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Impact of nuclear effects on weak pion production at energies below 1 GeV
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Charged-current single-pion production in scattering off 12C is investigated for neutrino energies up to 1 GeV. A
model of Nieves et al. [Phys. Rev. C 83, 045501 (2011)] is further developed by performing exact integration and
avoiding several approximations. The effect of exact integration is investigated both for double-differential and
total neutrino-nucleus cross sections. The impact of nuclear effects with in-medium modifications of the �(1232)
resonance properties as well as an effective field theory nonresonant background contribution are discussed.
The dependence of the fraction of �(1232) decays into n-particle–n-hole states on incident neutrino energy is
estimated. The impact of various ingredients of the model on the ratio of muon to electron neutrino cross sections
is investigated in detail.
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I. INTRODUCTION

There has been a lot of effort to understand better
single-pion-production (SPP) reactions in neutrino-nucleon
and neutrino-nucleus scattering. Motivations for these studies
come from the neutrino oscillation experiments and their
demand to reduce systematic errors. In the few-GeV energy
region characteristic of experiments such as T2K, MINOS,
NOvA, MiniBooNE, and MicroBooNE the SPP channels
account for a large fraction of the cross section (e.g., at
1 GeV on an isoscalar target about 1/3 of the cross section).

In a typical neutrino oscillation experiment one aims at the
reconstruction of the interacting neutrino energy spectrum.
In the case of charged-current (CC) interactions often one
has access only to the information about the outgoing lepton
kinematics. The neutrino energy is then evaluated by assuming
that charged-current quasielastic (CCQE) scattering took place
on a single nucleon at rest. If interactions were CCQE, this
method produces a distribution narrowly peaked near the true
neutrino energy with a smearing caused by Fermi motion and
a possible small shift due to binding energy. For other types
of interactions this method introduces a strong bias. Thus it
is important to estimate the size of non-CCQE background
events which may mimic the true CCQE ones.

For the neutrino energies under consideration the back-
ground is believed to be formed mainly from the SPP events
with pions absorbed in nuclei and from the two-body cur-
rent mechanism (two-particle–two-hole excitations, 2p2h), in
which a neutrino interacts with two nucleons. The latter is often
generalized to n-nucleon excitations through n-body currents
(npnh). The impact of npnh effects on neutrino oscillation
analysis has been evaluated by several groups in a series of
papers [1]. Pion final-state interactions (FSI) were discussed
in this context in Ref. [2]. Since one can effectively model
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nucleon-nucleon interactions by a virtual meson exchange,
there exists a close relation between theoretical models for SPP
and npnh dynamics. One of the instances of such a correlation
is the possibility of in-medium decay of the �(1232) reso-
nance, mediating a major part of SPP for Eν < 1 GeV. In nu-
clear matter this resonance may be absorbed by a pair or triplet
of nucleons, leading to multinucleon excitations. This phe-
nomenon is sometimes called the pionless Delta decay (PDD).
In some of the widely used neutrino Monte Carlo (MC) gen-
erators (e.g., NEUT and NUANCE) PDD has been implemented
as a constant fraction of about 20% of the total � production.

Another well-known instance of the relevance of pion
production channels in neutrino oscillation analysis is the
neutral-current π0 production. The neutral pions give rise to
events which can mimic the νμ → νe signal. This occurs if one
of the two photons from the π0 decay remains undetected and
the second one is misidentified as coming from an electron.

In this paper we focus on neutrino energies below 1 GeV,
where SPP is dominated by the intermediate � resonance
excitation. There are several challenges in the theoretical
description of SPP reactions. The first one comes from uncer-
tainties in the N� transition matrix element. The vector part is
well established thanks to photo- and electroproduction exper-
iments, but precise information on its axial counterpart is still
missing. In order to describe all SPP channels simultaneously
one needs to add nonresonant background amplitudes. Several
models of the background in electro- and neutrinoproduction
exist (e.g., [3–7]). The first two references [3,4] contain
somewhat ad hoc sets of Born SPP terms; the latter are based on
more consistent field-theoretical approaches. Special attention
will be given to the chiral model of [5]. Another problem is
that the way of describing the � resonance propagator and
decay vertex differs from model to model. The extracted �
production form factors also differ with respect to how one
defines “Delta” and “background” contributions.

In SPP on atomic nuclei several many-body effects become
relevant. The most important nuclear effects going beyond
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Fermi motion and Pauli blocking are related to � in-medium
self-energy. Its real part shifts the � pole, whereas its
imaginary part corresponds to the medium-modified SPP
and PDD processes. The problem of CC SPP on nuclei has
been addressed in Refs. [8–10] by assuming a � dominance
model with many-body effects taken from Ref. [11]. The
computations have shown a significant reduction of the pion
production cross section. The above-mentioned calculations
did not include a nonresonant background. They lead to the
conclusion that a fraction of � pionless decays has a rather
mild dependence on the incident neutrino energy.

Experimental research of the weak SPP processes is also
a remarkable challenge. The models of � excitation matrix
elements and nonresonant background are still validated
mainly on old low-statistics bubble chamber experiments
performed at Argonne National Laboratory (ANL, [12,13])
and Brookhaven National Laboratory (BNL, [14]). The non-
resonant background is more important in both neutrino–
neutron SPP channels where the cross sections are smaller
than for neutrino-proton SPP reaction and the statistical
uncertainties are larger. Recent experimental results on the
charged-current SPP reactions on atomic nuclei come mainly
from the K2K [15,16] and MiniBooNE experiments [17,18].
Unfortunately, the analysis of the underlying fundamental
physical processes of pion production on nucleons is obscured
by nuclear effects. There is an important impact of the
nuclear medium on the primary interaction as well as on a
redistribution of exclusive channels by FSI. The latter effect
is usually divided into pion rescattering, absorption, charge
exchange, and production of additional pions (for sufficiently
high energies). These nuclear physics uncertainties are so
large that the MiniBooNE Collaboration did not attempt to
measure the characteristics of neutrino-nucleon SPP process
and published the cross sections results with all the nuclear
effects included (for which the signal events are those with a
single pion leaving a nucleus).

Our main goal is to discuss thoroughly theoretical models
of pion productions used in the current attempts to understand
available experimental data. As said before, they should also
be used in the estimation of non-CCQE contamination in
CCQE-like samples of events, allowing for better insight into
the neutrino oscillation phenomenon. For this purpose the
impact of various ingredients of the model on the final results is
discussed in detail. We will discuss the role of the nonresonant
background contribution and recalculate the npnh contribution
coming from the pionless � decays as well as the simplest
nuclear effects: Fermi motion and Pauli blocking. Special
attention is given to the νμ/νe and νμ/νe cross-section ratios,
which can be very important for νμ → νe oscillation signal
analysis. Our results are presented in the form of tables of total
cross sections for both muon and electron (anti)neutrinos on a
carbon target and neutrino energies up to 1 GeV. We calculate
these cross sections separately with different approximations
of nuclear effects and for separate pion charge channels. This
format allows for a use in the evaluation of the systematic
errors by experimental groups.

In this paper the model of weak SPP on nucleons based on
Ref. [5] is used for the neutrino-nucleus scattering following
the approach of Ref. [19]. The model contains a nonresonant

background based on a consistent effective field theory and
thus it seems to be more reliable than the models presented
in [4] or [3]. Our most important contribution is a prescription
of how to perform many integrals in an exact way. Thanks to
that we avoid approximations that are not easy to control.

The � excitation vector form factors are taken from
Ref. [20]. We use the dipole approximation for the axial
form factor CA

5 and Adler’s relation to determine CA
4 . In most

of the cases we use a standard Rarita-Schwinger spin-3/2
propagator and decay width calculated from the relativistic
πN� Lagrangian. The nonperturbative medium modifications
are applied only to SPP diagrams containing the � resonance
with in-medium self-energy following the parametrization of
Ref. [11]. Nonperturbative medium effects (spectral functions)
are not included in the nonresonant background terms (which
comprise 28 independent amplitudes) due to theoretical and
numerical difficulties.

We compare the predictions of our model with the recent
MiniBooNE SPP data [17,18]. Our calculations are not yet
a part of any MC generator and we used a simplified FSI
model with constant absorption and charge exchange reaction
probabilities. Under these simplified conditions we find that
the model seems to have problems similar to those of other
approaches in explaining the size of neutral pion production.

Our main discoveries are as follows. It turns out that the
numerical approximations used in Ref. [19] do not work well
in the case of double-differential cross sections, while the total
cross sections produce results close to the exact ones. The
ratio of muon to electron (anti)neutrino total cross section
does not depend on the medium modifications of the �(1232)
resonance. We have found out that the assumption of a constant
fraction of pionless � decay cannot be applied for experiments
with large flux contribution from Eν < 1 GeV.

The paper is organized as follows: in Sec. II we discuss the
general formalism of SPP on atomic nuclei. The dynamical
model of SPP is reviewed in Sec. II A and nuclear medium
effects are discussed in Sec. II A1. In Sec. III we briefly
introduce the numerical procedures and in Sec. IV we present
our main results. Finally, Sec. V contains the conclusions.

II. THEORETICAL DESCRIPTION OF PION NEUTRINO
PRODUCTION ON ATOMIC NUCLEI

The theoretical approach presented in this paper is based
on the general scheme described in Ref. [19]. The basic cross-
section formula for the electromagnetic or weak charged-
current lepton-inclusive differential cross section with respect
to the final lepton energy E′ and solid angle �′ is

d3σ

d�′dE′ = Fl(Q
2)

|l′|
|l|

∫
d3rLμνW

μν(ρ(r)),

Fl(Q
2) =

{ 2α2

Q4 , electrons,

G2
F cos2 θC

4π2 , neutrinos,
(1)

Lμν =
{

lμl′ν + l′μlν − gμνll
′, electrons,

lμl′ν + l′μlν − gμνll
′ ± iεμναβl′αlβ, neutrinos.
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In the leptonic tensor Lμν the + sign is used for neutrinos
and the − sign for antineutrinos. For the weak interactions
the Fermi constant is GF = 1.1664 × 10−11/MeV2 and the
cosine of the Cabbibo angle is cos(�C) = 0.974. Furthermore,
lμ and l′μ denote initial and final lepton four-momenta, and
q2 = −Q2 = (l − l′)2 is the squared four-momentum transfer.
In the laboratory frame we assume the momentum transfer to
be directed along the Z axis and the scattering to take place
in the X-Z plane. The local density approximation (LDA) is
adopted with ρ(r) being the nuclear matter density at the point
r. The parametrization we use in the numerical computations
and several other technical details are given in Appendix B.

The cross section can be reexpressed in terms of the gauge
boson self-energy in the nuclear medium, as is readily done
by the substitution

LμνW
μν(ρ(r)) = − 1

π
�[Lμν

μν(q, r)]. (2)

The polarization tensor μν has the dimensions of (energy).3

After multiplying it by appropriate external couplings and
performing the spatial d3r integration one gets a representation
of the gauge boson self-energy. It can be evaluated by adding
the contributions from Feynman diagrams representing various
processes, with nucleon loops having momentum cutoffs given
by the local Fermi momentum.

A dominant SPP part is in the many-body language
denoted as 1p1h1π (i.e., contributions from 2p2h1π and more
complicated final states are assumed to be small): there is
one pion and one nucleon-hole pair (1p1h) in the final state.
The corresponding contribution to the polarization tensor
describing production of a pion with four-momentum k on
a nucleon with four-momentum p can be represented as

−i
μν
1p1h1π (q, r) =

∑
isospin

∫
d4p

(2π )4

∫
d4k

(2π )4
iDπ (k)

× iGN (p, r)iGN ′ (p + q − k, r)

×Tr
[
A

μν
1p1h1π (p, q, k)

]
. (3)

The hadronic tensor A
μν
1p1h1π is defined as

A
μν
1p1h1π =

∑
s,s ′

〈
N ′(p′, s ′)π (k)

∣∣jμ
cc

∣∣N (p, s)
〉∗

× 〈
N ′(p′, s ′)π (k)

∣∣jν
cc

∣∣N (p, s)
〉
. (4)

In (3) GN denotes the nucleon propagator:

GN (p, r) = 1

p0 + E(p) + iε

(
nN (p, r)

p0 − E(p) − iε

+ 1 − nN (p, r)

p0 − E(p) + iε

)
, (5)

with nN (p, r) being the occupation numbers for nucleon of
isospin N . In the local Fermi gas (LFG) model nN (p, r) is
a Heaviside step function �(|p| − kN

F (r)). We are working
always within the local LFG framework and from now on
we will remove the r index from notation in order to make
the equations more compact. For the same reason we will not
write down explicit sums over isospins. The pion propagator

is defined as

Dπ (k) = 1

k2 − m2
π + iε

. (6)

The 〈N ′(p′, s ′)π (k)|jμ
cc|N (p, s)〉 are transition amplitudes be-

tween the initial nucleon state with spin s and four-momentum
p and the final state containing a pion with four-momentum k
and a nucleon with four-momentum p = p + q − k and spin
s ′. After inserting the nucleon propagators into the polarization
tensor we obtain the following expression:

− 1

π
�(


μν
1p1h1πLμν

)
=

∫
d3p

(2π )3

∫
d3k

(2π )3

1

8Eπ (k)E(p)E(p′)
×LμνTr

[
A

μν
1p1h1π (p, q, k)

]
×{nN (p)[1 − nN ′(p′)] + nN ′ (p′)[1 − nN (p)]}
×δ(E(p′) − q0 + Eπ (k) − E(p)) (7)

with the nucleon energy E(p) =
√

p2 + M2 and the final pion
energy Eπ (k) = √

k2 + m2
π . Taking into account that the pion

may carry a charge and that the nucleus atomic number can
be changed, one can establish the threshold-corrected energy
transfer (as for the quasielastic peak):

q̃0 = q0 − Qcorr + �EF
, �EF

≡ EN
F − EN ′

F . (8)

In this way one accounts for the difference of rest masses of
isobars by subtracting the rest mass difference Qcorr and for
the different Fermi levels of protons and neutrons by including
the difference between initial EN

F and final Fermi energies
EN ′

F . We substitute q0 → q̃0 everywhere in the hadronic part
of the polarization tensor. An alternative approach for the
nuclear binding energy is used in [19] and shortly explained
in Appendix B. In isospin-symmetric nuclei such as 12C the
exchange part of the cross section given by the terms with
nN ′ (p′)[1 − nN (p)] is negligibly small and we neglect it.

A. Dynamics of single-pion production

The dynamics is defined by a set of Feynman diagrams
(Fig. 1) with vertices determined by effective chiral field
theory [5]. The same set of diagrams describes also pion
electroproduction, with the exception of the pion pole (PP)
diagram, which is purely axial [Fig. 1(g)].

After performing the summations over nucleon spins we
can rewrite the hadronic tensor (4) as

Aμν = Tr[(p� + M)γ 0sμ†γ 0(p�′ + M)sν]. (9)

The reduced-current matrix elements sμ correspond to weak
transition amplitudes:

〈
N ′(p′, s ′)π (k)

∣∣jμ
cc

∣∣N (p, s)
〉 = us ′ ( p′)sμus( p). (10)
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FIG. 1. Basic pion production diagrams from [5]: (a) Delta pole (�P), (b) crossed Delta pole (C�P), (c) contact term (CT), (d) nucleon
pole (NP), (e) crossed nucleon pole (CNP), (f) pion-in-flight (PIF), and (g) pion pole.

They are calculated to be (see [5])

s
μ
�P = iC�P

f ∗

mπ

cos �CkαGαβ(p + q)�βμ(p, q), (11)

s
μ
C�P = iCC�P

f ∗

mπ

cos �Cγ 0[�αμ(p − k,−q)]†γ 0

×Gαβ(p − k)kβ, (12)

s
μ
NP = −iCNP

gA√
2fπ

cos �Ck�γ 5

× (p� + q� + M)

(p + q)2 − M2 + iε
j

μ
CCN (q)Fπ (k − q), (13)

s
μ
CNP = −iCCNP

gA√
2fπ

cos �Cj
μ
CCN (q)

× (p� − k� + M)

(p − k)2 − M2 + iε
k�γ 5Fπ (k − q), (14)

s
μ
CT = −iCCT

1√
2fπ

cos �Cγ μFπ (k − q)

× [
gAFV

CT (q2)γ 5 − Fρ((q − k)2)
]
, (15)

s
μ
PIF = −iCPIF

gA√
2fπ

cos �CFV
PIF (q2)

× (2kμ − q)

(k − q)2 − m2
π

2Mγ 5Fπ (k − q), (16)

s
μ
PP = −iCPP

1√
2fπ

cos �CFρ(k − q)
qμq�

q2 − m2
π

. (17)

In our notation f ∗ = 2.16 is the πN� coupling constant. This
value is slightly larger than 2.14 used in Ref. [5]. With our
choice the free �(1232) width is 0.118 GeV. The values of
axial couplings are standard: gA = 1.267 and fπ = 93 MeV.
We use averaged masses for nucleons and pions: M =
1
2 (Mn + Mp) and mπ = 1

3 (mπ+ + mπ− + mπ0 ) with the values
given by the Particle Data Group [21]. For the �-resonance
contributions we assume M� = 1.232 GeV. In the Delta pole
(�P) and crossed Delta pole (C�P) amplitudes Gαβ (p�)
denotes the Rarita-Schwinger (spin- 3

2 field) propagator. By
�βμ(p, q) we denote the � electroweak excitation vertex.
We will give more details about the � propagator and
decay width in the next section. The electroweak excitation
vertex as well as the set of vector and axial form factors
is described in Appendix D. For the nucleon weak currents
present in (13) and (14) we use the standard vector-axial

prescription:

j
μ
CCN (q) = V μ(q) − Aμ(q),

V μ(q) = FV
1 (Q2)γ μ + i

2M
σμαqαF 2

V (Q2), (18)

Aμ(q) = GA(Q2)

(
γ αγ 5 + q�

m2
π − q2

qαγ 5

)
.

From the conserved vector current (CVC) hypothesis one
can also get constraints on the form factors of contact term
(CT) and pion-in-flight (PIF) diagrams:

FPIF (Q2) = FCT (Q2) = FV
1 (Q2). (19)

We choose the same nucleon form factors as in Ref. [5]. Details
are described in Appendix C. Our current matrix elements
contain a virtual pion form factor Fπ (k − q) coming from the
PIF term, where the W boson interacts with a virtual pion
with momentum a = k − q. The CVC forces one to include
it in several other background terms. Fπ is assumed to have a
monopole form:

Fπ (a) = �2
π − m2

π

�2
π − a2

; �π = 1.25 GeV. (20)

The ρ-meson form factor, having a monopole form Fρ(a) =
1

1−a2/m2
ρ
, with mρ = 0.7758 GeV, has been introduced in the

PP term by the authors of [5] in order to account for the
ρ-meson dominance of ππNN coupling. Because of the
partially conserved axial current (PCAC) hypothesis it has
been also introduced into the axial part of CT. For each
physical pion production channel there is a set of isospin
Clebsch-Gordan coefficients Ci listed in Table I. In the carbon

TABLE I. Charged-current isospin coefficients of (11)–(17).

Process �P C�P NP CNP Others

νl + p → l− + π+ + p
√

3
√

1
3 0 1 1

νl + n → l− + π 0 + p −
√

2
3

√
2
3

√
1
2 −

√
1
2 −√

2

νl + n → l− + π+ + n
√

1
3

√
3 1 0 −1

νl + n → l+ + π− + n
√

3
√

1
3 0 1 1

νl + p → l+ + π 0 + n
√

2
3 −

√
2
3 −

√
1
2

√
1
2

√
2

νl + p → l+ + π− + p
√

1
3

√
3 1 0 −1

065503-4



IMPACT OF NUCLEAR EFFECTS ON WEAK PION . . . PHYSICAL REVIEW C 87, 065503 (2013)

cross-section computations we sum up contributions from
protons and neutrons in an incoherent way.

The Fogli-Nardulli model [3], which in the past was
considered as an alternative to the Rein Sehgal [22] model,
contains contributions from several background terms: nu-
cleon Born and crossed diagrams and the direct neutrino-pion
interaction diagram. However, the C�P, CT, and PP diagrams
are absent, since they appear in a natural way only if one
starts from the chiral field theory formalism. In our model
we do not include nucleon resonances from the second
resonance region and consider neutrino energies Eν � 1 GeV.
In general, it should be possible to add to the model also
heavier resonances. However, these resonances have pole
masses above the two-pion-production threshold and there is a
significant branching ratio for decay channels with two pions
in the final state. Thus consistency would require us to expand
the effective field theory Lagrangian to higher order and add
the two-pion-production terms as well (see Refs. [23]). One
should remember that effective field theory works as long as
one can use only tree-level amplitudes; it cannot be extended to
high energies. The authors of Refs. [23] constrain predictions
from the model to Eν � 3 GeV. This is rather unfortunate for
experiments with a large fraction of higher energy neutrinos
such as MINERvA and LBNE which will probably have
to rely on extrapolations from the deep inelastic scattering
region justified by the quark-hadron duality hypothesis from
Ref. [24].

1. �(1232) decay width and propagator

The πN� interaction is described by the Lagrangian

LπN� = f ∗

mπ

ψμT†(∂μφ)� + H.c. (21)

In the above equation by ψμ we denote the Rarita-Schwinger
field, by φ = (φ1, φ2, φ3) we denote the isotriplet of pion fields
in Cartesian isospin coordinates, and by � we denote the
nucleon field isodoublet. T† is the isospin-1/2 to isospin-3/2
transition matrix operator. This results in the following formula
for the free vacuum � → πN decay width:

�vac
�→Nπ (W ) = 1

12π

f ∗2

m2
π

k3
cm(EN,cm + M)

W
. (22)

It is noteworthy that the authors of [19] and [25] use

�vac
�→Nπ (W ) = 1

12π

f ∗2

m2
π

k3
cm(2M)

W
. (23)

In the above formulas cm denotes the � center-of-mass frame
and W is the hadronic system invariant mass.

The default � propagator is given by

Gαβ(p�) = P
αβ
3/2(p�,M�)

p2
� − M2

� + iM���

(
p2

�

) , (24)

P
αβ
3/2(p�,M�) = −(p�� + M�)

(
gαβ − 1

3
γ αγ β

− 2

3

pα
�p

β
�

M2
�

+ 1

3

pα
�γ β − p

β
�γ α

M�

)
. (25)

P
αβ
3/2 is the projection operator on spin- 3

2 states with p�

being the � resonance four-momentum and �� being the free
resonance decay width given in Eq. (22).

2. � self-energy

The �(1232) isobar exhibits a strongly medium-dependent
behavior due to the possibility of decay into a pion-nucleon
pair. The free resonance decay width decreases because of
Pauli blocking. By assuming a uniform distribution of decay
pions in the � rest frame, the Pauli blocking factor is calculated
to be [11]

F
(
p0

�, |p�|, EF

) = p0
�EN,cm + |p�|kcm − EF W

|p�|kcm

(26)

and thus, for the given Fermi energy EF ,

�vac(W ) → �̃ = F
(
p0

�, |p�|, EF

)
�vac(W ). (27)

Inside the nucleus other decay channels are also opened:
two- and three-nucleon absorption channels. The net effect is
an overall increase of the � width:

�vac
� (W )→2

(
1
2 �̃� + i�matter

�

)
= �̃� − 2(��1p1h1π + ��2p2h + ��3p3h) + 2i
��.

(28)

In Ref. [11] Oset parametrized this width as a function of
either the incoming pion kinetic energy x = Tπ

mπ
or the real

photon energy and the local density of nuclear matter. We use
his approach in our computations. It is necessary to translate
the Oset results obtained in the kinematical situations of real
photon or pion scattering to the situation of virtual boson
interaction. It was assumed that the functions

−��1p1h1π = C1p1h1π

(
ρ

ρ0

)
,α

−��2p2h = C2p2h

(
ρ

ρ0

)β

,

(29)

−��3p3h = C3p3h

(
ρ

ρ0

)γ

,

ρ0 = 0.17 fm−3

(in which all Cx and α, β, and γ are functions of photon energy
or pion kinetic energy) are in a good approximation functions
of the average invariant hadronic mass, 〈W 2〉. The relations

〈W 2〉 =
{

M2 + 2Eγ 〈EN (ρN )〉, γ,

M2 + 2Eπ 〈EN (ρN )〉 + m2
π , π,

(30)

together with W 2 = (pN + q)2, allow us to translate the virtual
boson into one of the available parametrizations. For the
real part of the self-energy we use the same approach as in
Refs. [8–10]:


(�) = 40
ρ(r)

ρ0
MeV. (31)

This prescription neglects different renormalizations of the
longitudinal and transverse � response functions in the nuclear
medium, but for our purpose it is sufficient.
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The main problem in using this approach in the model
of Ref. [5] comes from the fact that �� is calculated using
nonperturbative effects not included in tree-level diagrams of
Eqs. (11)–(17). All of them contain a single-pion interaction
vertex. Thus we modify only the widths in the denominator of
the �P diagram by substituting

1

p2
� − M2

� + iM��vac(W )

→ 1

p2
� − M2

� + iM�[�̃ − 2(��� − i
��)]
. (32)

The many-body correction to the SPP through the �
resonance ��1p1h1π and cross sections for multinucleon
channels connected to ��2p2h and ��3p3h can be accounted for
by replacing the |�P|2 contribution (11) by a full � resonance
production cross section:

d3σ

dE′d�′ ≈ G2
F |l′|

16π5|l|
∫

drr2
∫

d3p
nN (p)

(
1
2 �̃ − ���

)
E(p)(M� + W )

× Tr
[
γ 0�αμ†

γ 0P
3/2
αβ (p�)�βν(p� + M)

]
Lμν

[W − (M� + 
��)]2 + (
1
2 �̃ − ���

)2 .

(33)

The approximation comes from the nonrelativistic ex-
pansion in the � propagator, p2

� − M2
� + iM��� ≈ (M� +

W )(W − M� + i
2��). In the case of electron scattering off

protons and neutrons one gets the same isospin factor of
1. In the case of neutrino/antineutrino scattering off pro-
tons/neutrons one gets an isospin factor of 3 because of
the Clebsch-Gordan coefficient

√
3 in the weak � excitation

vertex. The decays of the � resonance into a pion-nucleon
pair are then calculated for different charge states using
the Clebsch-Gordan coefficients of � → πN reactions. The
pionless process depends only on the isospins in the primary
� excitation vertex.

III. NUMERICAL PROCEDURES

The full integration of the cross section within LDA [as
given in Eqs. (1) and (2)] even with the assumption of
spherically symmetric nuclear matter distribution and on-shell
nucleons would require performing six nested integrals. For
a small O(10) number of integration points in each of them
we would need to evaluate O(106) points in the numerical
integration procedure to obtain just one point in the triple-
differential cross section. Thus the authors of [19] assumed the
nucleon momentum to be an average one in a local Fermi sea,

〈|p|〉 =
√

3
5kN

F (r). Furthermore, p is assumed to be orthogonal
to the (q, k) plane. Within this approximation the number of
nested integrals is reduced by a factor of 2:

− 1

π
�(


μν
1p1h1πLμν

)
≈

∫
d3k

(2π )3

1

2Eπ (k)
Tr

[
A

μν
1p1h1π (〈p〉, q, k)

]
Lμν
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FIG. 2. (Color online) Difference between the exact cross-section
calculation from this paper and approximations used in [19].

×
∫

d3p

(2π )3

1

4E(p)E(p′)
{nN (p)[1 − nN ′ (p′)]

+ nN ′ (p′)[1 − nN (p)]}δ(E(p′) − q0 + Eπ − E(p)).

(34)

The integral over d3p can now be performed analytically,
giving a result proportional to the Lindhard function. There are
severe shortcomings of this approximation and we lose some
precision. One example is the threshold behavior of the pion
production cross section. The hadronic tensor is described by
an averaged invariant pion-nucleon mass. Thus the physically
meaningful tensor is obtained when

〈W 2〉 = M2 + 2〈EN 〉q0 + q2
μ � (M + mπ )2. (35)

The above-mentioned condition is important for the nucleon
pole (NP) diagram, for which an unphysical W 2 may give rise
to a singularity at (〈p〉 + q)2 = M2. This requires an additional
cutoff in the acceptable kinematics, which sometimes moves
up the threshold for the pion production process in an
artificial way.

However, the six-dimensional integration can be performed
using Monte Carlo techniques. There exist several available
algorithms for that. We have chosen the Vegas algorithm
implemented in the GNU Scientific Library (GSL) for C/C++
compilers [26]. It is efficient enough to perform the eight-
dimensional total-cross-section integration in a reasonable
time using only O(105) points. This solves the thresh-
old problem caused by the averaged hadronic tensor with
averaged W 2.

In order to show the difference between the exact calcula-
tion and the approximation adopted in Eq. (34) we calculated
a sample double-differential electron neutrino cross section
off carbon. The results are shown in Fig. 2 for neutrinos (top)
and for antineutrinos (bottom). The curves calculated using
Eq. (34) are quite different from those calculated without
approximations.

For the total cross section both the exact and approximate
approaches give similar results, as one can see in Fig. 3. In
the case of antineutrino charged pion production there is a
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FIG. 3. (Color online) Difference between the exact cross-section
calculation from this paper and approximations used in [19].

systematic difference between our calculation and approx-
imated results, but it is rather small. Thus we find the
approximation given by Eq. (34) sufficient on the level of
total cross sections. In what follows we will always rely on the
exact calculations.

IV. RESULTS

A. Importance of background terms

Figure 4 shows the importance of background terms for pion
production on a set of six free protons and six free neutrons.
The curves describe ratios of cross sections coming from only
the Delta pole diagram to the cross section calculated with all
the background diagrams (and the interference terms) included
in computations.

We see that, especially for low neutrino energies, below
500 MeV, the background contribution is very important. The
background terms are more relevant for antineutrinos than
for neutrinos and for π0 production than for charged pion
production.

B. Importance of in-medium effects

Figure 5 shows the impact of in-medium effects on pion
production. We plotted a relative modification of the free
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FIG. 4. (Color online) Ratios of the total cross sections for νμ

and νμ SPP reactions on carbon calculated with a model without the
background terms to the predictions of the full model of this paper.
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FIG. 5. (Color online) Impact of nuclear effects on SPP off 12C.
Plots show (σfree − σmedium)/σfree × 100%.

nucleon cross section (six free protons and neutrons but with
the background contribution included) caused by in-medium
effects. In almost all of the cases in-medium effects lead to a
significant decrease of the total cross section. For the electron
(anti)neutrinos, where energy 400 MeV is far from the SPP
reaction threshold, we see an almost constant reduction of the
cross section on the level of 30%–40%. There is an interesting
difference in shapes between the curves for electron neutrinos
and antineutrinos (see Fig. 5). The latter exhibits a smooth
drop of in-medium reduction with growing neutrino energy.
In the case of muon neutrinos and antineutrinos near the
pion production threshold (Eν < 0.5 GeV) the cross section
is less affected by nuclear effects. For the π+ production
channel and Eν = 0.4 GeV it even seems to be slightly
enhanced. This happens due to the nucleon Fermi motion,
which dominates other effects in that kinematical region.
This is not the case for π0 production by antineutrinos.
There exists a correlation between the nonresonant background
contribution and the cross-section reduction due to in-medium
effects. The shapes of the reduction ratios in neutrino π0

and antineutrino π− channels are almost the same, so is the
background contribution shown in Fig. 4. In general, the more
the cross section comes from background and interference
terms, the smaller is the near-threshold effect. For higher muon
neutrino and antineutrino energies, E > 0.6 GeV, we see again
an almost uniform reduction of the cross section of the order
of 30%.

Similar studies were done in [10], where a LFG-based
model of a carbon nucleus has been used with the same
parametrization of � self-energy, but without nonresonant
terms. In [27] a global relativistic Fermi gas (RFG) and a
relativistic plane-wave impulse approximation (RPWIA) with
realistic bound-state wave functions calculated within the
Walecka σ -ω model were studied. For medium modifications
of the � resonance the global density ρ = 0.75ρ0 is applied,
leading to a constant increase in the � mass and self-energy
estimated to be 30 and 40 MeV, correspondingly. Within
the � dominance model the calculations were performed
for carbon and iron targets and muon neutrinos. RFG and
RPWIA models lead to very similar results. Without the �
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FIG. 6. (Color online) Charged and neutral pion production cross
sections on CH2 for the full model of this paper. The data are taken
from Refs. [17] and [18].

in-medium effects, RFG and RPWIA total SPP cross sections
are reduced by 50% or more at 400 MeV and by about 15% at
1 GeV with respect to the free-proton cross section. There
seems to be no near-threshold cross-section enhancement
due to the Fermi motion. The � in-medium effects (in the
adopted approximation of the constant nuclear density) lead to
a further reduction of SPP cross section in carbon (about 45%
at Eν = 800 MeV).

C. Total cross sections

We compared predictions from our model with the recent
MiniBooNE pion production data. The MiniBooNE Collabo-
ration, unlike the K2K Collaboration, published its results in
the form of absolutely normalized cross section and not as a
ratio to CC inclusive cross sections. We performed calculations
with our model of the total SPP cross sections on CH2. A
direct comparison with the data is not straightforward because
the MiniBooNE Collaboration reported the cross sections for
pions in the final state after leaving the nucleus (in a case of
neutrino-carbon scattering) with all the FSI effects included.
The pion FSI effects can be evaluated within a cascade model
like those implemented in Monte Carlo event generators. Our
model is not yet an ingredient of any MC generator and
we decided to estimate the impact of FSI effects using the
results of a MC comparison study published in Ref. [28]. We
approximate the relevant probabilities as

P (π0 → π0) = 67%, P (π0 → π+) = 5%, (36)

P (π+ → π+) = 69%, P (π+ → π0) = 5%. (37)

The results for the cross section with and without FSI are
plotted in Fig. 6.

For charged pion production we obtained a quite good
agreement with the data up to the neutrino energy of around
0.8 GeV. In the case of charged-current π0 production both free
and in-medium cross sections calculated with our model are
too small, and the discrepancy becomes larger with increasing
neutrino energy. FSI introduce large modifications for the π+
channel. In the π0 channel the effect of absorption of π0 is
partially compensated for by a fraction of initial π+ events,
which end up as π0 due to the charge exchange reaction inside
the nucleus.

The MiniBooNE SPP data were also analyzed by the
Giessen group using GIBUU (a code for hadron transport in
nuclear matter based on the semiclassical Boltzmann-Uehling-
Uhlenbeck equation [29]). The Giessen SPP model covers

a larger kinematical region and includes contributions from
heavier resonances. In its most recent version the model
uses both ANL and BNL data fit to � excitation transition
form factors and treats them as lower and upper bounds
for SPP [30]. The nonresonant background is included in
a phenomenological fashion and the pion production cross
section is an incoherent sum of two contributions:

dσSPP = dσres + dσnonres, (38)

where the first one comes from the excitation of resonances
with invariant masses W < 2 GeV and the second one
from a nonresonant background and resonance-background
interference terms. The vector part of the background is found
as a fit to the difference between experimental and theoretical
resonant contributions to electron SPP on nucleons. The axial
and axial-vector part of the background are assumed to have
the same functional form and are scaled by a constant factor
in order to get an agreement with the low-energy SPP data.
Nuclear effects include a momentum-dependent potential for
initial-state nucleons and spectral functions for final-state
hadrons (including resonances). The � spectral functions
include the same in-medium effects as those incorporated in
the model discussed in this paper.

Figure 12 from Ref. [30] allows for a comparison with the
impact of consecutive nuclear effects on the pion production
rate. Fermi motion and Pauli blocking make the �h excitation
cross section smaller by ∼5%. A further 5%–8% reduction of
the cross section is introduced by � self-energy. Finally, due to
pionless decay modes, pion production is reduced by an extra
15%–20%. In Ref. [30] predictions for SPP cross sections for
energies up to 2 GeV are shown and it is clearly seen that in the
range discussed in this paper (Eν � 1 GeV) the contribution
from heavier resonances is negligible.

Interesting are comparisons of the GiBUU model with the
MiniBooNE CC pion production data. For π+ production the
computations based on BNL-fitted form factors are slightly
below the data (including error bars) and the difference is
largest at neutrino energies of 1–1.5 GeV. In the case of π0

production the situation is slightly better and except for the
region of about 1 GeV the predictions agree with the data,
again including error bars. ANL-fitted form factors produce
predictions which fall far apart from the MiniBooNE data
points.

A good review of the discrepancies between different
theoretical SPP calculations and experimental data (as well as
of other types of neutrino-nucleus interactions) can be found
in Ref. [2].

D. Ratios of muon to electron (anti)neutrino cross sections

In neutrino oscillation appearance experiments it is very
important to calculate precisely the ratios of muon and electron
neutrino cross sections. Even in the presence of a near detector
and with full understanding of the initial muon neutrino flux
a good knowledge of the ratios (and their dependence on the
neutrino energy) is crucial for the correct identification of the
oscillation signal.

In Fig. 7 we see that the ratios calculated with the complete
model are slowly increasing functions of the neutrino energy.
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FIG. 7. (Color online) Ratios of muon to electron (anti)neutrino
total SPP cross sections on 12C for the full model of this paper.

In the case of antineutrinos there is a small difference between
π− and π0 production: in the first case the ratio is slightly
lower. In contrast, we obtain almost the same ratios for π+
and π0 production by neutrinos.

It is important to know how well the ratios are calculated
when simpler models of SPP are used, which is often the case
in MC event generators.

Figure 8 shows the impact of the background terms on
π0 production ratios. We compared two situations: the full
model and the model without background contributions. We
see that the results are significantly different only in the case
of antineutrinos. For lower neutrino energies using a purely
resonant SPP mechanism one obtains much smaller ratios. For
the neutrinos these differences are negligible. The resonant
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FIG. 9. (Color online) Ratios of muon to electron (anti)neutrino
total SPP cross sections on 12C for the full model of this paper with
and without the � self-energy ��.

contribution ratio is very close to the one plotted in Ref. [8]
for the sum of neutrino and antineutrino cross sections in a
similar model.

Figure 9 shows the effect of the � self-energy on the
ratios. We compared two situations: the full model and the
model without the � self-energy. We see that neglecting the �
self-energy has almost no effect on the considered observable.
We conclude that in order to evaluate well the antimuon
to antielectron neutrino cross-section ratio it is important to
include the nonresonant background, but not necessarily the
� self-energy.

We also investigated the possible impact on predictions
from the model coming from alternative descriptions of the
� resonance vacuum width. For example, the authors of
Ref. [31] use

�vac
M-S(W ) = 118 MeV · ρ�→πN (W )

ρ�→πN (M�)
,

(39)

ρ�→πN (W ) = kcm

W

k2
cmR2

1 + k2
cmR2

, R = 1 fm.

The term k2
cmR2

1+k2
cmR2 is the so-called Blatt-Weisskopf centrifugal

barrier. In this manner one accounts for phenomenological
knowledge of the decay πN system angular momentum, which
is absent in the Lagrangian given in Eq. (21). Furthermore, one
can account partially for the off-shell � effects by replacing
the propagator in the �P term [Eq. (24)] by

G̃αβ(p�) = P̃
αβ
3/2(p�)

p2
� − M2

� + iW��

(
p2

�

)
= − (p�� + W )

p2
� − M2

� + iW��

(
p2

�

)(
gαβ − 1

3
γ αγ β

− 2

3

pα
�p

β
�

W 2
+ 1

3

pα
�γ β − p

β
�γ α

W

)
. (40)
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FIG. 10. (Color online) Ratios of muon to electron (anti)neutrino
total SPP cross sections on 12C for the full model of this paper with
the � width described by Eqs. (22) and (39).

This convention is used in Ref. [32] together with the Manley-
Saleski decay width from Ref. [31]. Thus whenever we use
Eq. (39) we also replace Eq. (24) by Eq. (40). In order to be
consistent, after changing the width (22) with (39) in (40) one

also has to multiply the whole expression by
√

�vac
M-S(W )

�vac
� (W ) . This

compensates for the fact that our current has a decay vertex
defined by (21) in the numerator, which leads to the width (22).

On the level of total cross sections the difference between
two �πN decay descriptions is negligible. This is illustrated
in Fig. 10, where we plot again the muon to electron
(anti)neutrino total π0 production cross-section ratios and we
compare the default and the Manley-Saleski � description.

In the work of Barbero et al. [7] the nonresonant back-
ground is described in a way quite similar to that used in
Ref. [5] (where ρ and ω meson diagrams were used instead of
the PP contribution). The authors of [7] have pointed out that
the standard Rarita-Schwinger spin-3/2 projection operator
used in Eqs. (24) and (40) should be replaced by a more
consistent approach. In this treatment one demands invariance
under the contact transformations of Rarita-Schwinger fields,
eliminating the spurious spin-1/2 degree of freedom in the
on-shell Rarita-Schwinger propagator. One can then introduce
a set of reduced Feynman rules [33], which include a reduced
� propagator, different from Eqs. (24) and (40). The effect of
switching between the reduced and Rarita-Schwinger propaga-
tors on the pion production in a model containing nonresonant
background can be as large as 30% (depending on the pion
production channel). Using a reduced � propagator leads to a
better agreement with ANL and BNL data in Ref. [7] than in
Ref. [5]. It is worth mentioning that using the reduced propa-
gator has a significant impact only in models containing back-
ground terms. In Ref. [27] similar changes to the � propagator
following Pascalutsa [34] have been made in a �-dominance
model, leading to negligible changes in the resonant SPP.

Finally, we investigated also how much the numerical
approximation in Eq. (34) affects the muon to electron neutrino
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FIG. 11. (Color online) Ratios of νμ to νe neutrino CCπ 0 SPP
cross sections on 12C calculated with the full model of this paper and
with approximations used in Ref. [5].

cross-section ratios. This is illustrated in Fig. 11, where we
have plotted νμ/νe 1π0CC cross-section ratios. Differences
are present only for energies Eν < 550 MeV, and at Eν = 500
MeV it is about 4%.

E. Pionless � decays

An interesting feature of our model is that there exists
a contribution to the cross section coming from pionless �
decays. This is a part of the meson exchange current (MEC)
cross section, which has recently attracted a lot of attention
[1]. There is a lot of evidence that the MEC mechanism
is responsible for a large CCQE axial mass measurement
reported by the MiniBooNE Collaboration [35]. Theoretical
microscopic computations always include pionless � decays
as part of the calculated effect. In some MC event generators
(e.g., NEUT and NUANCE) a constant fraction of the pionless �
decays is assumed and we find it interesting to check how well
this assumption is satisfied in our model.

The fractions of pionless decays and their dependence on
neutrino energy and species are shown in Fig. 12. There is no
difference between neutrinos and antineutrinos, because we
include only the npnh mechanism coming from the resonant
diagrams. The fraction of pionless � decays is very large for
energies below 500 MeV. For higher energies it exhibits a
smooth energy dependence, dropping down to 20% at Eν =
1 GeV. It is clear that for experiments with a large fraction of
neutrinos with energies below 1 GeV one cannot consider the
investigated quantity to be constant.

The total pionless � decay cross section may be treated as a
lower bound for the npnh contribution. One has to keep in mind
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FIG. 12. (Color online) Fraction of the pionless � decays to the
resonant SPP production cross section (σpionless �)/σSPP res. × 100% in
12C for νe and νμ.
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FIG. 13. (Color online) Total CC cross sections on 12C for
quasielastic scattering, SPP, and pionless � decay.

that there are many other sources of npnh final states which
can be built from diagrams in Fig. 1 but are not considered
in this paper. The total cross section coming from � → npnh
decays can be seen in Fig. 13. The charged-current quasielastic
contribution has been calculated with the NuWro neutrino
event generator [36] within the spectral function (SF) approach
[37] and with MA = 1.05 GeV. The npnh contribution coming
from pionless � decays may seem small compared to CCQE
and SPP cross sections (around 10%–15% of the first), but at
Eν = 1 GeV it accounts for about 60% of the npnh cross
section in the model of Nieves et al. [19] (and at Eν =
750 MeV the fraction is even larger and amounts to 64%).

V. CONCLUSIONS AND OUTLOOK

We have investigated in detail the model of single-pion
production on nuclei based on effective field theory. The
nuclear model includes local Fermi gas effects, Pauli blocking,
and � in-medium self-energy. Contributions from heavier
resonances are neglected; thus the model is expected to
reproduce well the data in the energy region Eν � 1 GeV. We
use an open-source MC integration algorithm, which allows us
to avoid many numerical approximations present in Ref. [19].

We have analyzed in detail the ratio of muon to electron
neutrino cross sections for pion production because this is an
important theoretical input in neutrino oscillation appearance
experiments. The inclusion of nonresonant background has
a non-negligible impact on the analyzed observables. It is
more pronounced in the antineutrino channels, where the
background terms play a major role in the considered neutrino
energy region. The muon to electron neutrino cross-section
ratios for neutrinos do not depend on the final-state pion
charge, whereas for the antineutrinos we predict a small
splitting between the π− and π0 channels. This splitting
seems to originate from the nonresonant background terms,
which give rise to a large fraction of cross section in the
antineutrino π0 production modes (and sometimes the cross
section is more than doubled by including the background
terms!). We showed that these ratios are almost independent of
nuclear effect modeling details such as the self-energy of the �
resonance or numerical integration approximations proposed
in Ref. [19], nor do they depend on the � free decay width
model changes between the one resulting from the relativistic
decay width, Eq. (22), to the one used in the Manley-Saleski
analysis, Eq. (39), which incorporates the angular momentum
of the decaying hadronic system.

We have also found that one cannot treat the pionless �
decay fraction as a constant number for neutrino interactions

below 1 GeV. This is important, since pionless � decay seems
to give rise to more than half of the 2p2h cross section.

Using an estimate of FSI effects based on [28], we obtained
a reasonable agreement with the MiniBooNE CCπ+ produc-
tion data but the model underestimates the CCπ0 cross section.
The same problems appear in most of the aforementioned
theoretical models and it is likely that something important
is missing. Perhaps one needs a better description of the �
resonance (see, e.g., Refs. [7] and [34], which focus on a more
consistent treatment of the � propagator). One should also
try to investigate other models of nonresonant background
(e.g., Ref. [7], because Ref. [5] does not seem to reproduce
all isospin channels equally well). This is pronounced in the
νμn → μ−pπ0 channel.

In our model the in-medium � spectral function was
included only in the �P diagram and the pure background
contribution [36 out of 49 combinations from Eqs. (11)–
(17)] is not affected by the presence of nuclear matter.
In the �-background interference terms (12 combinations)
in-medium effects enter only through the �P diagram and
thus are included only partially. A conclusive verification
of the model predictions can be done only by evaluating
the nonperturbative in-medium effects for all the genuine
amplitudes (28 independent terms). This is a very difficult task
to achieve. Because of that we are unable to conclude whether
the resulting reduction of the cross section is a genuine physical
effect or rather an artifact of the adopted approximations.

Another possible explanation for the existing disagreement
with the data is that there is a large 1π2p2h contribution
(analogous to the 2p2h-enhancing CCQE-like cross section)
neglected in the computations. In Ref. [30] there is an
interesting comment that the comparison of data to theoretical
computations for pion photoproduction on carbon suggests
that the data are underestimated (at Eγ = 500 MeV by around
20%) and a possible explanation is the neglected 1π2p2h
contribution.

All the consistent 2p2h models are constructed based on
SPP diagrams with virtual pions connected to nucleons. Thus
it seems crucial to have a good SPP model in order to build
also a consistent two-nucleon current theory and estimate
the multinucleon knock-out contamination of CCQE-like data
samples.
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APPENDIX A: NOTATION AND CONVENTIONS

We adopt the conventions from Bjorken-Drell [gμν =
(+,−,−,−) etc.], the only difference being in the Dirac spinor
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normalization ∑
s

us( p)us( p) = p� + m, (A1)

which is convenient for our calculations.

APPENDIX B: NUCLEAR MATTER DENSITY
PARAMETRIZATION

We took the harmonic oscillator density profiles from [38]:

ρ(r) = ρ0[1 + a(r/R)2] exp[−(r/R)2], (B1)

with corrections to parameters a and R calculated in [39].
These parameters are slightly different for protons and
neutrons. The local Fermi momentum is calculated from
the relation kN

F (r) = [3π2ρ(r)N ]
1
3 . The authors of Ref. [19]

subtract the Fermi kinetic energy from the nucleons inside the
medium :E(p) → E(p) − TF . In this manner they account for
the binding effects.

APPENDIX C: NUCLEON FORM FACTORS

The isospin symmetry relates the vector form factors to the
electromagnetic ones:

FV
i (Q2) = F

p
i (Q2) − Fn

i (Q2). (C1)

For the electromagnetic form factors we use the parametriza-
tion of Galster et al. [40]:

FN
1 (Q2) = GN

E (Q2) + τGN
M (Q2)

1 + τ
,

FN
2 (Q2) = GN

M (Q2) − GN
E (Q2)

1 + τ
,

G
p
E(Q2) = G

p
M (Q2)

μp

= Gn
M (Q2)

μn

= −(1 + λnτ )
Gn

E(Q2)

μnτ
= 1(

1 + Q2

M2
D

)2 , (C2)

with μp = 2.792.847, μn = 1.913043, λn = 5.6, τ = Q2

4M2 ,
and MD = 0.843 GeV. We assume the axial nucleon form

TABLE II. Total cross sections for 12C(νe, e
−) scattering.

E (GeV) σ6p+6n(E) (10−38 cm2) σFM+PB(E) (10−38 cm2)

Resonance +Background Resonance +Background

π+ π 0 π+ π 0 π+ π 0 π+ π 0

0.40 0.227 0.045 0.344 0.089 0.315 0.063 0.418 0.090
0.45 0.480 0.096 0.667 0.165 0.606 0.121 0.764 0.164
0.50 0.812 0.162 1.067 0.257 0.960 0.192 1.166 0.251
0.55 1.198 0.240 1.512 0.358 1.346 0.269 1.588 0.343
0.60 1.611 0.322 1.973 0.462 1.745 0.349 2.010 0.435
0.65 2.031 0.406 2.428 0.566 2.133 0.427 2.419 0.522
0.70 2.443 0.489 2.866 0.666 2.511 0.502 2.785 0.605
0.75 2.838 0.568 3.279 0.760 2.862 0.572 3.152 0.682
0.80 3.210 0.642 3.663 0.850 3.182 0.636 3.455 0.750
0.85 3.557 0.711 4.020 0.934 3.478 0.696 3.741 0.817
0.90 3.877 0.775 4.348 1.012 3.743 0.749 3.998 0.876
0.95 4.170 0.834 4.651 1.085 3.988 0.798 4.251 0.927
1.00 4.439 0.888 4.932 1.154 4.218 0.844 4.482 0.983

E (GeV) σ� in-medium(E) (10−38 cm2)

Resonance +Background �pionless

π+ π 0 π+ π 0

0.40 0.167 0.033 0.251 0.055 0.141
0.45 0.331 0.066 0.467 0.103 0.213
0.50 0.543 0.109 0.731 0.162 0.290
0.55 0.787 0.157 1.017 0.225 0.368
0.60 1.048 0.210 1.313 0.292 0.443
0.65 1.314 0.263 1.610 0.356 0.512
0.70 1.576 0.315 1.888 0.420 0.574
0.75 1.828 0.366 2.156 0.479 0.630
0.80 2.067 0.413 2.405 0.534 0.678
0.85 2.289 0.458 2.632 0.587 0.720
0.90 2.496 0.499 2.847 0.636 0.756
0.95 2.686 0.537 3.042 0.676 0.787
1.00 2.861 0.572 3.212 0.719 0.813
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factor to be in a dipole form:

GA(Q2) = gA(
1 + Q2

M2
A

)2 , MA = 1.05 GeV, (C3)

with gA = 1.267.

APPENDIX D: �(1232) FORM FACTORS

The most general electroweak � excitation vertex is
given by

�αμ(p, q)= [
V

αμ
3/2 − A

αμ
3/2

] =
[
CV

3 (Q2)

M
(gαμq� − qαγ μ)

+ CV
4 (Q2)

M2
[gαμq · (p + q) − qα(p + q)μ]

+ CV
5 (Q2)

M2
(gαμq ·p − qαpμ) + gαμCV

6 (Q2)

]
γ 5

+
[
CA

3 (Q2)

M
(gαμq� − qαγ μ)

+ CA
4 (Q2)

M2
[gαμq · (p + q) − qα(p + q)μ]

+ CA
5 (Q2)gαμ + CA

6 (Q2)

M2
qαqμ

]
. (D1)

The CV
i (Q2) and CA

i (Q2) vector and axial form factors
determine the W±N� transition. There exist several phe-
nomenological parametrizations of �(1232) form factors (see,
for example, [8], [9], [10], and [41]). For the vector form factor
set we have chosen the parametrization of [20]:

CV
3 (Q2) = 2.13(

1 + Q2/M2
V

)2

1

1 + Q2/4M2
V

,

CV
4 (Q2) = −1.51(

1 + Q2/M2
V

)2

1

1 + Q2/4M2
V

, (D2)

CV
5 (Q2) = 0.48(

1 + Q2/M2
V

)2

1

1 + Q2/0.776M2
V

,

TABLE III. Total cross sections for 12C(νe, e
+) scattering.

E (GeV) σ6p+6n(E) (10−38 cm2) σFM+PB(E) (10−38 cm2)

Resonance +Background Resonance +Background

π− π 0 π− π 0 π− π 0 π− π 0

0.40 0.048 0.010 0.084 0.030 0.055 0.011 0.084 0.022
0.45 0.091 0.018 0.148 0.052 0.102 0.020 0.147 0.039
0.50 0.146 0.029 0.225 0.077 0.160 0.032 0.223 0.061
0.55 0.209 0.042 0.312 0.107 0.225 0.045 0.307 0.084
0.60 0.279 0.056 0.408 0.139 0.299 0.060 0.399 0.111
0.65 0.354 0.071 0.512 0.174 0.376 0.075 0.500 0.139
0.70 0.435 0.087 0.623 0.212 0.463 0.093 0.608 0.171
0.75 0.521 0.104 0.741 0.252 0.552 0.110 0.721 0.200
0.80 0.610 0.122 0.865 0.294 0.642 0.128 0.839 0.235
0.85 0.703 0.141 0.994 0.338 0.739 0.148 0.963 0.269
0.90 0.798 0.160 1.129 0.383 0.836 0.167 1.096 0.306
0.95 0.896 0.179 1.270 0.430 0.934 0.187 1.231 0.341
1.00 0.995 0.199 1.415 0.478 1.038 0.208 1.365 0.380

E (GeV) σ� in-medium(E) (10−38 cm2)

Resonance +Background �pionless

π− π 0 π− π 0

0.40 0.029 0.006 0.055 0.017 0.022
0.45 0.055 0.011 0.096 0.029 0.032
0.50 0.089 0.018 0.147 0.045 0.044
0.55 0.130 0.026 0.208 0.064 0.057
0.60 0.178 0.036 0.277 0.085 0.071
0.65 0.231 0.046 0.353 0.108 0.086
0.70 0.289 0.058 0.435 0.133 0.101
0.75 0.352 0.070 0.525 0.159 0.116
0.80 0.419 0.084 0.619 0.188 0.132
0.85 0.489 0.098 0.721 0.216 0.147
0.90 0.561 0.112 0.828 0.247 0.162
0.95 0.636 0.127 0.940 0.279 0.177
1.00 0.712 0.142 1.058 0.310 0.192
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with MV = 0.84 GeV. The CVC implies that CV
6 = 0. The

axial part is dominated by the CA
5 contribution. We use the

dipole approximation, in which

CA
5 (Q2) = CA

5 (0)(
1 + Q2/M2

A�

)2 . (D3)

We use a default value of the � axial mass, MA� = 1.05 GeV.
The default value of CA

5 (0) is obtained from the Goldberger-
Treiman relations [42]:

CA
5 (0) =

√
2

3

fπ

mπ

f ∗ ≈ 1.2, (D4)

which is somewhat higher than what is used in [5]:
CA

5 (0) ≈ 1.15. The authors of [20] and [5] use CA
5 (Q2) =

CA
5 (0)

(1+Q2/M2
A�)2

1
1+Q2/3M2

A�

. Because of big uncertainties in the
axial N� transition, which do not allow one to extract any
beyond-dipole behavior, we use the simple dipole form (D3).
We include Adler’s [43] relation for CA

4 , i.e.,

CA
4 (Q2) = − 1

4CA
5 (Q2). (D5)

Furthermore, from the PCAC hypothesis one can determine

CA
6 (Q2) = M2

m2
π + Q2

CA
5 (Q2). (D6)

The CA
3 form factor is considered to be negligibly small; thus

we set CA
3 (Q2) = 0

APPENDIX E: TOTAL CROSS SECTION TABLES FOR 12C

In this Appendix we show our results for different neutrino
flavors scattering off 12C (Tables II–V). Cross sections are
divided according to the final pion isospin channels and nuclear
target modeling starting from free nucleons (6p + 6n), through
Fermi motion and Pauli blocking effects (FM + PB), up to
full medium effects considered in this paper (� in-medium).
We give the results both for the full model and resonant
SPP contribution only. All of the results are given in units
of 10−38 cm2.

TABLE IV. Total cross sections for 12C(νμ, μ−) scattering.

E (GeV) σ6p+6n(Eν) (10−38 cm2) σFM+PB(Eν) (10−38 cm2)

Resonance +Background Resonance +Background

π+ π 0 π+ π 0 π+ π 0 π+ π 0

0.40 0.028 0.006 0.063 0.020 0.068 0.014 0.110 0.024
0.45 0.138 0.028 0.241 0.066 0.253 0.051 0.354 0.076
0.50 0.408 0.082 0.601 0.151 0.558 0.112 0.723 0.155
0.55 0.779 0.156 1.050 0.253 0.933 0.187 1.148 0.248
0.60 1.189 0.238 1.520 0.359 1.337 0.267 1.594 0.342
0.65 1.613 0.323 1.990 0.466 1.742 0.348 2.012 0.435
0.70 2.041 0.408 2.453 0.570 2.131 0.426 2.419 0.523
0.75 2.463 0.493 2.900 0.672 2.498 0.500 2.786 0.602
0.80 2.859 0.572 3.310 0.766 2.839 0.568 3.116 0.675
0.85 3.226 0.645 3.686 0.853 3.152 0.630 3.436 0.738
0.90 3.564 0.713 4.029 0.935 3.438 0.688 3.690 0.805
0.95 3.873 0.775 4.343 1.010 3.695 0.739 3.957 0.862
1.00 4.155 0.831 4.631 1.080 3.924 0.785 4.186 0.911

E (GeV) σ� in-medium(E) (10−38 cm2)

Resonance +Background �pionless

π+ π 0 π+ π 0

0.40 0.039 0.008 0.072 0.016 0.072
0.45 0.132 0.026 0.211 0.045 0.132
0.50 0.298 0.060 0.435 0.096 0.206
0.55 0.520 0.104 0.713 0.157 0.287
0.60 0.772 0.154 1.011 0.223 0.367
0.65 1.038 0.208 1.316 0.291 0.442
0.70 1.304 0.261 1.611 0.355 0.510
0.75 1.563 0.313 1.878 0.419 0.571
0.80 1.809 0.362 2.137 0.476 0.624
0.85 2.040 0.408 2.364 0.530 0.670
0.90 2.255 0.451 2.593 0.578 0.710
0.95 2.453 0.491 2.791 0.626 0.744
1.00 2.635 0.527 2.968 0.666 0.773
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TABLE V. Total cross sections for 12C(νμ, μ+) scattering.

E (GeV) σ6p+6n(E) (10−38 cm2) σFM+PB(E) (10−38 cm2)

Resonance +Background Resonance +Background

π− π 0 π− π 0 π− π 0 π− π 0

0.40 0.005 0.001 0.017 0.010 0.008 0.002 0.019 0.006
0.45 0.021 0.004 0.049 0.022 0.029 0.006 0.053 0.016
0.50 0.059 0.012 0.108 0.042 0.067 0.013 0.108 0.031
0.55 0.109 0.022 0.181 0.067 0.119 0.024 0.179 0.052
0.60 0.165 0.033 0.262 0.095 0.182 0.036 0.262 0.074
0.65 0.229 0.046 0.355 0.127 0.253 0.051 0.355 0.101
0.70 0.306 0.061 0.464 0.164 0.331 0.066 0.453 0.128
0.75 0.397 0.079 0.589 0.204 0.415 0.083 0.561 0.159
0.80 0.490 0.098 0.715 0.246 0.504 0.101 0.675 0.192
0.85 0.584 0.117 0.842 0.288 0.596 0.119 0.794 0.224
0.90 0.679 0.136 0.973 0.332 0.692 0.138 0.919 0.257
0.95 0.776 0.155 1.108 0.377 0.790 0.158 1.043 0.293
1.00 0.875 0.175 1.247 0.423 0.890 0.178 1.177 0.329

E (GeV) σ� in-medium(E) (10−38 cm2)

Resonance +Background �pionless

π− π 0 π− π 0

0.40 0.004 0.001 0.014 0.005 0.008
0.45 0.015 0.003 0.036 0.013 0.015
0.50 0.035 0.007 0.071 0.024 0.024
0.55 0.064 0.013 0.119 0.039 0.035
0.60 0.102 0.020 0.177 0.057 0.048
0.65 0.147 0.029 0.243 0.077 0.062
0.70 0.198 0.040 0.316 0.101 0.077
0.75 0.255 0.051 0.399 0.125 0.093
0.80 0.317 0.063 0.487 0.151 0.108
0.85 0.382 0.076 0.580 0.178 0.124
0.90 0.451 0.090 0.680 0.207 0.140
0.95 0.523 0.105 0.784 0.238 0.155
1.00 0.597 0.119 0.893 0.268 0.171
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