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Mixing of the low-lying three- and five-quark � states with spin-parity quantum numbers 1
2

−
and 3

2

−
is

investigated, employing an instanton-induced quark-antiquark pair creation model, which precludes transitions
between s3 and s4s̄ configurations. Models with hyperfine interactions between quarks are of three different kinds,
namely, one-gluon-exchange (OGE), Goldstone-boson-exchange (GBE), and an instanton-induced interaction
(INS). Numerical results show that the instanton-induced pair creation causes strong mixing between the three-
and five-quark configurations with spin 3/2, and that this mixing decreases the energy of the lowest spin 3/2 states
in all three different hyperfine interaction models to ∼1750 ± 50 MeV. On the other hand, transition couplings
between s3 and s3qq̄ states with spin 1/2 caused by instanton-induced qq̄ creation is very small and the resulting
mixing of three- and five-quark configurations in the OGE and INS models is negligible, while the mixing of the
spin 1/2 states in GBE model is not; but effects of this mixing on energies of mixed states are also very small.
Accordingly, the lowest � states with negative parity in all three hyperfine interactions models have spin 3/2.

DOI: 10.1103/PhysRevC.87.065207 PACS number(s): 12.39.−x, 14.20.Jn, 14.20.Pt

I. INTRODUCTION

Recently, we have studied the spectrum of low-lying s3QQ̄
(where QQ̄ = qq̄ , ss̄ for light and strange quark-antiquark
pairs, respectively) configurations with negative parity within
an extended constituent quark model with three different kinds
of hyperfine interactions, namely, one-gluon-exchange (OGE),
Goldstone-boson-exchange (GBE), and instanton-induced in-
teractions (INS) [1]. Experimental data about � resonances is
still very poor [2]: only four � states were found [3–6], one
being the ground state �(1672), and all the other three states
may also have positive parity [7]. A comparison of calculated
results to experimental data is therefore not very conclusive.
Compared to the predictions of the masses of negative parity
states in traditional three-quark models, the lowest energy of
s3QQ̄ negative parity states is expected to be ∼180 MeV
lower [1]. This indicates that if we consider � resonances as
mixtures of three- and five-quark Fock components, then the
latter must be relevant for the properties of negative parity �
resonances.

In the present paper, we shall study the mixing of s3

and s3QQ̄ configurations, which involves the investigation
of transitions between three- and five-quark Fock states.
For such transitions, the key ingredient is the QQ̄ creation
mechanism. Most widely accepted is the 3P0 model [8], which
has been successfully applied to the decays of mesons and
baryons [9,10], and was also employed to analyze the sea
flavor content of the ground states of the SU (3) octet baryons
[11,12], as well as of the spin and electromagnetic properties
of baryons [13,14]. In the 3P0 model, the QQ̄ pair is created
with the quantum numbers of the QCD vacuum 0++, which
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corresponds to 3P0. There are also some other pair creation
models, for instance, string-breaking models [15,16], in which
the lines of color flux between quarks collapse into a string,
the pair is created when the string breaks, and the created
pair has as quantum numbers either 3P0 [15] or 3S1 [16]. In
Ref. [17], the QQ̄ pair creation induced by a quark confine-
ment interaction was employed to investigate mixing between
three- and five-quark Fock components in the nucleon and the
Roper resonance; in this case the created QQ̄ also possesses
the quantum numbers 3P0.

In case of the low-lying s3QQ̄ configurations with negative
parity, all the quarks and antiquarks are supposed to be
relative s waves, and therefore the traditional 3P0 pair creation
mechanism can not contribute. Accordingly we here employ
an instanton-induced interaction [18–21] for the pair creation
mechanism, since this interaction also can lead to the creation
of QQ̄ pairs with quantum numbers 3S1 and 1S0. The instanton-
induced interaction has been used to describe the decays of
(pseudo)scalar mesons [22].

The present paper is organized as follows. In Sec. II, we
present our theoretical framework, which includes explicit
forms of the instanton-induced quark-antiquark pair creation
mechanism. Numerical results for the spectrum of the states
under study and the mixing of three- and five-quark config-
urations in our model are shown in Sec. III. Finally, Sec. IV
contains a brief conclusion.

II. THEORETICAL FRAMEWORK

In the present model, to study mixing of the three- and five-
quark configurations, we describe the negative parity � states
by the Hamiltonian

H =
(

H3 V�3↔�5

V�3↔�5 H5

)
(1)

065207-10556-2813/2013/87(6)/065207(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.87.065207


C. S. AN, B. CH. METSCH, AND B. S. ZOU PHYSICAL REVIEW C 87, 065207 (2013)

where H3 is the Hamiltonian for a three-quark system and
H5 for a five-quark system, and V�3↔�5 denotes the transition
coupling between three- and five-quark systems. Note that in
principle the number of three- and five-quark configurations
can exceed two. The diagonal terms of (1), the Hamiltonian H3

for a three-quark system, which has been discussed intensively
in the literature, and the Hamiltonian H5 for a five-quark
system with the quantum numbers of negative parity �
resonances, which was recently developed in Ref. [1], will
only briefly be reviewed here in Sec. II A. The nondiagonal
terms V�3↔�5 will be explicitly discussed in Sec II B.

A. Diagonal terms of the Hamiltonian

The Hamiltonian for a N -particle system in the nonrela-
tivistic constituent quark model is usually written as

HN = Ho + Hhyp +
N∑

i=1

mi, (2)

where Ho and Hhyp represent the Hamiltonians for the quark
orbital motion and for the hyperfine interactions between
quarks, respectively, mi denotes the constituent mass of the
ith quark. The first term Ho can be written as a sum of the
kinetic energy and the quark confinement potential as

Ho =
N∑

i=1

�p2
i

2mi

+
N∑

i<j

Vconf(rij ). (3)

In Ref. [1] the quark confinement potential was taken to be

Vconf(rij ) = −3

8
λC

i · λC
j

[
C(N)(�ri − �rj )2 + V

(N)
0

]
, (4)

where C(N) and V
(N)

0 are constants. In principle these two
constants can differ for three- and five-quark configurations.
The hyperfine interactions between quarks Hhyp, as stated in
Ref. [1], can be mediated by one gluon exchange, Goldstone
boson exchange, or induced by the instanton interaction. The
forms of these three types of hyperfine interactions in the three-
quark system are explicitly given in the literature [7,23–30].
Those in the five-quark system with the quantum numbers of
the � resonances were explicitly discussed in Ref. [1] and will
not be repeated here.

In the N � 2 band, e.g., of the harmonic oscillator quark
model, there are two � states with negative parity predicted
by the three-quark models corresponding to the first orbital
excitation with � = 1 : One has spin 1/2, the other 3/2
[7,31,32]. The energies are obtained from the eigenvalues of
Eq. (2) in the case of N = 3. The results depend on the value
of the strange constituent quark mass, the quark confinement
parameters C(N=3) and V

(N=3)
0 , as well as the strength of the

hyperfine interaction. To reduce free parameters, we just take
the values from Refs. [31] and [7] as matrix elements of
H3 in the OGE and GBE models, respectively, i.e., in the
OGE model, 〈H3〉 1

2
− = 〈H3〉 3

2
− = 2020 MeV, and in the GBE

model, 〈H3〉 1
2

− = 〈H3〉 3
2

− = 1991 MeV. In the INS model,
since all three quarks in � states are strange and thus the flavor
state is symmetric, the hyperfine interaction between quarks
vanishes. Accordingly the matrix elements of H3 in this case

only depend on the constituent mass of the strange quark ms

as well as C(N=3) and V
(N=3)

0 . If we adopt the empirical values
for ms and C(N=3) from Ref. [1], and take V

(N=3)
0 to be the

tentative value which reproduces the mass of the ground state
�(1672), we find 〈H3〉 1

2
− = 〈H3〉 3

2
− = 1887 MeV in the INS

model.
Explicit matrix elements for 1

2
−

and 3
2

−
of the submatrix

H5 in (1) were already listed in Ref. [1]. In both cases 〈H5〉 1
2 ( 3

2 )

are 4 × 4 matrices. Here we just employ the results obtained
within the OGE, INS, and GBE models of Ref. [1].

B. Nondiagonal terms of Hamiltonian

The nondiagonal term V�3↔�5 in the Hamiltonian matrix
(1) describing the transition coupling between three- and five-
quark configurations depends on the explicit quark-antiquark
pair creation mechanism. The most commonly accepted
mechanism for quark-antiquark pair creation is the 3P0 model
[8–10]. In this model the created quark-antiquark pair is in its
first orbitally excited state, i.e., the QQ̄ pair has the quantum
numbers 3P0. But in the present case all quarks and antiquarks
in the studied five-quark configurations are assumed to be in
their ground s-wave states and accordingly 3P0 mechanism
does not contribute to the coupling between s3 and s3 QQ̄
states considered here.

Therefore we here adopt another quark-antiquark pair
creation mechanism based on a nonrelativistic reduction of
the amplitudes found from the instanton-induced interaction.
This interaction was first proposed by ’t Hooft [18] and
developed by Shifman et al. [19], then Petry et al. applied it
to the nuclear structure [20]. Explicitly, the instanton-induced
interaction vertex for a quark-antiquark pair creation from a
quark (antiquark) as shown in Fig. 1(a(b)), can be written
[21] in terms of normal ordered products of creation and
annihilation operators as

Hq := − 3

16
giεiklεimn : q

†
l+q

†
k+(γ0 ⊗ γ0 + γ0γ5 ⊗ γ0γ5)

(PC
6 + 2PC

3̄

)
qm+qn− :, (5)

Hq̄ := − 3

16
giεiklεimn : q

†
l+q

†
k−(γ0 ⊗ γ0 + γ0γ5 ⊗ γ0γ5)

(PC
6 + 2PC

3̄

)
qm−qn− : . (6)

Here Hq represents the pair creation from a quark, and Hq̄

from an antiquark, gi denotes strength of the instanton-induced
interaction, which has been discussed in Ref. [1], PC

6 and PC
3̄

are projector operators on color 6 and 3̄ states, respectively,

(a) (b) (c)

n

l
k

m

n

k
l

m

n

l
k m

FIG. 1. (a) Quark-antiquark pair creation from a quark. (b) Quark-
antiquark pair creation from an antiquark. (c) Transition coupling of
three- and five-quark configurations.
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which are defined as

PC
3̄ = 1

2

(Id − �C
1,2

)
; PC

6 = 1
2

(Id + �C
1,2

)
, (7)

where Id denotes the identity, and �C
1,2 is the permutation

operator of two particles in color space. Finally, εikl is the
completely antisymmetric tensor acting on flavor space. This
precludes the creation of a quark-antiquark pair whose flavor
is the same as the quark n or l. Consequently, in the present
case, the instanton-induced interaction does not mix s3 and s4s̄
configurations. Note that the creation operator itself has only
one free parameter gi , which should be the same as that for
instanton-induced hyperfine interactions between quarks [1],
therefore, no additional parameter is introduced here.

It is obvious that Hq in Eq. (5) is the appropriate interaction
vertex we need for the present discussion in this paper. The
normal ordering in (5) leads to two contributions: If qm has
negative energy then qn is an annihilation field operator and
therefore

: q
†
l+q

†
k+qm−qn+ := q

†
l+q

†
k+qm−qn+. (8)

If on the other hand qm is the annihilation field operator, then

: q
†
l+q

†
k+qm+qn− := −q

†
l+q

†
k+qn−qm+ = q

†
k+q

†
l+qn−qm+. (9)

Thus the sign does not change if we simultaneously inter-
change

k ←→ l m ←→ n. (10)

Therefore one obtains

Hq = − 3
8giεiklεimnq

†
l+q

†
k+(γ0 ⊗ γ0 + γ0γ5 ⊗ γ0γ5)(PC

6 + 2PC
3̄

)
qm+qn−. (11)

In addition, because of the total antisymmetry of the states,
one can eliminate the color projectors by replacing them
by projectors in spin space. After a nonrelativistic reduction
the quark-antiquark creation from a quark by the instanton-
induced interaction can be compactly written as

Hq = − 3

64
igiεiklεimn

4∑
t=1

3∑
β=0

ht
β(k, l,m, n)

×Dt (ξ
†
k σβηm)(ξ †

l σβξn), (12)

where ξx and ηx represent quark and antiquark Pauli spinors.
The coefficients ht

β depend on the quark masses and are
given by

h1
0(k, l,m, n) = 6

mk

− 1

ml

, h1
β>0(k, l,m, n) = − 1

ml

,

h2
0(k, l,m, n) = 7

mm

, h1
β>0(k, l,m, n) = 1

mm

,

(13)

h3
0(k, l,m, n) = 6

ml

− 1

mk

, h3
β>0(k, l,m, n) = − 1

mk

,

h4
0(k, l,m, n) = − 7

mn

, h4
β>0(k, l,m, n) = − 1

mn

,

where Dt = σα
∂

∂xα
acting on the quark t in Eq. (12).

For instance, for t = 3, D3(ξ †
k σβηm)(ξ †

l σβξn) =
(ξ †

k σβηm)( ∂
∂xα

ξ
†
l σασβξn). Note that here we defined σ0

as the identity in spin space. From Eq. (12), one finds that the
created qq̄ in the instanton-induced pair creation model can
have any of the quantum numbers 3P0, 1P1, 3P1, 1S0, and 3S1. In
the case of s3 → s3qq̄ states with negative parity considered
here only the latter two contribute.

The calculation of the transition s3 → s3qq̄ then involves
the overlap between the residual three strange quarks in the
s3qq̄ configuration after qq̄ annihilation and the initial s3

configuration, as shown in Fig. 1(c). Taking into account
the overlap factors and the overall symmetry, the transition
coupling V�3↔�5 in (1) reads

V�3↔�5 = − 9

16
igiεiklεimn

4∑
t=1

3∑
β=0

CFCSCCCO

×ht
β(k, l,m, n)Dt (ξ

†
k σβηm)(ξ †

l σβξn), (14)

where CF , CS , CC , and CO are operators for the calculation
of the corresponding flavor, spin, color, and orbital overlap
factors, respectively.

III. NUMERICAL RESULTS

In the present treatment the matrix elements of transition
coupling operator (14) depend on two parameters, namely
the instanton-induced interaction strength g′ and the oscillator
parameter ω5 for the s3qq̄ configurations, if we adopt the
constituent mass of the strange quark and the oscillator
parameter ω3 for the three-quark configuration as the empirical
values from Ref. [1]. Notice that ω5 is from the orbital overlap
factor. In Sec. III A, we present the numerical results obtained
by taking g′ and ω5 as constant as previously used in Ref. [1].
The dependence of the numerical results on the parameters is
the subject of Sec. III B.

A. Numerical results with fixed parameters

In Refs. [1,33], the empirical value for the strength of
the instanton-induced interactions between light and strange
quarks was found to be g′ � 33.3 MeV. On the other hand, if
we take the quark confinement parameters equal, i.e., C(N=3) =
C(N=5), we find a relation between the oscillator parameters
of three- and five-quark configurations: ω5 = √

5/6ω3 and,
correspondingly, ω5 � 196 MeV, as shown in Ref. [1]. We
denote the three-quark configurations with quantum numbers
1
2

−
and 3

2
−

as |3, 1
2

−〉 and |3, 3
2

−〉, respectively. With the
notation∣∣5, 1

2
−〉

1 = |s3q([4]X[211]C[31]FS[31]F [22]S) ⊗ q̄〉,∣∣5, 1
2

−〉
2 = |s3q([4]X[211]C[31]FS[31]F [31]S) ⊗ q̄〉,

(15)∣∣5, 1
2

−〉
3 = |s3q([4]X[211]C[31]FS[4]F [31]S) ⊗ q̄〉,∣∣5, 1

2
−〉

4 = |s4([4]X[211]C[31]FS[4]F [31]S) ⊗ s̄〉,
for the five-quark configurations with spin 1/2, and

∣∣5, 3
2

−〉
1 = |s3q([4]X[211]C[31]FS[31]F [31]S) ⊗ q̄〉,∣∣5, 3

2
−〉

2 = |s3q([4]X[211]C[31]FS[31]F [4]S) ⊗ q̄〉,
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TABLE I. Energies and the corresponding probability amplitudes of three- and five-quark configurations for the obtained � states in three
different kinds of hyperfine interaction models. The upper and lower panels are for states with quantum numbers 1

2

−
and 3

2

−
, respectively, and

for each panel, the first row shows the energies in MeV, others show the probability amplitudes.

1
2

−
OGE INS GBE

2018 2149 2453 2656 2679 1796 1888 2030 2226 2432 1835 1892 1991 2018 2163∣∣∣3, 1
2

−〉
0.9961 −0.0774 −0.0394 0 −0.0167 0.1494 0.9854 0.0687 0.0425 −0.0096 0 0.2011 0.8964 −0.3951 0∣∣∣5, 1

2
−〉

1
0.0454 0.8428 −0.5332 0 0.0577 0.6650 −0.1563 0.7146 0.1097 − 0.1031 1 0 0 0 0∣∣∣5, 1

2
−〉

2
0.0727 0.5326 0.8365 0 −0.1065 0.7318 −0.0592 −0.6630 −0.1066 0.1003 0 0.9676 −0.2446 −0.0623 0∣∣∣5, 1

2
−〉

3
0.0220 0.0068 0.1201 0 0.9925 0.0002 0.0301 0.1887 −0.9475 0.2563 0 0.1525 0.3697 0.9165 0∣∣∣5, 1

2
−〉

4
0 0 0 1 0 −0.0036 −0.0089 0.0967 0.2775 0.9558 0 0 0 0 1

3
2

−
1727 2079 2366 2505 2519 1767 1991 2093 2193 2722 1773 1944 2010 2163 2166∣∣∣3, 3

2
−〉

0.4989 0.8072 −0.3142 0.0299 0 0.8356 −0.0473 0.3243 −0.4353 −0.0692 −0.6389 0.2538 −0.0594 0 0.7238∣∣∣5, 3
2

−〉
1

−0.5556 0.2510 −0.3070 −0.7308 0 −0.3013 0.7715 0.2032 −0.4772 −0.2120 0.6253 0.6984 −0.1904 0 0.2914∣∣∣5, 3
2

−〉
2

0.6651 −0.3885 −0.0029 −0.6377 0 0.2941 0.5539 0.1523 0.5306 0.5495 −0.3637 0.6544 0.4155 0 −0.5165∣∣∣5, 3
2

−〉
3

0.0132 −0.3668 −0.8984 0.2414 0 −0.3518 −0.3089 0.7586 −0.1450 0.4294 0.2617 −0.1395 0.8875 0 0.3528∣∣∣5, 3
2

−〉
4

0 0 0 0 1 −0.0244 −0.0169 −0.5049 −0.5294 0.6812 0 0 0 1 0

∣∣5, 3
2

−〉
3 = |s3q([4]X[211]C[31]FS[4]F [31]S) ⊗ q̄〉,∣∣5, 3

2
−〉

4 = |s4([4]X[211]C[31]FS[4]F [31]S) ⊗ s̄〉, (16)

for the five-quark configurations with spin 3/2, the matrix
elements of the Hamiltonian (1) in both cases are listed
in Appendix A. Note that the nonzero off-diagonal matrix
elements in the submatrices H5 are caused by hyperfine
interactions between quarks in the five-quark configura-
tions, as explicitly discussed in Ref. [1]. Diagonalization of
Eqs. (A1)–(A6) leads to the numerical results shown in
Table I. In this table, we have ordered the states according to the
energy eigenvalue: The upper panel of the table shows energies
of the states with spin 1/2, and the corresponding probability
amplitudes of the three- and five-quark configurations in these
states, and the lower panel shows those for the states with spin
3/2.

From the upper panel of Table I we conclude that in the OGE
and INS hyperfine interaction models the mixing between
three- and five-quark configurations with spin 1/2 is very
small, and even can be negligible. Accordingly the resulting
energies are very close to those obtained in Ref. [1], in which
the effects of mixing between s3 and s3qq̄ were not included.
The mixing between three- and five-quark � configurations
obtained within the GBE hyperfine interaction model is not
so small that can be negligible: For instance, in the state with
energy 1991 MeV, there is an 81% three-quark component and
a 19% five-quark component. But also in this case the resulting
energies are very close those obtained in Ref. [1].

In fact, absolute values of the transition matrix elements
of V35 in the configurations with spin parity 1

2
−

are less than
20 MeV, as shown in Eqs. (A1)–(A6), which are tiny compared
to the diagonal matrix elements of the Hamiltonian matrix
(1). These tiny transition coupling matrix elements lead to
tiny mixing between three- and five-quark configurations with

spin 1/2 in the OGE and INS models. However, in the GBE
model the situation is different: The mixing depends not only
on the couplings between the configurations, but also on the
differences between the diagonal matrix elements. In the GBE
model, as we can see in Eq. (A5), the diagonal matrix element
of the third five-quark configuration is close to that of the three-
quark configuration, the difference between the former and
latter is only 19 MeV. Therefore the mixing of this five-quark
configuration with the three-quark configuration is not as small
as that in the OGE and INS models. On the other hand, because
the diagonal energies of these configurations are close to each
other, while matrix elements of the nondiagonal transition
coupling are small, nevertheless the resulting energies are very
close to those without mixing between three- and five-quark
configurations.

In case of the configurations with spin parity 3
2

−
, as shown

in the lower panel of Table I, mixing between three- and five-
quark � configurations in all the three hyperfine interaction
models are very strong. Accordingly, the resulting energies
differ substantially from those without mixing between three-
and five-quark configurations. The strongest mixing is ob-
tained within the GBE model, namely the state with energy
2166 MeV: In this state, there is approximately 50% three-
quark component and 50% five-quark components. A very
interesting result is that the lowest states in all three models
have energies lying in a narrow region around 1750 ± 25 MeV.
This energy is significantly lower than the energies of the
lowest states with spin parity 1

2
−

in all three models.
Absolute values of the transition matrix elements of V35 in

the configurations with spin parity 3
2 are in the range of 100 ±

20 MeV, which is much larger than the 20 MeV couplings
of configurations with spin parity 1

2
−

and accordingly the

mixing is much stronger than in the 1
2

−
case. In addition, the

larger nondiagonal terms lead to larger differences between
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the energies with and without mixing of three- and five-quark
configurations. As we have discussed in Ref. [1], if we ignore
the mixing between three- and five-quark configurations, the
lowest state in the OGE model has spin 3/2, but in the other
two hyperfine interaction models, the lowest states have spin
1/2. If we take into account the transition couplings between
three- and five-quark configurations, the lowest states in all
three models have spin 3/2. Here, the lowest state in the OGE
model resulted partly by mixing between different five-quark
configurations caused by the OGE hyperfine interactions
between quarks, and partly by mixing between three- and
five-quark configurations caused by the instanton-induced qq̄
pair creation. In the other two model the lowest state is due to
the action of the instanton-induced pair creation.

For both the 1
2

−
and 3

2
−

states, one may notice in Table I that
there is at least one state that does not mix with other states
in the OGE and GBE models: These are the states |5, 1

2
−〉4

and |5, 3
2

−〉4, i.e., the five-quark configurations with ss̄. As
we discussed in Sec. II B, the instanton-induced pair creation
interaction does not lead to mixing between s3 and s4s̄ configu-
rations. Therefore, in the OGE and GBE models, the state with
the strange quark-antiquark pair decouples from the others.
However, in the INS model, because of the hyperfine interac-
tions between quarks, there is no pure state with ss̄ [1], i.e., the
INS hyperfine interactions between quarks leads to mixing be-
tween the s4s̄ and the s3qq̄ configurations. In the GBE model,
there is another configuration that does not mix with the others,
namely the state |5, 1

2
−〉2. This is because on the one hand the

GBE hyperfine interactions between quarks cannot mix this
configuration with the other five-quark states, and on the other
hand the matrix element of the transition coupling V35 between
the three-quark configuration and the |5, 1

2
−〉2 state vanishes,

as shown in Eq. (A5). In contrast, in the OGE and INS models,
although the transition coupling matrix elements between
three- and five-quark configurations vanish, the configuration
|5, 1

2
−〉2 does mix with other five-quark configurations, as we

can see in Eqs. (A1) and (A3), so there is no pure state |5, 1
2

−〉2

in the OGE and INS hyperfine interaction models.

B. Dependence of numerical results on parameters

In Sec. III A, we have shown the numerical results for a judi-
cious choice of parameters. We still have to investigate whether
the results are sensitive to the interaction parameters and on the
value of the oscillator parameter ω5, which was just taken to be
a tentative value in Sec. III A. Here we discuss the dependence
of the energies on these parameters. Since the mixing between
three- and five-quark configurations with spin-parity quantum
numbers 1

2
−

was found to be very small, we refrain from a
discussion on the parameter dependence in this case.

Although the value for the instanton-induced interaction
strength g′ is an empirical one, it is the most important
parameter determining the transition between three- and five-
quark configurations. Here we vary it by ±20% to demonstrate
the dependence of the energies on its value in Fig. 2. The figures
from left to right are the numerical results for states with spin
parity 3

2
−

obtained within the OGE, INS, and the GBE models.
As is evident from Fig. 2, the energies do not change much
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FIG. 2. (Color online) Energies of negative-parity � resonances
with spin 3/2 as function of the instanton-induced interaction strength
g′. The figures from left to right are the numerical results obtained
within the OGE, INS, and GBE models, respectively.

in the OGE and GBE models within a range of ±40 MeV.
But in the INS model, the results show some more sensitivity
to the coupling g′, mainly because the hyperfine interactions
between quarks in the INS model also depend on g′.

Another important parameter in the matrix elements of
the transition coupling V35 is the oscillator parameter ω5,
which determines the orbital overlap of three- and five-quark
configurations. As discussed in Sec. III A, once we take
C(N=3) = C(N=5) in the quark confinement potential, we get
the ratio R35 ≡ ω5/ω3 = √

5/6, but this is a tentative value
only. In general, the color confinement strength C(N) for three-
and five-quark configuration could differ, so the value of
R35 can also differ from

√
5/6. Now the oscillator parameter

ωN reflects the size of the state studied. If, for instance, we
take R35 > 1, i.e., C(N=3) < C(N=5), this implies that the five-
quark configurations are more compact than the three-quark
configuration. In this case, an intuitive picture for our model
is going to be like this: The three-quark state has a weaker
potential; when quarks expand, a qq̄ pair is pulled out via the
instanton-induced pair creation mechanism and results in a
s3qq̄ state with stronger potential; the stronger potential leads
to a more compact state, which then makes the q̄ annihilate
with a quark more readily leading to the s3 state; this leads
to constant transitions between these two states and mixing.
If, however, R35 < 1, i.e., C(N=3) > C(N=5), the picture is
just the opposite. In Refs. [34–37], in order to reproduce the
electromagnetic and strong decays of nucleon resonances, both
R35 > 1 and R35 < 1 have been suggested. In Refs. [34–37] it
was shown that the most sensitive parameter is in fact the ratio
2ω3ω5/(ω2

3 + ω2
5). It is thus very difficult to judge whether R35

is less than 1 or not. Accordingly, we here vary the value of
R35 from 0.5 to 2 keeping the instanton-induced interaction
strength g′ at the fixed empirical value. The dependence of
the energies of states with spin parity 3

2
−

on R35 are shown
in Fig. 3. As in Fig. 2, the figures from left to right are the
numerical results obtained within OGE, INS, and GBE models.

One should notice that here we only want to show the de-
pendence of the mixing effects caused by transition couplings
on the parameters, so we do not consider the variation of the
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FIG. 3. (Color online) Energies of negative-parity � resonances
with spin 3/2 as function of R35. The figures from left to right are the
numerical results obtained within the OGE, INS, and GBE models,
respectively.

diagonal terms in Eqs. (A1)–(A6) with ω5. As we can see in
Fig. 3, the numerical results are somewhat sensitive to R35

in all three interaction models, the variation of the energies
amount up to 160 MeV. The energies of the lowest states in the
three models first decrease and then increase with increasing
values for R35 and lie within the range ∼1750 ± 50 MeV The
energies of the other states just increase with R35, with the
exception of the blue-dash-dotted lines in the OGE and GBE
models, which represent the energy of the fourth five-quark
configuration in these two models, which does not mix with
any others states in the OGE and GBE models, so the energies
of this state are independent of R35.

IV. CONCLUSION

In this paper, we investigated the influence of the mixing
of s3 and s3QQ̄ � configurations on the energies of negative
parity � states with quantum numbers 1

2
−

and 3
2

−
. For the

hyperfine interactions between quarks we investigated three
alternatives: the OGE, INS, and GBE models. The QQ̄
pair creation is taken to be caused by the instanton-induced
interaction. This mechanism has the selection rule that it
precludes ss̄ creation from a strange quark. In other words, the
instanton-induced interaction does not lead to mixing between
s3 and s4s̄ configurations.

The matrix elements of the instanton-induced transition
coupling in the spin 1/2 configurations are small, leading
to negligible mixing between three- and five-quark con-
figurations with spin 1/2 in the OGE and INS hyperfine
interaction models. In the GBE model, the spin-1/2 state
with strongest mixing is composed of ∼81% three-quark
and ∼19% five-quark components mainly due an almost
degeneracy of the corresponding unperturbed three- and
five-quark configurations. Although the mixing of three- and
five-quark configurations with spin 1/2 in the GBE model
is not small, the resulting energies are nevertheless very close
those without mixing between s3 and s3qq̄, since the transition
coupling matrix elements are so small.

In the case of configurations with quantum numbers 3
2

−
, the

matrix elements of the instanton-induced transition coupling
are much larger and the resulting mixing between three- and
five-quark configurations is very strong. For instance, the spin
3/2 state with the strongest mixing is composed of ∼50%
three-quark and ∼50% five-quark components.

The strong mixing between three- and five-quark configu-
rations with spin 3/2 decreases the energy of the lowest state
appreciably in all the three hyperfine interaction models: The
lowest states with spin 3/2 have an energy ∼1750 ± 50 MeV,
which is lower than energies of all the spin-1/2 states obtained
in the three different interaction models. This is different from
the results of previous models [38,39] without considering the
mixing between three- and five-quark configurations, which
predicted the lowest � excitation state to be of spin 1/2. To
summarize: In all interaction models the lowest states are found
to be those with spin 3/2 and and lie at ∼1750 ± 50 MeV.
The lowest states differ in the three models: Their major
components are five-quark configurations (∼75% and ∼64%,
respectively) in the OGE and GBE models, whereas in the INS
model the lowest state is mainly composed of the three-quark
component (∼70%).

Very recently, the BESII Collaboration at Beijing Electron
Positron Collider (BEPC) reported an interesting result that
ψ(2S) → ��̄ was observed with a branch fraction of (5 ±
2) × 10−5 [40]. Now with the upgraded BEPC, i.e., BEPCII,
BESIII Collaboration [41] is going to take billions of ψ(2S)
events, which is two orders of magnitude higher than what
the BESII experiment got. If the lowest � resonance lies
at ∼1750 ± 50 MeV, then it may be observed from from
ψ(2S) → �̄�∗ decays. Once an �∗ resonance is observed, its
spin-parity quantum numbers can be obtained by a partial wave
analysis as demonstrated for the N∗ case in Refs. [42,43]. Then
the most interesting result in the present paper that the lowest
� resonance with negative parity should have spin 3/2 can
be examined. However, it seems to be difficult to distinguish
the three different hyperfine interaction models, since the
predicted masses of the lowest state in the three models are very
close to each other and the most significant difference between
the three models is that the predicted probabilities of five-quark
components are obviously different, but it is not easy to be
examined by the present experimental measurements.
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APPENDIX: MATRIX ELEMENTS OF THE HAMILTONIAN

The matrix elements of Hamiltonian (1) in the configura-
tions with quantum numbers 1

2
−

and 3
2

−
read (numbers in units
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of MeV)

〈H OGE〉1/2 =

⎛
⎜⎜⎜⎜⎜⎝

2020.0 0 −18.5 −13.1 0

0 2235.0 −139.6 10.8 0

−18.5 −149.6 2365.4 −25.6 0

−13.1 10.8 −25.6 2373.7 0

0 0 0 0 2654.7

⎞
⎟⎟⎟⎟⎟⎠

,

(A1)

〈H OGE〉3/2 =

⎛
⎜⎜⎜⎜⎜⎝

2020.0 115.8 −124.5 81.9 0

115.8 2223.4 328.9 6.6 0

−124.5 328.9 2095.0 −68.0 0

81.9 6.6 −68.0 2333.7 0

0 0 0 0 2517.1

⎞
⎟⎟⎟⎟⎟⎠

,

(A2)

〈H INS〉1/2 =

⎛
⎜⎜⎜⎜⎜⎝

1887.0 0 −18.5 −13.1 0

0 1928.0 −121.5 −30.4 −33.3

−18.5 −121.5 1908.8 30.4 33.3

−13.1 −30.4 30.4 2230.3 47.1

0 −33.3 33.3 47.1 2411.0

⎞
⎟⎟⎟⎟⎟⎠

,

(A3)

〈H INS〉3/2 =

⎛
⎜⎜⎜⎜⎜⎝

1887.0 115.8 −124.5 81.9 0

115.8 2052.0 −113.3 −60.7 −66.7

−124.5 −113.3 2250.0 191.9 210.8

81.9 −60.7 191.9 2159.0 188.5

0 −66.7 210.8 188.5 2411.0

⎞
⎟⎟⎟⎟⎟⎠

,

(A4)

〈H GBE〉1/2 =

⎛
⎜⎜⎜⎜⎜⎝

1991.0 0 −18.5 −13.1 0

0 1833.6 0 0 0

−18.5 0 1896.6 −16.2 0

−13.1 0 −16.2 2010.0 0

0 0 0 0 2161.6

⎞
⎟⎟⎟⎟⎟⎠

,

(A5)

〈H GBE〉3/2 =

⎛
⎜⎜⎜⎜⎜⎝

1991.0 115.8 −124.5 81.9 0

115.8 1896.6 0 −16.2 0

−124.5 0 1990.2 0 0

81.9 −16.2 0 2010.0 0

0 0 0 0 2161.6

⎞
⎟⎟⎟⎟⎟⎠

.

(A6)
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