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Quarkonium above deconfinement as an open quantum system
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Quarkonium at temperatures above deconfinement is an open quantum system, whose dynamics is determined
not just by a potential energy and mass, but also by a drag coefficient which characterizes its interaction with the
medium. We develop a path-integral Monte Carlo method for examining quarkonium at finite-temperature; first,
the path-integral approach for open quantum systems is developed analytically for imaginary time, and then the
imaginary-time Green function is calculated with a realistic potential, mass, and drag term for quarkonium near
deconfinement. We demonstrate that dissipation could affect the Euclidean heavy-heavy correlation functions
calculated in lattice simulations at temperatures just above deconfinement.
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I. INTRODUCTION

The separation of scales between the masses of the heavy
quarks and the QCD energy scale �QCD allows heavy-heavy
bound states to be treated with first quantization techniques
[1–3]. At zero temperature, lattice calculations of static color
singlets determine a potential energy which can successfully
describe quarkonium spectroscopy. The potential has a non-
trivial temperature dependence which which suggests that
quarkonium will dissociate above Tc. This effect would result
in a modification of the yields of quarkonium in heavy-ion
collisions and could be used to measure the temperatures
achieved in heavy-ion collisions [4]. Since this seminal work
more than twenty years ago, analyses of heavy-ion experiments
have shown that some suppression of J/ψ yields at the
Relativistic Heavy Ion Collider (RHIC) is anomalous [5];
however, the pattern of suppression does not match what would
be expected from these first considerations of changes in the
spectrum. It is clear that the dynamics of quarkonium at high
temperatures must also be considered carefully.

One step in this direction was made by Shuryak and one
of us [6], where charmonium was modeled as an interacting
heavy quark pair undergoing Brownian motion, with the
heavy quark spatial diffusion coefficient DH taken to be
quite small (or, equivalently, the heavy quark drag coefficient
η taken to be large), as expected from phenomenology of
single heavy quarks [7,8] and by gauge-gravity duality [9–11].
This demonstrated that the survival of J/ψ states above Tc

cannot be determined just by examining whether or not the
temperature-dependent potentials allow bound states; instead,
the dynamics of charm and charmonium, and ultimately
their yields, are determined by multiple interactions with the
medium. The time scales of the heavy-ion collisions cannot be
neglected.
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Also, lattice calculations have examined quarkonium at
finite temperature more directly [12] by determining Euclidean
correlators for local operators related to quarkonium spec-
troscopy, namely, G(τ, T ) = ∫

d3x 〈JH (x, τ )JH (0, 0)〉, where
JH (x, τ ) = ψ̄(x, τ )�ψ(x, τ ) is a local composite operator
related to a given meson. Mocsy and Petreczky compared
these correlation functions, at various temperatures and in
different channels, with the results of two different potential
models [13]. In this work, there is a low-frequency contribution
to the spectral densities used to determine the Euclidean
correlation functions, which is caused by the diffusion of
heavy quarks [14]; however, for ω � T 2/M , the diffusion
of heavy quarks is assumed not to have any effect on
the dynamics of quarkonium. Some effort has also been
made in understanding heavy quark diffusion with lattice
simulations [15].

Only a few others have considered medium effects on
heavy quarks and quarkonium at finite temperature. Beraudo
et al. [16] used the hard-thermal-loop (HTL) approximation
for the heavy quark’s interaction with light degrees of freedom
that are subsequently integrated out of the path integral. Such
considerations should also be taken for quarkonium; also, the
medium should be considered in greater generality, away from
any assumptions of weak coupling, and using the description
most appropriate for heavy particles interacting with a heat
bath: open quantum systems. This is the purpose of this paper.

In this paper, we will outline how the imaginary-time
propagator with periodicity β = 1/T can be determined for
quarkonium interacting with a heat bath. In Sec. II, we
review the reduced density matrix and apply the model
of Caldeira and Leggett for quantum Brownian motion in
imaginary time, determining an analytic expression for the
reduced density matrix. In Sec. III, we find an expression for
the periodic imaginary-time Green function commensurate to
the Euclidean quarkonium correlation functions calculated in
lattice QCD. Using a path-integral Monte Carlo method, the
Green function is computed and the effect of diffusion on
Euclidean correlation functions is demonstrated.
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II. THE REDUCED DENSITY MATRIX
OF A DISSIPATIVE SYSTEM

This section follows the approach of Caldeira and Leggett
and uses path integrals to describe quantum Brownian motion;
specifically examining quantities that can be calculated in
imaginary time. First, an expression for the reduced density
matrix is determined for a heavy particle undergoing interac-
tions with a heat bath. As an introductory example, we find
an analytic expression for the reduced density matrix of an
“otherwise free” particle.

For an excellent review of the functional integral approach
to quantum Brownian motion, in both imaginary and real
time, see [17]. These results are discussed in generality, and
shown to arise from the Schwinger-Keldysh contour integral
for a heavy quark’s real-time partition function, by Son and
Teaney [18]. These systems can be studied with approaches
besides the path-integral formulation, and the study of quantum
Brownian motion, in terms of a partial differential equation
for the density matrix, has been studied by Hu, Paz, and
Zhang [19,20].

A. The reduced density matrix

Consider a system consisting of a heavy particle of mass
M minimally coupled to a harmonic oscillator of mass m:

L = LS + LI ;

LS = 1
2Mẋ2 − V (x), (1)

LI = 1
2mṙ2 − 1

2mω2r2 − Cxr.

In the above expression LS is Lagrangian for the heavy
particle (which we call the system) interacting with potential
V (x). The Lagrangian LI includes the kinetic energy of the
light particle (which will make up the heat bath) as well as
its interaction with the heavy particle. Without any loss of
generality the above Lagrangian describes a pair of mutually
interacting heavy particles as long as M is treated as the
reduced mass of the system and V (x) is the potential of
the two heavy particles in terms of their relative coordinate
x. The above Lagrangian analytically continued to imaginary
time τ = it is

SE
S [x] =

∫ β

0

[
1

2
Mẋ2 + V (x)

]
dτ,

(2)

SE
I [x, r] =

∫ β

0

[
1

2
mṙ2 + 1

2
mω2r2 + Cxr

]
dτ.

We can simplify this Lagrangian by a change of variables. We
subtract the particular solution to the classical equations of
motion as determined by Eq. (2):

r(τ ) ≡ r ′(τ ) + C

mω

∫ τ

0
dτ ′x(τ ′) sinh[ω(τ − τ ′)]

≡ r ′(τ ) + A[x, τ ]. (3)

In terms of the shifted coordinate r ′ the Euclidean action
becomes that of a simple harmonic oscillator:

SE
I [x, r] =

∫ β

0

[
1

2
mṙ ′2 + 1

2
mω2r ′2 + 1

2
Cx(τ )A[x, τ ]

]
dτ

+ mȦ[x, β]

(
r ′(β) + 1

2
A[x, β]

)
≡ S ′E

I [x, r ′]. (4)

As always, the propagator of a system for imaginary
time β = 1/T gives matrix elements of the thermal density
operator. In our example, the density matrix has four indices;
two for the heavy particle denoted xi,f and two for the light
particle denoted by ri,f where i(f ) is shorthand for the initial
(final) position. In the example given above the density matrix
is given as

ρ(xi, ri ; xf , rf ; β) =
∫ x(β)=xf

x(0)=xi

Dx

∫ r ′(β)=rf − 1
2 A[x,β]

r ′(0)=ri

Dr ′

× exp
(−SE

S [x] − S ′E
I [x, r ′]

)
. (5)

If we were never interested in measurements of the degree
of freedom r , we could take the trace over the indices
corresponding to this degree of freedom, and work with a
density operator with only two indices. With this in mind, we
define the reduced density matrix as

ρred(xi, xf , β) ≡
∫

drρ(xi, r; xf , r; β). (6)

This is the only operator practical for calculating thermal
averages. For the system defined by Eq. (2), we can write
a path-integral description [21] for the reduced density matrix,

ρred(xi, xf , β)

=
∫

dr

∫
Dx Dr ′exp

(−SE
S [x] − SE

I [x, r ′]
)

=
∫
Dx exp

(−SE
x [x]

)∫
dr

∫
Dr ′ exp

(−S ′E
I [x, r ′]

)
, (7)

where we integrate over paths with endpoints x(0) = xi ,
x(β) = xf , r ′(0) = r , and r ′(β) = r − A[x, β]. Thanks to the
change in variables enacted in Eq. (3), the integral over the
paths r ′(τ ) is Gaussian and can be done easily with the result

ρred(xi, xf , β)

=
∫ x(β)=xf

x(0)=xi

Dx exp

(
−SE

S [x] +
∑

k

C2
k

2mωk sinh
(

ωkβ
2

)∫ β

0
dτ

×
∫ τ

0
ds x(τ )x(s) cosh [ωk (τ − s − β/2)]

)
. (8)

The summation over k has been introduced in order to general-
ize the result to a system where a heavy particle interacts with
a bath of independent simple harmonic oscillators each having
coupling Ck and frequency ωk . Equation (8) is the path-integral
form for the reduced density matrix.

In Eq. (8), the degrees of freedom of the heat bath are
arbitrary; the values of Ck and ωk can take any set of values as
long as the integral remains convergent. For a larger number
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of light particles, the heat bath can be represented by a density
of states ρ(ω) with

∑
k → ∫

dω.

B. Making a dissipative system

Any finite quantum-mechanical system is reversible and
therefore inappropriate for describing Brownian motion. One
might find it intuitive that, if the bath of harmonic oscillators
were taken to an infinite limit, it would be “large enough”
so that energy from the heavy particle could dissipate into
the system and never return. This intuition was proven to be
true by the authors of Ref. [22], who considered the real-time
evolution of the density matrix for our system and showed that
when the bath of harmonic oscillators is characterized by the
continuous density of states

C2(ω)ρD(ω) =
{

2mηω2

π
if ω < �,

0 if ω > �,
(9)

the force autocorrelator for the heavy particle is proportional to
δ(t − t ′) at high temperatures. In this “white noise” limit, the

density matrix describes an ensemble of particles interacting
according to the Langevin equation, which has been used to
describe Brownian motion for over a century. It is a stochastic
differential equation, is irreversible, and evolves any ensemble
towards the thermal phase space distribution. Finally, the
authors of Ref. [22] showed that η in Eq. (9) corresponds
exactly to the drag coefficient η in the Langevin equation;
knowing a transport coefficient, for example the heavy quark
drag coefficient, allows this path integral to be matched with a
system whose classical behavior is known.

Using the above density of states the reduced density matrix
becomes

ρred(xi, xf , β)

=
∫ x(β)=xf

x(0)=xi

Dx exp

(
− SE

S [x] + η

π

∫ �

0
dω

∫ β

0
dτ

∫ τ

0
ds

× x(τ )x(s)
ω cosh[ω(τ − s − β/2)]

sinh
(

ωβ
2

) )
. (10)

The divergences of this action can be isolated by integrating
by parts twice

∫ �

0
dω

∫ β

0
dτ

∫ τ

0
ds x(τ )x(s)

ω cosh[ω(τ − s − β/2)]

sinh
(

ωβ
2

)
= �

∫ β

0
dτ [x(τ )]2 − 1

2
(xi − xf )2 ln(M�/η)

cosh(�β/2) − 1

sinh(�β/2)
− 1

2
(xi − xf )2

[
γE + ln

(
ηβ

πM

)]

+ (xi − xf )
∫ β

0
dτ ẋ(τ ) lnsin

(
πτ

β

)
+

∫ β

0
dτ

∫ τ

0
ds ẋ(τ )ẋ(s) lnsin

(
π (τ − s)

β

)
, (11)

where lnsin(x) ≡ ln[sin(x)] and γE is the Euler-Mascheroni
constant. The first two terms on the right-hand side correspond
to a renormalization of the potential for the heavy particle,
always necessary when considering the interaction of a particle
with infinitely many additional degrees of freedom. They are
temperature independent in the limit of large �, and may be
renormalized into temperature-independent counterterms in
the free Lagrangian. The final three terms are finite and can be
readily evaluated in the � → ∞ limit,

ρred(xi, xf , β)

=
∫ x(β)=xf

x(0)=xi

Dx exp

{
− SE

S [x] − η

2π
(xi − xf )2

×
[
γE + ln

(
ηβ

πM

)]

+ η

π

(
xi − xf

) ∫ β

0
dτ ẋ(τ ) lnsin

(
πτ

β

)

+ η

π

∫ β

0
dτ

∫ τ

0
ds ẋ(τ )ẋ(s) lnsin

(
π (τ − s)

β

) }
. (12)

In summary, we have determined an expression for the
reduced density matrix of a system (consisting of a massive

particle in a potential or equivalently a pair of mutually
interacting particles) coupled to a heat bath of oscillators.
The coupling to the bath is chosen to reproduce the results
of classical Brownian motion in the high-temperature limit.
We have taken care to make the term in the exponential finite,
by isolating the divergences through integration by parts. This
is important for path-integral Monte Carlo simulation to be
possible for this functional integral.

C. Example: The otherwise free particle

The reduced density matrix for a particle interacting with
such a bath can be determined analytically for the otherwise
free particle [VR(x) = 0 where VR is the renormalized poten-
tial]. In order to arrive at an analytic result start by writing an
arbitrary path in Eq. (12) as an expansion around the classical
solution

x(τ ) = xcl(τ ) + ξ (τ ); xcl(τ ) ≡ xi + (xf − xi)τ/β,

(13)

ξ (τ ) ≡
∞∑

n=1

cn sin

(
nπτ

β

)
.

After evaluation of the integrals using contour integration
along with a change in variables for the integration over the
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even Fourier coefficients, we find the reduced density matrix

ρred(xi, xf , β) =
√

M

2πβ
+ η

2π2

[
ln (2) + γE + �

(
1 + ηβ

2πM

)]

× exp

{
−

(
M

2β
+ η

2π

[
ln

(
ηβ

2πM

)
− �

(
1 + ηβ

2πM

)])
(xi − xf )2

}
, (14)

where �(x) is the digamma function and the overall normaliza-
tion is determined by analytic continuation of β and requiring
the propagator to conserve probability for purely imaginary
β. A Fourier transform of this density matrix determines an
effective mass for the heavy particle:

〈p2〉 = Meff

β
,

(15)

Meff = M + ηβ

π

[
ln

(
ηβ

2πM

)
− �

(
1 + ηβ

2πM

)]
.

D. PIMC method for the reduced density matrix

Obtaining the analytic result for our reduced density matrix
was reasonable for the otherwise free particle. For the simple
harmonic oscillator, the analytic result exists but has a rather
complicated expression. For the potentials which describe
quarkonium spectroscopy with some precision, analytic work
becomes entirely impractical. We would like to use numerical
simulation to obtain reliable estimates of reduced density
matrices and Euclidean correlation functions.

The most natural numerical approach for the formalism is
a path-integral Monte Carlo (PIMC) method. For an excellent
review of the technique, see D. M. Ceperley [23]. Paths are ei-
ther sampled according to a Metropolis algorithm determined
by the action of interest, or sampled from some convenient
distribution which samples the entire space of paths with some
weight. For our work with a single degree of freedom, we
found that sampling a convenient distribution (in our case, the
distribution of paths determined by exp(−Sfree[x])) to be suffi-
cient, which is easily sampled for any discretization of the path
with a bisection method. When sampling the space of paths,
the next step is to determine an estimate for the action of
each path. For our case, the primitive action with the simplest
integration of the new dissipative terms is sufficient. Once this
is determined, any correlation function can be calculated by
sampling paths and making weighted averages.

III. IMAGINARY-TIME GREEN FUNCTIONS FOR
QUARKONIUM: NUMERICAL RESULTS

In order to generate results relevant to the lattice, a different
imaginary-time path integral must be discussed. We will now
be interested in the finite-temperature imaginary-time Green
function

G(τ ) =
∞∑

n=−∞
〈x = 0; τ + nβ|x = 0; 0〉, (16)

as it is directly related to the S-channel quarkonium correlation
functions calculated on the lattice [13]. In this section, a path-
integral Monte Carlo method is developed for determining this
Green function for any potential or diffusion coefficient, and
numerical results for the n = 0 term in this sum are shown.

For a given channel, the two-point Euclidean correlator for
a composite mesonic operator is given by

G(τ, T ) =
∫

d3x 〈J�(x, τ )J�(0, 0)〉β ,

(17)
J�(x, τ ) = ψ̄(x, τ )�ψ(x, τ ),

where � = 1, γ 0, γ μ, γ 0γ μ determine the mesonic channel to
be scalar, pseudoscalar, vector, or pseudovector, respectively.

For now, consider only the vector channel (the following
arguments must be modified for the scalar and pseudovector
channels). Think of this correlator as being the sum of
the expectation values of an operator over all of the states
in the Fock space of N -particle mesonic systems, with
each expectation value entering the sum weighted by the
state’s Boltzmann factor. When MQ � T ,�QCD, the states
containing heavy quarks are weighted by factors of roughly
exp(−2MQ/T ) and are suppressed. Therefore, in this limit, the
dominant contribution to G(τ ) comes from the usual vacuum
expectation value in imaginary time made periodic with
period β.

Because of the mass of the heavy quark, we ignore spin and
consider the Green functions at finite temperature for a scalar
field. The correlation function G(x, x′, τ ) = 〈φ(x, τ )φ(x, 0)〉β ,
for a free nonrelativistic field, satisfies the differential equation(

Ĥ (x) + ∂

∂τ

)
G(x, x′, τ ) = δ3(x − x′)δ(τ ), (18)

subject to the periodicity condition G(x, x ′, τ + β) =
G(x, x ′, τ ). The solution is analogous to the method of
images: the proper periodicity is obtained by summing over
zero-temperature correlation functions [24],

〈φ(x, τ )φ(x, 0)〉β =
∞∑

n=−∞
〈φ(x, τ + nβ)φ(x, 0)〉T =0 . (19)

The rest of the argument proceeds as above for the
reduced density matrix. We now focus on the Green functions
in imaginary time in this sum, which will be determined
numerically with the path-integral Monte Carlo method. We
consider the same system of one heavy particle interacting
with a light degree of freedom:

S =
∫ τ

0
dτ ′

[
1

2
Mẋ2 + V (x) + 1

2
mṙ2 + 1

2
mω2r2 + Cxr

]
.

(20)
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The propagator can be expressed as a path integral:

〈xf , rf , τ |xi, ri, 0〉 =
∫

Dx Dr exp(−S), (21)

where the paths have the endpoints x(0) = xi , x(τ ) = xf ,
r(0) = ri , and r(τ ) = rf . The subscript i(f ) is again used to

denote the initial (final) position. Note the difference between
the reduced density matrix where the trace over the single
variable ri = rf is taken and the above propagator where
ri and rf are independently integrated. As before the path
integral over the light degree of freedom can be performed
analytically:

〈xf , rf , τ |xi, ri, 0〉 =
∫
Dx exp

(
−

∫ τ

0
dτ ′

[
1

2
Mẋ2 + V (x) + 1

2
Cx(τ ′)A[x, τ ′]

]
+ 1

2
mȦ[x, τ ]A[x, τ ]

) √
mω

2π sinh(ωτ )

× exp(−mȦ[x, τ ]rf ) exp

(
− mω

2 sinh(ωτ )

({
r2
i + (rf − A[x, τ ])2

}
cosh(ωτ ) − 2ri(rf − A[x, τ ])

))
, (22)

where A[x, τ ] was given in Eq. (3). We now want to integrate over all values of ri and rf , leading to a reduced imaginary-time
Green function for the heavy particle. The integrals are Gaussian and can be performed analytically:

〈xf , τ |xi, 0〉red =
∫ x(β)=xf

x(0)=xi

Dx exp

(
−

∫ τ

0
dτ ′

[
1

2
Mẋ2 + V (x)

]

+
∑

k

C2
k

2mωk sinh(ωkτ )

∫ τ

0
dτ ′

∫ τ ′

0
ds x(τ ′)x(s) cosh[ωk(τ − τ ′)] cosh(ωks)

)
. (23)

The above expression is completely analogous to the reduced density matrix in Eq. (8) except with the difference in traces over
the bath.

Using the same density of states as given in Eq. (9), the integral over the density of states can be performed in the above
reduced Green function. After taking the � → ∞ limit the result is

Gred(xf , xi, τ, β) =
∞∑

n=−∞
〈xf , |τ + nβ||xi, 0〉red

=
∞∑

n=−∞

∫ x(|τ+nβ|)=xf

x(0)=xi

Dx exp

(
−

∫ |τ+nβ|

0
dτ ′

{
1

2
Mẋ(τ ′)2 + VR(x(τ ′))

− η

2π

∫ τ ′

0
ds ẋ(τ ′)ẋ(s) ln

[
sin

(
π
2

τ ′−s
|τ+nβ|

)
sin

(
π
2

τ ′+s
|τ+nβ|

)
]})

. (24)

In the case of two mutually interacting particles, the above path integrals can be re-expressed in terms of relative, x, and
absolute, X, coordinates as

〈Xf , xf ; τ |Xi , xi ; 0〉 =
∫

DX exp

{
−

∫ τ

0
dτ ′MẊ2 − 2η

π

∫ τ

0
dτ ′

∫ τ ′

0
ds Ẋ(τ ′)Ẋ(s) ln

(
sin

(
τ ′+s

τ

)
sin

(
τ ′−s

τ

)
)}

×
∫

Dx exp

{
−

∫ τ

0
dτ ′

[
1

4
M ẋ2 + V (x)

]
− η

2π

∫ τ

0
dτ ′

∫ τ ′

0
ds ẋ(τ ′)ẋ(s) ln

(
sin

(
τ ′+s

τ

)
sin

(
τ ′−s

τ

)
)}

, (25)

where, similar to before, X(0) = Xi , X(τ ) = Xf , x(0) = xi ,
and x(τ ) = xf . We focus now on the path integral for the
relative coordinate, and for simplicity of presentation we only
determine and show the first term in this sum; examining
only the first term in the sum also makes deconvolution
easy.

At this point, the potential energy and drag coefficient
for heavy quark bound states must be matched with their
calculations from QCD. In the infinite-mass limit, the trace
over the light degrees of freedom has been computed on the
lattice as the expectation value of two Polyakov loops [25].
The dissipative effects on this propagator have been studied,

as we noted previously, by gauge-gravity duality. Here, we
match the results of this trace, yielding a potential term and a
heavy quark drag coefficient, onto terms in the path integral.

The function

G0(τ ) = 〈xf = 0; τ |xi = 0; 0〉 (26)

can be calculated with a path-integral Monte Carlo calculation,
using the potential and diffusion coefficient that fits best
(or is fitted) from phenomenology of heavy quarks, or from
any other considerations. We use the Cornell potential for
the interaction between the heavy quarks, regularized at
x = 0 with a harmonic potential, and set η for the cases of
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FIG. 1. (Color online) G0(τ ) for different diffusion coefficients.

2πT D = ∞, 5, and 2.5. The results of such a calculation are
shown in Fig. 1.

Dissipative effects have a significant effect on this Green
function, which is given by the Laplace transform of the
spectral function for charmonium:

G0(τ ) =
∫

dω exp(−ωτ )ρ(ω). (27)

Although deconvolution of this Green function is difficult, the
effect of dissipation can be read off: the peak corresponding to
a bound state or resonance has been shifted up in energy, and
its integral has decreased (indicating a weaker response of the
medium to the charmonium creation operator).

IV. CONCLUSIONS

We have taken the approach of Caldeira and Leggett and
determined expressions for quantities calculable in imaginary
time. Path-integral Monte Carlo techniques were developed
and applied to the imaginary-time Green function. Interactions
with the QCD medium above deconfinement clearly affect
Euclidean heavy-heavy correlators, and any determination of
these Green functions at finite temperature must deal with
the likely large heavy quark drag coefficient. These numerical

methods are currently the only techniques available that can
deal with large drag coefficients while describing quarkonium
quantum-mechanically.

The binding energies and widths of quarkonia in these
systems will finally be obtained when the results in Fig. 1
are deconvolved into spectral functions. G(τ ) is the Laplace
transform of the spectral function; deconvolution is nontrivial
and often is done with the maximum entropy method: a
procedure that combines data fitting with information theory
for probability distributions. Forthcoming work will show
these results.

Let us argue one last time for treating quarkonium above
deconfinement as an open quantum system: typically in
particle physics, the rate for the scattering of an N -particle
state into another is determined from the square of the matrix
element whose indices are the initial and final states, where
these states are in the momentum basis. This makes perfect
sense in high-energy experiments, where the incoming and
outgoing states are basically momentum eigenstates and the
matrix element can be expanded in terms of a small coupling.
Such an approach, however, seems entirely inappropriate
for quarkonium formed in a heavy-ion collision, whose
constituent quarks are localized in position relative to the sur-
rounding medium and are strongly coupled both to the medium
and each other. Nonperturbative techniques and experiment
both suggest that quarkonium rapidly thermalizes and interacts
strongly with the medium. The most reasonable approach for
explaining the observables is to describe quarkonium with
a reduced density matrix, whose evolution is determined by
a potential and a drag coefficient which are both treated
nonperturbatively.
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