

from the fits are also given. Thus, this example succinctly
illustrates the necessity of a stringent theoretical bound on the
value of g2 for an interpretation of a measurements in the
context of an assessment of the V − A structure of the SM.

As a final example of fits to our Standard Model data set,
we consider the implications of CVC breaking on the value
of the weak magnetic form factor f2, by defining {ya} = {λ}

TABLE III. Fitted values for λ and g2 from two-parameter
simultaneous, {a, A}, and individual, {a} or {A}, fits to the Standard
Model data set. The fitted values for λ and g2 are defined by the
location of the overall χ 2

min, while the 68.3% CL is defined by
�χ 2 = 2.30. We use the inputs λ = 1.2701 [22] and g2 = 0. The
column “Prob” indicates the Prob(χ 2 > χ 2

min).

Fit Fitted λ Pull g2 χ 2
min/Ndof Prob

{a,A} 1.27056(48) 0.97σ 0.174(171) 133.0/156 0.91
{a} 1.294(40) 0.60σ 6.7(11.3) 54.4/77 0.98
{A} 1.2708(14) 0.50σ 0.28(65) 77.8/77 0.45

Fit Correlation coefficient ρλg2

{a,A} 0.97
{a} 1.00
{A} 0.99

TABLE IV. Fitted values for λ from a simultaneous fit to the
{a,A} Standard Model data set under different assumptions on the
range of CVC breaking for the value of f2. The fitted values for λ

are defined by the location of the overall χ 2
min, while the 68.3% CL is

defined by �χ 2 = 1. We use the input λ = 1.2701 [22].

f2 range Fitted λ

CVC exact 1.27009(8)
±1% 1.27009(9)
±2% 1.27011(11)
±5% 1.27016(15)

and {yμ} = {f2} under different assumptions on the permitted
theory range for f2. The results are summarized in Table IV.
As can be seen there, the impact of a ±2% breaking on f2 is
comparable to an O(0.1) uncertainty in g2.

C. Examples: Fits to the New Physics data set

As our second example, we consider fits to the New Physics
data set. As can be seen in Table I, the values of a0 and
A0 in the New Physics data set differ from their values in
the Standard Model data set by only 0.004% and 0.005%,
respectively. Therefore, the impact of any new physics from
scalar and tensor interactions on the measured values of a and
A will be via a “dilution” to the experimental asymmetries
aexp and Aexp from a nonzero Fierz term bBSM appearing in the
denominators of Eqs. (40) and (41), respectively. Accordingly,
we now expand our {ymod} parameter set to include bBSM.

Results from a single parameter fit in which {ya} = {λ} only
and an empty {yμ} parameter set are shown in Table V. As can
be seen, these fits still yield excellent values for χ2

min; however,
not surprisingly, there are significant pulls on the fitted values
for λ from the input value. The origin of these pulls can be
easily understood (and, indeed, was first noted by Ref. [38]) by
inspecting the functional forms for aexp and Aexp in terms of a
and A. For small bBSM, αexp ≈ α(1 − bBSMme/Ee) with α = a
or A, whereas the slope of the ε/Rx ∝ me/Ee dependence
of a1 and A is negative in λ and nearly linear; the me/Ee

contributions to aexp and Aexp from bBSM and λ are of the same
sign and slope. Therefore, the presence of a nonzero bBSM

would not result in poor χ2 values in fits to the a and A energy
dependence.

Next, we again consider the implications of theoretical
uncertainties in f3 and g2 as relevant for an extraction of λ

TABLE V. Fitted values for λ from simultaneous, {a, A}, and
individual, {a} or {A}, fits to the New Physics data set, in which λ

was the only free parameter. The fitted values for λ are defined by
the location of the overall χ 2

min in each case, while the 68.3% CL is
defined by �χ 2 = 1. We use the input λ = 1.2701 [22]. The column
“Prob” indicates the Prob(χ 2 > χ 2

min).

Fit Fitted λ Pull χ 2
min/Ndof Prob

{a,A} 1.27115(8) 13.1σ 153.6/157 0.56
{a} 1.27135(13) 9.6σ 75.0/78 0.57
{A} 1.27103(10) 9.2σ 74.7/78 0.59
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TABLE VI. Fitted values for λ from simultaneous, {a,A}, and
individual, {a} or {A}, fits to the New Physics data set, under the
inclusion of the indicated theoretical uncertainties in f3 and g2. The
fitted values for λ are defined by the location of χ2

min, while the
68.3% CL is defined by �χ 2 = 1. An asymmetric CL about the χ 2

min

value is indicated by asymmetric upper (+) and lower (−) error bars.
We use the input λ = 1.2701 [22]. The column “Prob” indicates the
Prob(χ 2 > χ 2

min).

Fit f3 ∈ [−0.1, 0.1] and g2 ∈ [−0.1, 0.1] Prob
Fitted λ Pull χ 2

min/Ndof

{a, A} 1.27088(+19)(−7) 6.0σ 151.9/157 0.60
{a} 1.27170(+13)(−83) 3.3σ 75.0/78 0.58
{A} 1.27124(+10)(−27) 6.2σ 73.9/78 0.61

Fit f3 ∈ [−0.5, 0.5] and g2 ∈ [−0.5, 0.5] Prob
Fitted λ Pull χ 2

min/Ndof

{a, A} 1.27072(+30)(−32) 2.0σ 151.4/157 0.61
{a} 1.27311(+15)(−365) ∼0 74.8/78 0.58
{A} 1.27209(+13)(−52) 3.2σ 71.8/78 0.68

in the presence of new physics. The {ya} parameter set still
includes λ only, while now the {yμ} parameter set includes
f3 and g2, which are then permitted to vary over a particular
range. The resulting 68.3% confidence levels on λ extracted
from a simultaneous fit to the {a,A}, as well as to the
individual {a} or {A}, New Physics data set, for different
theory ranges on f3 and g2 are compared in Table VI. It
is interesting to note that the effects of new physics in an
a measurement considered in isolation could potentially be
obscured by second-class currents, whereas there is less of
an effect for an A measurement considered in isolation or in
a combined fit to a and A data. This effect derives from the
manner in which g2 appears in a.

Results from the two-parameter fits, with {ya} = {λ, bBSM}
and an empty {yμ} parameter set, are summarized in Table VII.
It is worth noting that a combined {a,A} fit at this level of
precision has the potential to constrain bBSM at 68.3% CL to
the level of ∼3 × 10−3, although such a fit would also offer
significantly less (by a factor of ∼8) less sensitivity to λ. For
completeness, we also list the correlation coefficients ρλb for

TABLE VII. Fitted values for λ and bBSM from simultaneous,
{a, A}, and individual, {a} or {A}, fits to the New Physics data set.
The fitted values for λ and bBSM are defined by the location of the
overall χ 2

min, while the 68.3% CL is defined by �χ 2 = 2.30. We
use the inputs λ = 1.2701 [22] and bBSM = −0.00522. The column
“Prob” indicates the Prob(χ 2 > χ 2

min).

Fit Fitted λ Fitted bBSM χ 2
min/Ndof Prob

{a, A} 1.27011(65) −0.0051(31) 147.5/156 0.67
{a} 1.27052(113) −0.0037(50) 73.8/77 0.58
{A} 1.27014(86) −0.0045(44) 72.2/77 0.63

Fit Correlation coefficient ρλb

{a, A} 0.98
{a} 0.99
{A} 0.98

λ
1.2695 1.27 1.2705 1.271

B
S

M
b

-0.01

-0.008

-0.006

-0.004

-0.002

0

 = 0
2

 = g3f

0.1,0.1]− = [
2

, g3f

0.5,0.5]− = [
2

, g3f

FIG. 2. Impact of uncertainties in f3 and g2 on the allowed
(λ, bBSM) parameter space from a two-parameter simultaneous fit
to the {a,A} New Physics data set. The bands indicate the 68.3%
CL allowed regions defined by �χ 2 = 2.30 for a joint fit of two
free parameters, for the indicated uncertainties in f3 and g2. The
input values λ = 1.2701 and bBSM = −0.00522 are indicated by the
dashed lines.

these fits. Finally, we perform fits with {ya} = {λ, bBSM} and
{yμ} = {f3, g2}, with f3 and g2 permitted to vary over different
particular ranges. The results of these fits, which demonstrate
the impact that uncertainties in f3 and g2 have on the allowed
(λ, bBSM) parameter space, are shown in Fig. 2. Indeed, as one
can see, the allowed (λ, bBSM) parameter space is broadened
significantly by the inclusion of theoretical uncertainties in f3

and g2. As per our analysis reported in Table II we note the
uncertainty in g2 is of greater impact.

D. Example: Impact of the neutron lifetime to
an assessment of the SM

Finally, we consider the impact that future measurements
of the neutron lifetime to a precision of 0.1 s, considered
together with measurements of the a and A angular correlation
coefficients to a precision of ∼0.03%, will have on an
assessment of the validity of the V − A structure of the SM.
We illustrate this within the context of our New Physics data
set. To do so, we expand our {xexp} data set to {a,A, τ }, where
we take τ to be a single data point whose value is the calculated
value of τ = 885.624 s for the parameters of the New Physics
data set, as per Table I, and consider various uncertainties in τ .

We then perform a simultaneous fit to the {xexp} = {a,A, τ }
New Physics data set in which {ya} = λ, i.e., with only a single
free parameter. We use the CVC value for f2 and set f3 = g2

to zero. As we have already noted, a simultaneous fit to the
{a,A} data set only yields excellent values for χ2

min—albeit,
with significant pulls on the fitted values for λ. The neutron
lifetime is relatively insensitive to new scalar or tensor physics,
because such new physics only enters quadratically in the
� parameter, noting Eq. (20). Therefore, we would expect a
simultaneous fit to an {a,A, τ } data set in the presence of new
scalar and tensor interactions to return a poor value for χ2

min.
Indeed, the results of such an analysis are shown in Table VIII,
where we show the fitted values for λ, the χ2

min from the fit,
and the probability for that χ2

min value, for different assumed
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TABLE VIII. Results for χ 2
min from a simultaneous fit for λ to the

{a,A, τ } New Physics data set, for different assumed precisions in
the measurement of the neutron lifetime, assuming g2 = 0.

τn error (s) χ 2
min/Ndof Prob(χ 2 > χ 2

min)

1.00 155.1/158 0.55
0.50 159.3/158 0.45
0.25 174.3/158 0.17
0.20 183.8/158 0.078
0.15 200.9/158 0.011
0.10 233.0/158 8.2 × 10−5

0.07 263.4/158 2.9 × 10−7

experimental errors on the lifetime. As can be seen, the
probability for the validity of the SM, which we quantify via
the statistic P(SM) � Prob(χ2 > χ2

min), as per Sec. IV C, in
the presence of new tensor physics at the level of gT εT ∼ 10−3

would become < 10−4 if the neutron lifetime were measured
to ∼0.1 s or better in concert with ∼0.03% measurements of a
and A. Under this scenario, a precision in the neutron lifetime
of 0.07 s would yield a probability of ∼3 × 10−7, which is
slightly more stringent than the requirement for a 5σ result,
i.e., a probability of 5.7 × 10−7.

Finally we turn to an examination of the impact of a
non-zero second-class coupling g2 on the ability to falsify
the V − A law of the SM. It has been the usual procedure
to ignore certain recoil corrections in the determination of
τ , as per Eq. (20), but we expect that a nonzero value of
g2 could be important in this context, so that we include the
recoil correction in g2, as per Eq. (24), as well. We perform a
simultaneous fit to the {xexp} = {a,A, τ } New Physics data set
in which {ya} = λ and {yμ} = {g2}, where g2 is permitted to
vary over different particular ranges, with f2 equal to its CVC
value and f3 = 0. The empirical limits on g2 are markedly
weaker than the existing direct theoretical estimate, noting
g2 = −0.0193 ± 0.0067 [74] with λ = 1.2701 [22], so that
we perform simultaneous fits using g2 in the following ranges:
g2 ∈ [−0.025, 0], g2 ∈ [−0.1, 0.1], and g2 ∈ [−0.5, 0.5]. The
fit results, as well as the determined abilities to falsify the
SM, as a function of the error in the determined neutron
lifetime, are shown for these ranges of g2 in Tables IX, X,
and XI, respectively. Nonzero values of g2 impact the ability
to falsify the SM in every case, and the inclusion of the
recoil corrections to τ are also of importance. In the last
case, in which g2 ∈ [−0.5, 0.5], the ability to falsify the SM
with improving precision in the neutron lifetime has been
completely eroded. Evidently it is important to determine g2

to the greatest accuracy possible in order to be able to falsify
the V − A law of the SM.

VI. SUMMARY AND CONCLUSIONS

In summary, we have developed a maximum likelihood
statistical framework, which we term nFitter, in which we
make simultaneous fits to various neutron β decay observables.
Although a number of global fits to β decay data have
previously been developed [12,40], the novel approach em-
bedded in our technique is that simultaneous fits to the energy

TABLE IX. Results for χ 2
min from a simultaneous fit for λ and g2

to the {a,A, τ } New Physics data set, for different assumed precisions
in the measurement of the neutron lifetime, now for g2 ∈ [−0.025, 0].
The first set of values ignore the role of g2, as per usual procedures,
in the theoretical formula for τ ; the second set include it.

τn error (s) χ 2
min/Ndof Prob(χ 2 > χ 2

min)

1.00 154.3/157 0.55
0.50 158.0/157 0.46
0.25 171.1/157 0.21
0.20 179.5/157 0.11
0.15 194.5/157 0.023
0.10 222.6/157 4.5 × 10−4

0.07 249.1/157 3.9 × 10−6

1.00 154.4/157 0.54
0.50 158.3/157 0.46
0.25 172.1/157 0.19
0.20 180.9/157 0.093
0.15 196.7/157 0.017
0.10 226.3/157 2.5 × 10−3

0.07 254.3/157 1.4 × 10−6

dependence of the angular correlation coefficients allow for a
robust test of the validity of the V − A structure of the SM
in the presence of theoretical uncertainties, whereas fits based
on integral quantities do not. To our knowledge ours is the
first study of the quantitative ability to falsify the SM and
particularly the V − A law, after the manner of Refs. [1–7], in
the context of neutron beta decay observables.

Our study has consisted of fits to the a and A angular
correlation coefficients, as well as to the value of the neutron
lifetime. We believe that studies of the B angular correlation
coefficient, as well as of bBSM through the electron energy
spectrum in β decay, will offer important complementary
information; and such, as well as any additional, concomitant

TABLE X. Results for χ 2
min from a simultaneous fit for λ and g2 to

the {a, A, τ } New Physics data set, for different assumed precisions
in the measurement of the neutron lifetime, now for g2 ∈ [−0.1, 0.1].
The first set of values ignore the role of g2, as per usual procedures,
in the theoretical formula for τ ; the second set include it.

τn error (s) χ 2
min/Ndof Prob(χ 2 > χ 2

min)

1.00 152.7/157 0.58
0.50 155.0/157 0.53
0.25 163.3/157 0.35
0.20 168.6/157 0.25
0.15 178.0/157 0.12
0.10 195.7/157 0.019
0.07 212.5/157 0.0021

1.00 152.9/157 0.58
0.50 155.9/157 0.51
0.25 166.5/157 0.29
0.20 173.3/157 0.18
0.15 185.4/157 0.060
0.10 208.1/157 3.9 × 10−3

0.07 229.6/157 1.4 × 10−4
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TABLE XI. Results for χ 2
min from a simultaneous fit for λ and g2

to the {a, A, τ } New Physics data set, for different assumed precisions
in the measurement of the neutron lifetime, now for g2 ∈ [−0.5, 0.5].
As in Table IX the first set of values ignore the role of g2 in the
theoretical formula for τ ; the second set include it.

τn error (s) χ 2
min/Ndof Prob(χ 2 > χ 2

min)

1.00 152.1/157 0.60
0.50 153.0/157 0.58
0.25 154.3/157 0.55
0.20 154.7/157 0.54
0.15 155.0/157 0.53
0.10 155.3/157 0.52
0.07 155.4/157 0.52

1.00 152.4/157 0.59
0.50 154.3/157 0.55
0.25 158.6/157 0.45
0.20 160.3/157 0.41
0.15 162.2/157 0.37
0.10 164.3/157 0.33
0.07 165.6/157 0.30

theoretical uncertainties, can be incorporated in our analysis
framework as well. In our current study we have focused on
the role of second-class current contributions, most notably
on the impact of a nonzero g2 coupling, on the ability to
identify physics BSM. In the course of developing our analysis
procedure, we have discovered that certain recoil effects to
the neutron lifetime, contrary to the usual view [51], can
have an impact on our fit results. Moreover, the precise form
of the recoil corrections depends on experimental details,
revealing that the corrections change with a finite experimental
acceptance, such as in experiments which extract a value of
the lifetime from measurements of the decay electrons and/or
protons. Such considerations warrant further detailed study.

We have explicitly shown that it is possible to discover
physics BSM, at 5σ significance, in neutron β decay ob-
servables using experiments which are currently planned or
under construction. This is subject to the following conditions:
namely, that (i) tensor interactions are not much smaller than
the constraint which emerges from the Dalitz analysis of
pion radiative β decay [18,77], (ii) the value of g2 can be
sharply restricted, and (iii) results of 0.03% precision can be
realized for a and A, in concert with a sub-0.1 s determination
of the neutron lifetime. In our study we have assumed that
gT Re(εT ) = 0.001, so that using gT = 1.05(35) [38] and
noting Re(εT ) ∼ v2/�2

BSM, this would be commensurate with
the appearance of physics BSM at an energy scale of at least
�BSM ∼5 TeV [36]. We note that existing direct limits on
tensor couplings from nuclear β decay are much weaker than
those from radiative pion decay [18]; perhaps new physics
effects could be different in pion and neutron decays. We
note, however, that under the assumption that BSM effects
appear at energies in excess of �BSM such effects can only
occur from operators beyond mass-dimension six and ought
be suppressed. Our current analysis framework is also suitable
to the discovery of new scalar interactions as well.

We have shown that theoretical uncertainties in g2 can
mitigate the gains made in falsifying the SM through the
inclusion of precision τ results. We thus advocate for a
determination of g2 using lattice gauge theory techniques; we
suppose that lattice measurements of f2 and f3 in neutron
decay would be useful, too. These considerations are quite
independent of how information on bBSM is determined.
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