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Nucleon-meson couplings in a one-boson-exchange potential using noncritical string theory
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A noncritical holographic QCD model constructed in the six dimensional anti–de Sitter (AdS6) supergravity
background is employed to study a baryon. It is shown that the size of the baryon is of order one with respect
to the λ, however, it is smaller than the scale of the dual QCD. An effective four-dimensional action for the
nucleon is obtained in terms of the meson exchange potentials. All meson-nucleon couplings in the noncritical
AdS6 background are calculated. Results obtained using our model are compared with predictions of four
modern phenomenological interaction models. Also, our numerical results are compared with the results of the
Sakai-Sugimoto (SS) model which indicate that the noncritical holographic QCD model can be a good toy to
calculate the meson-nucleon couplings.
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I. INTRODUCTION

The construction of a nucleon-nucleon (NN ) potential
has a long history in nuclear physics due to its role in
understanding the nuclear force. Many potential models have
been constructed from the 1950s which have been composed
to fit the available NN scattering data. The newer potentials
have only slightly improved with respect to the previous ones
in describing the recent much more accurate data. As it is
shown in Ref. [1], all of these potential models do not have
good quality with respect to the pp scattering data below
350 MeV and just a few of them are of satisfactory quality.
These models are the Reid soft-core potential Reid68 [2], the
Nijmegen soft-core potential Nijm78 [3], the new Bonn pp
potential Bonn89 [4], and also the parametrized Paris potential
Paris80 [5]. These familiar one-boson-exchange potentials
(OBEP) contain a relatively small number of free parameters
(about 10 to 15 parameters), but do not have a reasonable
description of the empirical scattering data. Also, most of
these potentials which have been fitted to the np scattering
data, unfortunately do not automatically fit to the pp scattering
data even by considering the correction term for the Coulomb
interaction [1]. Of course, new versions of these potentials
have been constructed such as Nijm I, Nijm II, Reid93 [6],
CD-Bonn [7], and AV18 [8] which explain the empirical
scattering data successfully. But they contain a large number of
purely phenomenological parameters. For example, an updated
(Nijm92pp [9]) version of the Nijm78 potential contains 39
free parameters.

On the other hand, there are many attempts to impose
the symmetries of QCD using an effective Lagrangian of
pions and nucleons [10,11]. These models only capture the
qualitative features of the nuclear interactions and cannot
compete with the much more successful potential models
mentioned above. Despite many efforts, no potential model has
yet been constructed which gives a high-quality description of
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the empirical data, obeys the symmetries of QCD, and contains
only a few number of free phenomenological parameters.

One of the applications of anti–de Sitter space/conformal
field theory (AdS/CFT) duality [12–14] is a holographic
QCD introduced recently to solve the strong-coupling QCD
problems such as the chiral dynamics of hadrons in partic-
ular baryons [15–38]. The Sakai-Sugimoto (SS) [39,40] and
Klebanov-Strassler (KS) models [41] are the most interesting
holographic models.

The predictions of the SS model are in a good agreement
with the lattice simulations such as a glueball spectrum of pure
QCD [42,43]. Also this model describes baryons and their
interactions with mesons [22–24,39,40]. It is shown that the
baryons can be taken as point-like objects at distances larger
than their sizes, so their interactions can be described by the
exchange of light particles such as mesons. Therefore, one can
find the baryon-baryon potential from the Feynman diagrams
using the interaction vertices including baryon currents and
light mesons [23]. But there are some inconsistencies. For
example, the size of the baryon is proportional to λ−1/2.
Consequently in the large ’t Hooft coupling (large λ), the size
of the baryon becomes zero and the stringy corrections have
to be taken into account. Another problem is that the scale of
the system associated with the baryonic structure is roughly
half the one needed to fit to the mesonic data [44].

Also there is another problem for such holographic models
arising from critical string theory. In these models, the
color brane backgrounds are ten-dimensional so the dual
gauge theories are supersymmetric. In order to break the
supersymmetry, some parts of such backgrounds need to be
compacted on some manifolds. This causes the production
of some Kaluza-Klein (KK) modes with the mass scale of
the same order as the masses of the hadronic modes. These
unwanted modes are coupled to the hadronic modes, and
there is no mechanism to disentangle them from the hadronic
modes yet. In order to overcome this problem, it is possible to
consider the color brane configuration in noncritical string
theory. The result is a gravitational background located at
the low dimensions [45–48]. In this background the string
coupling constant is proportional to 1

Nc
, so the large Nc limit
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corresponds to the small string coupling constant. However,
contrary to the critical holographic models, in the large Nc

limit, the ’t Hooft coupling is of order one instead of infinity
and the scalar curvature of the gravitational background is
also of order one. So, it seems the noncritical gauge-gravity
correspondence is not very reliable. But studies show that the
results of these models for some low energy QCD properties
such as the meson mass spectrum, Wilson loop, and the mass
spectrum of glueballs [49–51] are comparable with lattice
computations. Therefore noncritical holographic models still
seem useful to study QCD.

One of the noncritical holographic models is composed
of a D4 and anti-D4 brane in six-dimensional noncritical
string theory [47,49]. The low energy effective theory on
the intersecting brane configuration is a four-dimensional
QCD-like effective theory with the global chiral symmetry
U(Nf )L × U(Nf )R . In this brane configuration, the six-
dimensional gravity background is the near horizon geometry
of the color D4 branes. This model is based on the compactified
AdS6 space-time with constant dilaton. So the model does not
suffer from the large string coupling as the SS model. The
meson spectrum [49] and the structure of thermal phase [52]
are studied in this model. Some properties, like the dependence
of the meson masses on the stringy mass of the quarks and the
excitation number are different from the critical holographic
models such as the SS model.

In this paper, we are going to obtain the NN potential using
the noncritical AdS6 background. We study the gauge field and
its mode expansion in this noncritical holography model and
obtain the pion action. The model has a mass scale MKK like
the SS model in which we set its value by computing the pion
decay constant. Then, we study the baryon and obtain its size.
We show that the size of the baryon is of order one with respect
to the ’t Hooft coupling, so the problem of the zero size of the
baryon in the critical holography model is solved. But the size
of the baryon is still smaller than the mass scale of holographic
QCD, so we treat it as a point-like object and introduce an
isospin 1/2 Dirac field for the baryon. We write a 5D effective
action for the baryon field and reduce it to the 4D using the
mode expansion of a gauge field and baryon field and obtain
the NN potential in terms of the meson exchange interactions.
We calculate the meson-nucleon couplings using the suitable
overlapping wave function integrals and compare them with
the results of SS model. Also, our results are compared with
predictions of some phenomenological models and also the
SS models for the couplings. Our study shows that the non-
critical results are in good agreement with the other available
models.

This paper is organized as follows. In Sec. II we briefly
review the noncritical model and mode expansion of the gauge
field. We analyze the baryon and extract its mass and size
in Sec. III. In Sec. IV, an effective action for the baryon
is considered and a noncritical prescription of the nucleon-
nucleon potential in terms of the meson exchange interactions
is obtained. In Sec. V, the nucleon-meson couplings are
calculated and compared with predictions of four modern
phenomenological models [Nijmegen (93), Paris, CD-Bonn,
and AV 18 models]. Section VI is devoted to a brief summary
and conclusions.

II. HOLOGRAPHIC QCD FROM THE NONCRITICAL
STRING THEORY

In the presented noncritical model, the gravity background
is generated by near-extremal D4 branes wrapped over a circle
with antiperiodic boundary conditions. Two stacks of flavor
branes, namely D4 branes and anti-D4 branes, are added to
this geometry and are called flavor probe branes. The color
branes extend along the directions t, x1, x2, x3, and τ while
the probe flavor branes fill the whole Minkowski space and
stretch along the radius U which is extended to infinity. The
strings attaching a color D4 brane to a flavor brane transform as
quarks, while strings hanging between a color D4 and a flavor
D4 transform as antiquarks. The chiral symmetry breaking
is achieved by a reconnection of the brane/antibrane pairs.
Under the quenched approximation (Nc � Nf ), the reactions
of flavor branes and the color branes can be neglected. Just
like the SS model, the τ coordinate is wrapped on a circle and
the antiperiodic condition is considered for the fermions on
the thermal circle. The final low energy effective theory on the
background is a four-dimensional QCD-like effective theory
with the global chiral symmetry U(Nf )L × U(Nf )R .

In this model, the near horizon gravity background at low
energy is [49]

ds2 =
(

U

R

)2

(−dt2 + dxidxi + f (U )dτ 2) +
(

R

U

)2
dU 2

f (U )
,

(1)

where R is the radius of the AdS space. Also f (U ) and RR six-
form field strength, F(6) are defined by the following relations:

F(6) = Qc

(
U

R

)4

dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ du ∧ dτ,

(2)

f (U ) = 1 −
(

UKK

U

)5

.

In order to obtain solutions of near extremal flavored AdS6,
the values of dilaton and RAdS are considered as

eφ = 2

3

Qf

Q2
c

(√
1 + 6Q2

c

Q2
f

− 1

)
,

(3)

R2
AdS = 90

12 + Q2
f

Q2
c

− Q2
f

Q2
c

√
1 + 6Q2

c

Q2
f

.

This relation indicates that the RAdS and dilaton depend on
the ratio of the number of colors (∼Qc) and flavors (∼Qf ).
Under the quenched approximation, the values of the dilaton
and AdS radius can be rewritten as

R2
AdS = 15

2
, eφ = 2

√
2√

3Qc

, (4)

where Qc is proportional to the number of color branes, Nc.
To avoid singularity, the coordinate τ satisfies the following

periodic condition:

τ ∼ τ + δτ, δτ = 4πR2

5UKK

. (5)
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Also, the Kaluza-Klein mass scale of this compact dimension is

MKK = 2π

δτ
= 5

2

UKK

R2
, (6)

and dual gauge field theory for this background is non-
supersymmetric. Also, the Yang-Mills coupling constants can
be defined as a function of string theory parameters using the
DBI action as follows:

g2
YM = gs

μ4 (2πα′)2 δτ
, (7)

where α′ = l2
s is the Regge slope parameter and ls is the string

length. Also, the ’t Hooft coupling is λ = g2
YM Nc.

In AdS/QCD, there is gauge field living in the bulk AdS
whose dynamics is dual to the meson sector of QCD such as
pions and higher resonances. The gauge field on the D4 brane
includes five components, Aμ(μ = 0, 1, 2, 3) and AU . The D4
brane action is given by

SD4 = −μ4

∫
d5xe−φ

√
− det(gMN + 2πα′FMN ) + SCS,

(8)

where FMN = ∂MAN − ∂NAM − i[AM,AN ], (M,N =
0, 1, . . . , 5) is the field strength tensor, and the AM is
the U (Nf ) gauge field on the D4 brane. The second
term in the above action is the Chern-Simons action and
μ4 = 2π/(2πls)5. It is useful to define the new variable z as

Uz = (
U 5

KK + U 3
KK z2

)1/5
. (9)

Then by neglecting the higher order of F 2 in the expansion,
the D4 brane action can be written as

SD4 = −μ̃4(2πα′)2
∫

d4xdz

[
R4

4U
5/2
z

ημνηρσ FμρFνσ

+ 25

8

U
9/2
z

U 3
kk

ημνFμzFνz

]
+ O(F 3), (10)

where μ̃4 is

μ̃4 =
√

3

2

NcU
3/2
KK

5R3
μ4. (11)

The gauge fields Aμ (μ = 0, 1, 2, 3) and Az have a mode
expansion in terms of complete sets {ψn(z)} and {φn(z)} as

Aμ(xμ, z) =
∑

n

B(n)
μ (xμ)ψn(z) , (12)

Az(x
μ, z) =

∑
n

ϕ(n)(xμ)φn(z) . (13)

After calculating the field strengths, the action (10) is rewritten
as

SD4 = −μ̃4(2πα′)2
∫

d4xdz
∑
m,n

[
R4

4U
5/2
z

F (m)
μν Fμν(n)ψmψn

+ 25

8

U
9/2
z

U 3
kk

(∂μϕ(m)∂μϕ(n)φmφn

+B(m)
μ Bμ(n)ψ̇mψ̇n − 2∂μϕ(m)Bμ(n)φmψ̇n)

]
, (14)

where the overdot denotes the derivative respect to the z
coordinate.

Let us consider first the vector meson field B(m)
μ . So, we

need to keep the following part of action:

SD4 = −μ̃4(2πα′)2
∫

d4xdz

×
∑
m,n

[
R4

4U
5/2
z

F (m)
μν Fμν(n)ψmψn

+ 25

8

U
9/2
z

U 3
kk

B(m)
μ Bμ(n)ψ̇mψ̇n

]
. (15)

We introduce the following dimensionless parameters:

z̃ ≡ z

UKK

, K( z̃ ) ≡ 1 + z̃ 2 =
(

Uz

UKK

)5

, (16)

and using these parameters, we rewrite the action (15) as

SD4 = −μ̃4(2πα′)2 R4

U
3/2
KK

∫
d4xd z̃

×
∑
n,m

[
1

4
K−1/2F (n)

μν F (m)μνψnψm

+ 1

2
M2

KKK9/10B(n)
μ B(m)μ∂ z̃ ψn∂ z̃ ψm

]
. (17)

Functions ψn (n � 1) satisfy the normalization condition as

μ̃4(2πα′)2 R4

U
3/2
KK

∫
d z̃ K−1/2 ψnψm = δnm . (18)

Also, we suppose the functions ψn (n � 1) satisfy the
following condition:

μ̃4(2πα′)2 R4

U
3/2
KK

∫
d z̃ K9/10 ∂ z̃ ψm ∂ z̃ ψn = λnδnm. (19)

Using Eqs. (18) and (19), an eigenvalue equation is obtained
for the functions ψn (n � 1) as

−K1/2 ∂ z̃ (K9/10 ∂ z̃ ψm) = λmψm . (20)

Considering the above conditions, the action becomes canon-
ically normalized

SD4 =
∫

d4x

∞∑
n=1

[
1

4
F (n)

μν Fμν(n) + 1

2
m2

n B(n)
μ Bμ(n)

]
, (21)

where B(n)
μ is a massive vector meson of mass mn ≡ λ

1/2
n MKK

for all n � 1. Let us consider ϕ(n) and rewrite the pseudoscalar
part of action (14) in terms of new variables, Eq. (16):

SD4 = −μ̃4(2πα′)2
∫

d4xd z̃
25

4
U

3/2
KK K9/10

×
∑
m,n

[
1

2
UKK∂μϕ(m)∂μϕ(n)φmφn

− ∂μϕ(m)Bμ(n)φm∂ z̃ ψn

]
. (22)
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In order to normalize the kinetic part of the above action, we
consider the following orthonormal condition for φn:

(φm, φn) ≡ 25

4
μ̃4(2πα′)2U

5/2
KK

∫
d z̃ K9/10 φmφn = δmn.

(23)

By multiplying Eq. (23) by λn and comparing it with Eq. (19),
we find that the functions φ(n) and ψ̇n are related together. In
fact, we can consider φn = m−1

n ψ̇n (n � 1). Also, there exists
a function φ0 = C/K9/10 which is orthogonal to ψ̇n for all
n � 1:

(φ0, φn) ∝
∫

d z̃ ∂ z̃ ψn = 0, (for n � 1). (24)

We use the normalization condition 1 = (φ0, φ0) to obtain
the normalization constant C. Finally by using an appropriate
gauge transformation, the action (10) becomes

SD4 = −
∫

d4x

[
1

2
∂μϕ(0)∂μϕ(0)

+
∑
n�1

(
1

4
F (n)

μν Fμν(n) + 1

2
m2

n B(n)
μ Bμ(n)

)]
, (25)

where ϕ(0) is the pion field, which is the Nambu-Goldstone
boson associated with the chiral symmetry breaking. An
interpretation of this field is the same as the critical SS
model [39]. Therefore it is not necessary to repeat it here.

To ensure that the field strengths vanish at z → ±∞, it
is useful to make another gauge choice, namely the Az = 0
gauge. Actually, we can transform to the new gauge through
the following gauge transformation:

AM → AM − ∂M� , (26)

and obtain the following new gauge fields:

Az(x
μ, z) = 0,

Aμ(xμ, z) = −∂μϕ(0)(xμ)ψ0(z) +
∑
n�1

B(n)
μ (xμ)ψn(z) .

(27)

Function ψ0(z) is calculated through

ψ0(z) =
∫ z

0
dz′ φ0(z′) = C UKK z̃ F1(0.5, 0.9, 1.5,− z̃ 2),

(28)

where F1 is well-known hypergeometric function. It should
be noted that the massless pseudoscalar meson appears in the
asymptotic behavior of Aμ, since we have

Aμ(xμ, z) → ±1.8CUKK ∂μϕ(0)(xμ) (as z → ±∞). (29)

In order to calculate the meson spectrum, it is necessary to
solve Eq. (20) numerically by considering the normalization
condition (18).

Since Eq. (20) is invariant under z̃ → − z̃ , we can assume
ψn to be an even or odd function. In fact, the B(n)

μ is a
four-dimensional vector and axial vector if ψn is an even or
odd function, respectively. Equation (20) is solved numerically
using the shooting method to obtain the mass of lightest
mesons. Our results are compared with the results of the

TABLE I. The ratio of the obtained eigenvalues of Eq. (20)
compared with the results of the SS model [39] and the ratio
of meson masses.

Our model SS model Experiment

λ2
λ1

2.78 2.4
m2

a1(1260)

m2
ρ

� (1230 MeV)2

(776 MeV)2 � 2.51

λ3
λ1

5.5 4.3
m2

ρ(1450)

m2
ρ

� (1465 MeV)2

(776 MeV)2 � 3.56

λ3
λ2

1.98 1.8
m2

ρ(1450)

m2
a1(1260)

� (1465 MeV)2

(1230 MeV)2 � 1.41

SS model and experimental data in Table I. As is clear, our
result are in good agreement with experimental data. Also, the
same values have been obtained in Ref. [49] using the AdS6

background which is exactly coincident with our results.
It is straightforward to generalize the above analyses to

the case of Nf > 1 flavor QCD by introducing Nf probe
D4 branes. In order to obtain a finite four-dimensional action
for the modes localized around z = 0, the field strength FMN

should vanish at z = ±∞. This implies that the gauge field
AM must asymptotically take a pure gauge configuration

AM (xμ, z) → U−1
± (xμ, z)∂MU±(xμ, z), (as z → ±∞).

(30)

In analogy to the SS model [39], we can write

Aμ(xμ, z) = U−1(xμ)∂μU (xμ)ψ+(z) +
∑
n�1

B(n)
μ (xμ)ψn(z),

(31)

where

ψ±(z) = 1
2 ± ψ̂0(z), (32)

ψ̂0( z̃ ) = 1
3.6 z̃ F1(0.5, 0.9, 1.5,− z̃ 2). (33)

Now, by neglecting the vector meson fields, B(n)
μ (n � 1), the

field strengths can be written as

Fμν = [U−1∂μU,U−1∂νU ] ψ+(ψ+ − 1) ,
(34)

Fzμ = U−1∂μU ∂ z̃ ψ̂0( z̃ ).

Substituting these quantities into the non-Abelian generaliza-
tion of Eq. (10), we obtain

SD4 = −μ̃4(2πα′)2
∫

d4x tr(A(U−1∂μU )2

+B [U−1∂μU,U−1∂νU ]2) , (35)

where the coefficients A and B are defined by the following
relations:

A ≡ 2
25

8

1

U 3
KK

∫
d z̃ U 9/2

z (∂ z̃ ψ̂0( z̃ ))2 = 25

4

U
1/2
KK

3.6
,

(36)

B ≡ 2
R4

4

∫
dz

1

U
5/2
z

ψ2
+(ψ+ − 1)2 = 0.16R4

2U
3/2
KK

.
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If we compare Eq. (35) with the familiar action of the Skyrme
model [53]

S =
∫

d4x

(
f 2

π

4
tr(U−1∂μU )2

+ 1

32e2
tr[U−1∂μU,U−1∂νU ]2

)
, (37)

it is possible to calculate the pion decay constant fπ and
dimensionless parameter e in terms of the noncritical model
parameters

f 2
π = 4 μ̃4(2πα′)2 A =

√
3

2

45 μ4(2 π α′)2

3.6 R3
NcM

2
KK, (38)

and

1

e2
= 32 μ̃4(2πα′)2 B =

√
3

8
μ4(2 π α′)2 R Nc. (39)

It is clear from the above equations that the parameters fπ

and e depend on Nc as fπ ∼ O(
√

Nc) and e ∼ O(1/
√

Nc),
respectively. It is coincident with the result obtained from the
SS model and also QCD in large Nc. We fix the MKK such that
the fπ ∼ 93 MeV for Nc = 3. So, we obtain MKK = 395 MeV
for our holographic model. It should be noted that MKK is the
only mass scale of the noncritical model below which the
theory is effectively pure Yang-Mills in four dimensions.

III. BARYON IN AdS6

In this section we aim to introduce baryon configuration
in the noncritical holographic model. As is known, in the SS
model the baryon vertex is a D4 brane wrapped on a S4 cycle.
Here in six-dimensional configuration, there is no compact S4

sphere. So, we introduce an unwrapped D0 brane as a baryon
vertex instead [26]. In analogy with the SS model, there is a
Chern-Simons term on the vertex world volume as

SCS ∝
∫

dt A0(t), (40)

which induces Nc units of electric charge on the unwrapped
D0 brane. In accordance with the Gauss constraint, the net
charge should be zero. So, one needs to attach Nc fundamental
strings to the D0 brane. In turn, the other side of the strings
should end up on the probe D4 branes. The baryon vertex looks
like an object with Nc electric charge with respect to the gauge
field on the D4 brane whose charge is the baryon number.
This D0 brane dissolves into the D4 brane and becomes an
instanton soliton [26]. It is important to know the size of the
instanton in our model. In the SS model, it is shown that the
size of an instantonic baryon goes to zero at a large ’t Hooft
coupling limit which is one of the problems of the SS model
in describing the baryons [23].

Let us consider the DBI action in the Yang-Mills approxi-
mation for the D4 brane

SYM = −1

4
μ4(2πα′)2

∫
e−φ

√−g4+1 tr FmnF
mn. (41)

The induced metric on the D4 brane is

g4+1 =
(

U

R

)2(
ημνdxμdxν +

(
R

U

)4
dU 2

f (U )

)
. (42)

It is useful to define the new coordinate w

dw = R2 U 1/2 dU√
U 5 − U 5

KK

. (43)

Using this coordinate, the metric (42) transforms to a confor-
mally flat metric

g4+1 = H (w)(dw2 + ημνdxμdxν), (44)

where

H (w) =
(

U

R

)2

. (45)

Also, the w coordinate can be rewritten in terms of the z
coordinate introduced in Eq. (16) as

dw = 2

5

R2 U 3
KK dz(

U 5
KK − U 3

KK z2
)7/10 . (46)

Note that in the new conformally flat metric, the fifth direction
is a finite interval [−wmax,wmax] because

wmax =
∫ ∞

0

R2 U 1/2 dU√
U 5 − U 5

KK

= R2

UKK

∫ ∞

1

dŨ√
Ũ 5 − 1

� R2

UKK

1.25 < ∞. (47)

We can approximate w near the origin w � 0, as

w � 2

5

(
R

UKK

)2

z, (48)

and using relation (6), we obtain

w � z

MKK UKK

or MKK w � z

UKK

, (49)

or equivalently,

U 5 � U 5
KK

(
1 + M2

KK w2). (50)

In analogy with the SS model, this relation implies that MKK

is the only mass scale that dictated the deviation of the metric
from the flat configuration and it is the only mass scale of the
theory in the low energy limit. (It should be noted that the
D4 branes come with two asymptotic regions at w → ±wmax

corresponding to the ultraviolet and infrared region near the
w � 0.)

Equation (41) is rewritten in the conformally flat metric
(44) as

SD4
YM = −1

4
μ4(2πα′)2

∫
d4xdwe−φ

(
U (w)

R

)
trFmnF

mn

= −
∫

dx4dw
1

4e2(w)
trFmnF

mn. (51)
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Thus, the position dependent electric coupling e(w) of this
five-dimensional Yang-Mills is equal to

1

e2(w)
≡

√
3/2 μ4 (2 π α′)2 R Nc

5
MKK

(
U

UKK

)
. (52)

Also, for a unit instanton we have

1

8π2

∫
trF ∧ F = 1

16π2

∫
trFmnF

mn = 1. (53)

Inserting the above relations into Eq. (51), we obtain the energy
of a point-like instanton localized at w = 0 as

m
(0)
B =

√
3/2 4π2μ4 (2 π α′)2R

5
Nc MKK. (54)

By increasing the size of the instanton, more energy is needed
because 1/e2(w) is an increasing function of |w|. So the
instanton tends to collapse to a point-like object. On the other
hand, Nc fundamental strings attached to the D4 branes behave
as Nc units of electric charge on the brane. The Coulomb
repulsions among them prefer a finite size for the instanton.
Therefore, there is a competition between the mass of the
instanton and Coulomb energy of fundamental strings. For
a small instanton of size ρ with the density D(xi, w) ∼
ρ4/(r2 + w2 + ρ2)4, the Yang-Mills energy is approximated
as

∼ 1
6 m

(0)
B M2

KKρ2, (55)

and the five-dimensional Coulomb energy is

∼1

2
× e(0)2N2

c

10π2ρ2
. (56)

The size of a stable instanton is obtained by minimizing the
total energy

ρ2
baryon � 1√

3/2 2π2μ4 (2 π α′)2

1

M2
KK

. (57)

As it is stated in the previous section, in the SS model (the
critical version of dual QCD) the size of the instanton goes to
zero because of the large ’t Hooft coupling limit. However in
the noncritical string theory, the ’t Hooft coupling is of order
one. So, the size of the instanton is also of order 1 but it is still
smaller than the effective length of the fifth direction ∼1/MKK

of the dual QCD.

IV. NUCLEON-NUCLEON POTENTIAL

In the previous section, we demonstrated that the size of
the baryon in the noncritical holographic model is smaller
than the scale of the dual QCD and we can assume that
the baryon is a point-like object in five dimensions. Thus
as a leading approximation, we can treat it as a point-like
quantum field in five dimensions. In the rest of this paper,
we will restrict ourselves to fermionic baryons because we
intend to study the nucleons. So, we consider the odd Nc

to study a fermionic spin-1/2 baryon. We choose Nc = 3 in
our numerical calculations for realistic QCD. Also, we will
assume NF = 2 and consider the lowest baryons which form
the proton-neutron doublet under SU(NF = 2). All of these

assumptions lead us to introduce an isospin-1/2 Dirac field,
N for the five-dimensional baryon.

The leading 5D kinetic term for N is the standard Dirac
action in the curved background along with a position
dependent mass term for the baryon. Moreover, there is a
coupling between the baryon field and the gauge filed living
on the flavor branes that should be considered. Therefore, a
complete action for the baryon reads as∫

d4xdw

[
− iN̄γ mDmN − imb(w)N̄N

+ g5(w)
ρ2

baryon

e2(w)
N̄γ mnFmnN

]
−

∫
d4xdw

1

4e2(w)
tr FmnF

mn, (58)

where Dm is a covariant derivative, ρbaryon is the size of the
stable instanton, and g5(w) is an unknown function with a
value at w = 0 of 2π2/3 [23]. γ m are the standard γ matrices
in the flat space and γ mn = 1/2[γ m, γ n].

The factor
ρ2

baryon

e2(w) is used for convenience. Usually, the first
two terms in the action are called the minimal coupling and the
last term in the first integral refers to the magnetic coupling.

A four-dimensional nucleon is the localized mode at w � 0
which is the lowest eigenmode of a five-dimensional baryon
along the w direction. So, the five-dimensional action for
the baryon must be reduced down to the four dimensions. In
order to do this, one should perform the KK mode expansion
for the baryon field N (xμ,w) and the gauge field A(xμ,w).
The gauge field has a KK mode expansion which studied in
Sec. III in detail. The baryon field also can be expanded as

NL,R(xμ,w) = NL,R(xμ)fL,R(w), (59)

where NL,R(xμ) is the chiral component of the four-
dimensional nucleon field. Also the profile functions, fL,R(w)
satisfy the following conditions:

∂wfL(w) + mb(w)fL(w) = mBfR(w),
(60)

−∂wfR(w) + mb(w)fR(w) = mBfL(w),

in the range w ∈ [−wmax,wmax], and the eigenvalue mB is the
mass of the nucleon mode, N (x). Moreover, the eigenfunctions
fL,R(w) obey the following normalization condition:∫ wmax

−wmax

dw |fL(w)|2 =
∫ wmax

−wmax

dw |fR(w)|2 = 1. (61)

It is more useful to consider the following second-order
differential equations for fL,R(w):[−∂2

w − ∂wmb(w) + (mb(w))2]fL(w) = m2
BfL(w),

(62)[−∂2
w + ∂wmb(w) + (mb(w))2]fR(w) = m2

BfR(w).

As we approach w → ±wmax , mb(w) diverges as mb(w) ∼
1

(w∓wmax )2 and the above equations have normalizable eigen-
functions with a discrete spectrum of mB . Note that the
term −∂wmb(w) is asymmetric under w → −w. It causes
that fL(w) tends to shift to the positive side of w and the
opposite behavior happens for fR(w). It is important in the
axial coupling of the nucleon to the pions.
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It is mentioned in Sec. II that the gauge field has a mode
expansion (31) at Az = 0 gauge which can be rewritten as

Aμ(x,w) = iαμ(x)ψ0(w) + iβμ(x) +
∑

n

B(n)
μ (x)ψ(n)(w),

(63)

where αμ and βμ are related to the pion field U (x) = e2iπ(x)/fπ

by the following relations:

αμ(x) ≡ {U−1/2, ∂μU 1/2},
(64)

βμ(x) ≡ 1
2 [U−1/2, ∂μU 1/2].

Here, we use the above expansion along with the properties
of fL(w) = ±fR(−w), ψ0, and ψ(n) under the w → −w
transformation to calculate the four-dimensional action. It
is worthwhile to note that again ψ(2k+1)(w) is even, while
ψ(2k)(w) is odd under w → −w, corresponding to vector
B(2k+1)

μ (xμ) and axial-vector mesons B(2k)
μ (xμ), respectively.

For simplicity, we neglect the Chern-Simons term in the baryon
equation (58). By inserting the mode expansion of the baryon
field in the action, we obtain the minimal coupling as

Smin =
∫

d4xdw[−iN̄ f̄ γ m(∂m − iAm)Nf

− imb(w)N̄ f̄ Nf ]

=
∫

d4x[−iN̄ γ μ∂μN − imBN̄ N ]

−
∫

d4xdw[N̄ f̄ γ μAμN f ]. (65)

Now, we expand the gauge field presented in the last integral
using Eq. (63). Since the parity of ψ(n)(w) depends on n,
it is possible to separate the odd and even n. After taking
the integrals over w, we obtain the four-dimensional minimal
action for the nucleon as

Smin =
∫

d4x
[−iN̄γ μ∂μN − imBN̄N + Lmin

vector + Lmin
axial

]
,

(66)

where the minimal vector and axial interactions are

Lmin
vector = −iN̄γ μβμN −

∑
k�0

g
(k)
V,minN̄γ μB(2k+1)

μ N,

Lmin
axial = − igA,min

2
N̄γ μγ 5αμN (67)

−
∑
k�1

g
(k)
A,minN̄γ μ γ 5 B(2k)

μ N.

The various minimal couplings constants g
(k)
V,min, g

(k)
A,min as well

as the pion-nucleon axial coupling gA,min are calculated by the
following suitable overlap integrals of wave functions:

g
(k)
V,min =

∫ wmax

−wmax

dw |fL(w)|2ψ(2k+1)(w),

g
(k)
A,min =

∫ wmax

−wmax

dw |fL(w)|2ψ(2k)(w), (68)

gA,min = 2
∫ wmax

−wmax

dw |fL(w)|2ψ0(w).

Also, the magnetic interaction term in Eq. (58) becomes

Smagnetic = −
∫

d4xdw

(
g5(w)

ρ2
baryon

e2(w)
N̄ f̄ γ wμFwμNf

)
.

(69)

Inserting the gauge field expansion into Eq. (69), the magnetic
interaction reads as

Smagnetic =
∫

d4x
(Lmagnetic

vector + Lmagnetic
axial

)
, (70)

where

Lmagnetic
vector = −

∑
k�0

g
(k)
V,magN̄γ μγ 5B(2k+1)

μ N,

Lmagnetic
axial = − igA,mag

2
N̄γ μγ 5αμN (71)

−
∑
k�1

g
(k)
A,magN̄γ μγ 5B(2k)

μ N,

and the magnetic couplings are defined as

gA,mag = 4
∫ wmax

−wmax

dw

(
g5(w)

ρ2
baryon

e2(w)

)
|fL(w)|2∂wψ0(w),

g
(k)
A,mag = 2

∫ wmax

−wmax

dw

(
g5(w)

ρ2
baryon

e2(w)

)
|fL(w)|2∂wψ(2k)(w) ,

g
(k)
V,mag = 2

∫ wmax

−wmax

dw

(
g5(w)

ρ2
baryon

e2(w)

)
|fL(w)|2∂wψ(2k+1)(w).

(72)

Using Eq. (52), we can rewrite the magnetic couplings as

g
(k)
V,mag = 2 Cmag

∫ wmax

−wmax

dw

(
g5(w)

g5(0)

)(
U (w)

UKK

)
× |fL(w)|2∂wψ(2k+1)(w),

g
(k)
A,mag = 2 Cmag

∫ wmax

−wmax

dw

(
g5(w)

g5(0)

)(
U (w)

UKK

)
× |fL(w)|2∂wψ(2k)(w), (73)

gA,mag = 4 Cmag

∫ wmax

−wmax

dw

(
g5(w)

g5(0)

)(
U (w)

UKK

)
× |fL(w)|2∂wψ0(w),

where we define Cmag as

Cmag =
√

3/2μ4 (2 π α′)2

5
R Nc g5(0) MKK ρ2

baryon. (74)

Also, there is a next-to-leading order term in the magnetic
coupling equation which is responsible for the derivative
couplings. Finally by considering the derivative terms, the
Lagrangian of the nucleon is obtained as

Lnucleon = −iN̄γ μ∂μN − imBN̄N + Lvector + Laxial, (75)
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where

Lvector = − iN̄γ μβμN −
∑
k�0

g
(k)
V N̄γ μB(2k+1)

μ N

+
∑
k�0

g
(k)
dV N̄γ μν∂μB(2k+1)

ν N,

Laxial = − igA

2
N̄γ μγ 5αμN −

∑
k�1

g
(k)
A N̄γ μγ 5B(2k)

μ N

+
∑
k�0

g
(k)
dAN̄γ μνγ 5∂μB(2k)

ν N. (76)

Also, g = gmin + gmag stands for all the couplings. We neglect
the derivative couplings in the following calculations as a
leading approximation.

Since the instanton carries only the non-Abelian field
strength, the isoscalar mesons couple to the nucleon in a
different formalism than the isovector mesons. Therefore for
the isoscalar mesons, such as the ω(k) meson, only the minimal
couplings contribute:

gisoscalar
A = gA,min,

g
(k),isoscalar
A = g

(k)
A,min, (77)

g
(k),isoscalar
V = g

(k)
V,min.

However, the isovector mesons couple to the nucleon from both
the minimal and magnetic channels. Thus, isovector meson
couplings are

gisovector
A = gA,min + gA,mag,

g
(k),isovector
A = g

(k)
A,min + g

(k)
A,mag, (78)

g
(k),isovector
V = g

(k)
V,min + g

(k)
V,mag.

The isoscalar and isovector mesons have the same origin
in the five-dimensional dynamics of the gauge field. In fact, if
we write the gauge field in the fundamental representation, we
could decompose the massive vector mesons as

B(2k+1)
μ =

(
1/2 0
0 1/2

)
ω(k)

μ + ρ(k)
μ , (79)

where ω(k)
μ and ρ(k)

μ are the isoscalar and the isovector parts of
a vector meson, respectively. Since the baryon is made out of
Nc product quark doublets, the above composition for nucleon
should be written as

B(2k+1)
μ =

(
Nc/2 0

0 Nc/2

)
ω(k)

μ + ρ(k)
μ . (80)

Therefore, there is an overall factor Nc between the isoscalar
ω(k)

μ and isovector ρ(k)
μ mesons. Indeed, there is a universal

relation between the Yukawa couplings involving the isoscalar
and isovector mesons

|gω(k)NN | � Nc × |gρ(k)NN | . (81)

We will be back to this relation later. Here we need to
solve the eigenvalue equation (62) numerically to obtain the
wave function fL,R and the mass mB of the nucleon. It
is useful to define the dimensionless variables w̃ = MKKw,

TABLE II. Numerical results for axial and vector meson cou-
plings in the noncritical holographic model of QCD. The values of
vector couplings are compared with the SS model results [23].

k g
(k)
A,min g

(k)
A,mag g

(k),a
V,min g

(k),b
V,min g

(k),a
V,mag g

(k),b
V,mag

0 1.16 1.86 8.30 5.933 −1.988 −0.816
1 1.07 1.44 1.6488 3.224 −6.83 −1.988
2 0.96 0.862 1.9 1.261 −7.44 −1.932
3 0.67 0.14 0.688 0.311 −4.60 −0.969

aPresented model results.
bSS model results.

Ũ = U/UKK , and z̃ = z/UKK which are related together by

w̃ =
∫ z̃

0

dz̃

[1 + z̃2]
7

10

= 5

2

∫ Ũ

1
dŨ

√
Ũ

Ũ 5 − 1
, (82)

and rewrite the mb(w) in terms of these dimensionless variables
as

mb(w) � m
(0)
b · Ũ = MKK m̃b(w̃), (83)

where

m̃b(w̃) =
√

3/2 4π2μ4 (2 π α′)2 R

5
Nc Ũ (w̃). (84)

After rewriting Eq. (62) in terms of w̃, we obtain

[−∂2
w̃ − ∂w̃m̃b(w̃) + (m̃b(w̃))2]fL(w̃) =

(
mB

MKK

)2

fL(w̃).

(85)

The key idea for using dimensionless variables is that the
functions fL(w̃) do not depend on the scales further. Now, we
use the shooting method again to solve the above equation
numerically and find fL(w̃) and its eigenvalue, mB/MKK . In
order to do the numerical calculation, we assume Nc = 3 for
realistic QCD. Also was mentioned in the previous section, we
choose the value of MKK = 0.395 GeV to have the pion decay
constant fπ = 0.093 GeV. We obtain the various couplings by
evaluating integrals (68) and (73) and compare some of our
results with the results of the SS model [23] in Table II.

Also, using this noncritical model, the axial couplings are
obtained as

gA,mag = 1.582, gA,min � 0, (86)

while in the previous analyses [23] using the SS model, these
couplings are reported as

gA,mag = 0.7
Nc

3
, gA,min � 0.13. (87)

If we choose Nc = 3, then the SS model predicts gA,mag = 0.7
and gA = 0.83. It should be noted that the higher order of 1/Nc

corrections can be used to improve this result but the lattice
calculations indicate that higher order of 1/Nc corrections
are suppressed. Our results are a good approximation of the
experimental data at leading order g

exp
A = 1.2670 ± 0.0035.
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TABLE III. The values of different effective meson-nucleon
couplings in the phenomenological interaction models [54], SS model
[23], and our model.

g V18 CD-Bonn Nijm(93) Paris SS model Our model

ga0 9.0 9.0 9.0 10.4 – –
gσ 9.0 11.2 9.8 7.6 – –
gπ 13.4 13.0 12.7 13.2 16.48 15.7
gη 8.7 0.0 1.8 11.7 16.13 0.0
gω 12.2 13.5 11.7 12.7 12.6 11.57
gρ – 3.19 2.97 – 3.6 3.15
ga1 – – – – 3.94 1.51
gf 1 – – – – 1.74

V. NUCLEON-MESON COUPLINGS

In the previous section, we explained that the NN inter-
action can be interpreted as meson exchange potentials. We
showed that the nucleons couple to the meson through the
minimal and magnetic couplings. Our holographic NN po-
tential contains just the vector, axial-vector, and pseudoscalar
meson exchange potentials which have the isospin dependent
and isospin independent components.

All of the leading order meson-nucleon couplings are
calculated numerically and compared with the predictions of
the four modern phenomenological NN interaction models
such as the AV 18 [8], CD-Bonn [7], Nijmegen(93) [6],
and Paris [5] potentials in Table III. Also, results of the SS
model are presented in the table. It is necessary to mention
here that the components of the phenomenological models
are very different in strength, and if parametrized in terms of
single meson exchange, give rise to effective meson-nucleon
coupling strengths, which also are similar. We explain different
components of the NN potential below in detail.

A. Scalar potential

In the phenomenological interaction models, the exchange
of a single scalar meson produces the isospin independent
scalar potential. The mass of the lowest scalar meson is not
established well [55], but in the phenomenological NN inter-
action models it is typically taken to be of order 500–700 MeV.
By considering mS to be roughly 600 MeV, the effective scalar
meson coupling constant for these interaction models differs
from 7.6 (Paris) to 11.2 (CD-Bonn). It should be noted again
that these values are the effective couplings. In fact two of these
models do not contain any scalar meson in their parametrized
forms. In our holographic model based on the noncritical string
theory, there is no scalar interaction term either.

The isospin dependent component of the scalar potential
can be interpreted as a scalar spin-1 meson exchange. In
Nc counting, this component is of order 1/Nc, so it is
weaker than the isospin independent scalar meson by an
order of its magnitude. The effective values for the lowest
scalar meson [a0(980)], range from 9.0 to 10.4 in the various
phenomenological NN interaction models.

B. Vector potential

The vector component of the phenomenological NN
interaction models is equal to the scalar component with the
minus sign. It means that the strength of the a0(980) exchange
interaction is equal to the exchange of ρ(770) in the large
Nc limit. Indeed, the vector potential arises from a stronger
ω-meson exchange (isospin independent component) and a
weaker ρ-meson exchange (isospin dependent component)
interaction. In our model the vector meson couplings are
related to the minimal and magnetic couplings as follows:

gω(k)NN ≡ Nc g
(k),isoscalar
V

2
= Nc g

(k)
V,min

2
,

(88)

gρ(k)NN ≡ g
(k),isovector
V

2
= g

(k)
V,min + g

(k)
V,mag

2
.

The value of effective ω-nucleon coupling ranges from 11.7
[Nijmegen(93)] to 13.5 (CD-Bonn), while in the original ver-
sion of these models this value varies from 10.35 (Nijmegen)
to 15.85 (Bonn) [56]. In the SS model, gω is equal to 12.6
by considering MKK = 940 MeV, Nc = 3, and λ = 17. We
also obtain the value of gω = 11.57 which is in the range of
the values anticipated from the phenomenological potential
models. We have used Nc = 3 and MKK = 395 MeV in our
calculations. The obtained value for the nucleon mass in our
model is roughly 920 MeV which is very realistic and close to
the familiar nucleon mass.

The isospin dependent component of the vector potential
which arises from a ρ-meson exchange is roughly three
times weaker than the isospin independent component. In
a chiral quark model, it is expected to have gω = 3 gρ , but
the value of the R = gω/3 gρ differs from the one in the
above phenomenological interaction models. It is 1.66 for the
CD-Bonn, 1.5 for the Nijmegen, and 0.77 in the Paris model.
This ratio is about 1.2 in the SS model and equals to R = 1.33
in our model. Actually, the NN phase shifts uniformly require
a larger R than the chiral quark model prediction which is a
mystery. However in the resultant potential of the holographic
QCD model, it can be explained by the contribution of the
magnetic coupling in the vector channel.

C. Axial-vector potential

The Nijmegen(93) and CD-Bonn models do not contain
any single axial vector meson exchange, so there is no axial
vector interaction in their structures. The phenomenological
AV 18 and Paris potentials predict a small value for the axial
vector interactions too.

In our holographic potential model, the axial vector mesons
a(k) and f (k) couple to the nucleon with the following
couplings:

gf (k)NN ≡ Nc g
(k),isoscalar
A

2
= Nc g

(k)
A,min

2
,

(89)

ga(k)NN ≡ g
(k),isovector
A

2
= g

(k)
A,min + g

(k)
A,mag

2
.
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The values of the a(1)-nucleon and f(1)-nucleon couplings
are obtained at about 1.51 and 1.74, respectively, in our
holographic potential.

D. Pseudoscalar potential

The isospin independent pseudoscalar interaction comes
from an η′-meson exchange. This component is not well
constrained by NN scattering data and the phenomenological
interaction models give extremely different values for this
component ranging from 1.8 [Nijmegen(93)] to 11.7 (Paris).
While analyses of other observables such as η′-meson photo-
production suggest that the coupling constant value should
not go beyond 2.2 [57]. In our holographic potential, the
pseudoscalar mesons such as the pion π and η′ couple to
the nucleon as

gπ (k)NN

2mN

MKK ≡ gisovector
A

2fπ

MKK = gA,min + gA,mag

2fπ

MKK,

gη′(k)NN

2mN

MKK ≡ Nc gisoscalar
A

2 fπ

MKK = NcgA,min

2 fπ

MKK.

(90)

We obtain gη = 0 at the leading order. Despite the isospin
independent component, the isospin dependent component is
strong and spread on a long range. All of the models considered
here have a main component for this interaction which is
a pion exchange potential. The values of the pion-nucleon
coupling constant, gπ , vary from 12.7 to 13.4 effectively. In
our calculation, gπ is evaluated as 15.7 while in the calculations
based on the SS model it is obtained at 16.48 [23].

VI. CONCLUSION

In this study, we used the noncritical holographic duality of
gauge theories in the background of the near-extremal AdS6.
We obtained the mass scale of the model by a comparison of
the pion field action with the usual Skyrme model action. We
showed that the size of the baryon is of order one in respect
to the t’ Hooft coupling but it is still smaller than the scale of
the dual QCD. So we introduced an isospin-1/2 Dirac field for
the five-dimensional baryon and wrote an effective action for
it. Then, we reduced the five-dimensional action down to the
four dimensions using the mode expansion and obtained the
NN interaction in terms of the meson exchange potentials.

In our analyses such as the critical ones, the NN potential
involves only the pseudoscalar, vector, and axial vector meson
interactions. In fact these meson exchange potentials play
a special role in producing the NN potential. The long-
range part of the potential (r > 3 fm) is mostly due to
the one-pion-exchange mechanism which is the strongest
component among the isospin dependent components. In the
phenomenological potential models, the isospin dependent
pseudoscalar meson exchange potential is of order N3

c while
the isospin independent component is of order Nc. So it is
expected that the η-meson exchange potential would be much
weaker than the π -meson exchange potential. We obtained
gπ = 15.7 and gη = 0.0 at the leading order that is consistent
with the phenomenological interaction models.

Isospin independent scalar mesons are responsible for the
attractive interaction in the intermediate range (0.7 < r <
2 fm) of the potential. These components are the main
reason for the nuclear binding. Also in the phenomenological
interaction models, the strength of this interaction is equal to
the vector meson exchange with a minus sign. In fact, the radial
shapes differ considerably at short distances, ranging from the
attractive to repulsive area. Some of these phenomenological
potential models involve only the scalar meson exchange and
the others contain the vector meson exchange interaction term.
We considered the vector meson exchange potential in our
analyses which produces the strong short-range repulsion. By
exchanging the vector meson, ρ can explain the small attractive
behavior of the odd-triplet state.

We compared our results with the available values of
coupling constants predicted in the four modern phenomeno-
logical interaction models [Nijmegen(93), Paris, CD-Bonn,
and AV 18 models] in Table III. The remarkable point is that all
of the meson-nucleon couplings are calculated directly in our
model whereas in the phenomenological interaction models
these values were obtained by fitting the NN scattering data.
It is also obvious from Table III that the values of the coupling
constants are very different in the various interaction models.

We believe that our noncritical holography model is more
reliable than the critical SS model to study the NN interactions
for these reasons:

(i) Just like the SS model, there exist some KK modes
which come from the antiperiodic boundary conditions
over the circle S1. These modes have the masses of the
same order of magnitude as the lightest glueballs of the
four-dimensional YM theory. The critical holographic
models such as the SS model, have some extra KK
modes too which do not belong to the spectrum of pure
YM theory. These undesired KK modes come from the
extra internal space over which ten-dimensional string
theory is compactified, for example, the S4 sphere in
the SS model. In the noncritical holographic model,
which we used here, there is no additional compactified
sphere, so there are no such extra KK modes and the
QCD spectrum is clear from them. Thus it seems that
our model based on the noncritical holography is much
more reliable. As we mentioned earlier, we obtained
the value of MKK roughly half of its value in the SS
model.

(ii) The size of the baryon is proportional to 1/
√

λNc in the
SS model and becomes zero at large ’t Hooft coupling
while it is of order one in our calculations. So, our
model does not suffer from the zero size of the baryon.

(iii) Also, the nucleon mass is obtained at 1.93 MKK in the
SS model. The mass scale which can describe the meson
spectrum is roughly MKK = 940 MeV. So the nucleon
mass is about 1.8 GeV in the SS model. It causes some
inconsistency in analyzing the baryon, because the scale
of the system associated with the baryonic structure
is roughly half the one needed to fit to the mesonic
data [36]. But in our analyses the mass of the nucleon
is obtained at roughly 920 MeV which is very close to
the neutron (proton) mass.
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(iv) In addition, our noncritical calculations can describe
the meson-nucleon couplings successfully at least at
the leading order.

This holography potential model can be improved by
considering the contributions of derivative couplings and
exchange of the other mesons to the NN potential. Also, the

couplings can be computed with more accuracy however it
seems that the contribution of heavy meson exchange does not
play a major role in such calculations. Moreover, we can use
the obtained potential here to study the nuclear properties such
as the NN scattering data and nuclear binding energies. We
leave them here as our future work.
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