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We apply the successful Monte Carlo Glauber and IP-Glasma initial-state models of heavy-ion collisions
to the much smaller size systems produced in proton-proton, proton-nucleus, and deuteron-nucleus collisions.
We observe a significantly greater sensitivity of the initial-state geometry to details of multiparticle production
in these models compared to nucleus-nucleus collisions. In particular, we find that the size of the system
produced in p + A collisions is very similar to the one produced in p + p collisions and predict comparable
Hanbury-Brown-Twiss radii in the absence of flow in both systems. Differences in the eccentricities computed in
the models are large, while differences among the generated flow coefficients v2 and v3 are smaller. For a large
number of participants in proton-lead collisions, the v2 generated in the IP-Glasma model is comparable to the
value obtained in proton-proton collisions. Viscous corrections to flow are large over characteristic lifetimes in the
smaller size systems. In contrast, viscous contributions are significantly diminished over the longer space-time
evolution of a heavy-ion collision.
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I. INTRODUCTION

A recent discovery in high-multiplicity proton-proton and
proton-nucleus collisions are correlations between pairs of
charged hadrons that are collimated in their relative azimuthal
angle and are long range in relative rapidity. These “ridge”
correlations were mostly unanticipated for such small-size
systems, albeit a similar striking effect was previously seen
in heavy-ion collisions at the BNL Relativistic Heavy Ion
Collider (RHIC) and subsequently also at the CERN Large
Hadron Collider (LHC). The ridge in

√
s = 7 TeV proton-

proton collisions was discovered by the CMS collaboration [1].
In proton-lead collisions at

√
s = 5.02 TeV/nucleon, a sizable

ridge was observed by the CMS collaboration [2], the
ALICE collaboration [3], and the ATLAS collaboration [4].
In addition, the PHENIX collaboration at RHIC recently
discovered a ridge in very central deuteron-gold collisions
at

√
s = 200 GeV/nucleon [5].

These long-range correlations are of fundamental im-
portance because they probe the very early time dynamics
of matter produced in hadronic collisions. A question of
considerable recent interest is whether the ridge effect in
p + p and p/d + A collisions is attributable to initial-state
effects arising from the correlations of gluons already present
in the nucleon and nuclear wave functions or whether it is
attributable to final-state rescattering effects that are amenable
to a hydrodynamic description. In both cases, one assumes
a dynamical scenario where long-range rapidity correlations
are generated in the initial state.1 The question is whether the
azimuthal collimation observed in the ridge is also attributable

1In hydrodynamical models, these long-range rapidity correlations
are a consequence of the choice of initial conditions, wherein the
initial transverse spatial profile of the energy density distribution
is assumed to be the same at all rapidities. Though not widely

to the same initial-state correlations that generate long-range
rapidity correlations or whether they are generated primarily
by the final-state flow of these correlated structures.

A powerful framework in which long-range rapidity cor-
relations can be computed systematically is the color glass
condensate (CGC) effective field theory (EFT) [6]. In the CGC
EFT, these correlations are a consequence of gluon saturation
at central impact parameters in the proton and nuclear wave
functions. In the hadronic collision, gluon fields are generated
that stretch out in rapidity between the receding hadrons and
are coherent in the transverse plane over distances 1/Qs , where
Qs is the saturation scale. The saturation scale in a hadron
or nucleus is a function of the parton momentum fraction x
and impact parameter and grows with increasing energy and
nuclear size.

Multiparticle production, by the decay of the gauge field
configurations corresponding to these Glasma flux tubes [7],
is nearly boost invariant and nearly azimuthally isotropic; the
resulting multiplicity distribution is the negative binomial dis-
tribution [8]. The QCD graphs that generate these distributions
are called “Glasma graphs.” At high kT � Qs , the contribution
of these graphs is highly suppressed. In contrast, for kT � Qs ,
where high occupancies in hadron wave functions are probed,
Glasma graphs are enhanced by α−8

s , a factor of ∼105 for
typical values of the probed QCD fine structure constant
αs . In nuclear collisions at ultrarelativistic energies, these
(nearly) boost-invariant configurations are argued to provide
the dominant mechanism for multiparticle production, and

appreciated, this choice corresponds to an assumption of strong
long-range correlations in the dynamics of multiparticle production
at short transverse spatial distances. Only azimuthal correlations are
dynamically generated by the hydrodynamic equations.
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factorization theorems (to leading logarithmic accuracy in x)
have been derived [9–11].

Though the bulk of multiparticle production is nearly
azimuthally isotropic, it is not exactly so. As first noted in
Ref. [12], based on the formalism in Refs. [11,13], Glasma
graphs produce contributions that are collimated at relative
azimuthal separations of �� ≈ 0 and �� ≈ π . It has been
shown recently that these initial state contributions provide a
quantitative description of the measured collimated yield in
both proton-proton and proton-nucleus collisions [14–17].

However, as observed previously [18,19], long-range
rapidity correlations from the initial state can also be colli-
mated by the radial flow of a fluid. Indeed, within the Glasma
flux tube framework itself, the radial flow of Glasma flux tubes
correlated over distance scales 1/Qs was shown to generate a
sizable ridge for large radial flow velocities [7,20]. In nucleus-
nucleus collisions, where large radial flow is generated, several
groups have shown that hydrodynamical flow provides a very
good explanation of the data on two-particle correlations in
the �η-�� plane [21–24]. There have also been attempts
to extend this description of the ridge in nucleus-nucleus
collisions to the ridges observed in high multiplicity proton-
proton [25,26] and p + Pb [27–30] collisions. In the latter
case, it is claimed that features of LHC high-multiplicity
data on proton-nucleus collisions [31] and corresponding data
in deuteron-gold collisions at RHIC [5] are quantitatively
explained in the Monte Carlo (MC) Glauber hydrodynamic
model of Refs. [27–29].

We argue here that the applicability of hydrodynamics to
the smaller size systems of proton-proton and proton/deuteron-
nucleus collisions is strongly dependent on assumptions
about the nature of the initial multiparticle dynamics, much
more so than in collisions of heavy nuclei. We illustrate
this by comparing results obtained in MC-Glauber models
with particular dynamical assumptions about the initial-state
geometry with those obtained in the framework of the IP-
Glasma initial-state model [32,33] of hadrons and nuclei.
Very noticeable differences are seen between the two models
(with the same initial-state configurations) for the computed
eccentricities and corresponding flow coefficients. In contrast,
both initial-state models, when combined with event-by-
event hydrodynamical simulations, as in Refs. [34–38], give
similarly good descriptions2 of bulk multiplicity and flow
observables in heavy-ion collisions at both RHIC and the LHC.

The paper is organized as follows. In the next section,
we outline the different methods employed to compute
the initial spatial sizes and eccentricities and some of the
consequences thereof. We review the IP-Glasma model and
show its predictions for the initial spatial sizes in proton-proton
and proton-nucleus collisions. We compare the eccentricities
obtained in this model to those in various implementations
of the MC-Glauber model for proton-nucleus. The generated
flow in proton-proton and proton/deuteron-nucleus collisions

2The IP-Glasma + MUSIC model of Ref. [38] also reproduces the
event-by-event vn fluctuations measured by the ATLAS collabora-
tion [39]; at present, it appears to be the only model that successfully
reproduces these flow fluctuations.

is considered next and contrasted between the two models.
The final section discusses the magnitude of viscous effects
in different implementations of viscous hydrodynamics in
proton-nucleus and nucleus-nucleus collisions. We end with a
brief summary and outlook.

II. MODELS OF THE INITIAL-STATE GEOMETRY

Modeling the initial state in p + A, d + A, and especially
p + p collisions is a lot more challenging than in A + A
collisions. In the latter, the system’s geometry is primarily
characterized by the overall shape of the interaction region.
The dominant component in shape fluctuations is attributable
to geometrical fluctuations of nucleon positions inside the
nuclei from event to event. The large number of participants
allows one, to first approximation, to neglect the dynamical
details of how energy is deposited in A + A interactions.
In p + A and d + A collisions, the system’s geometry is
very sensitive to the proton (or deuteron) size, and the
detailed nature of multiparticle production and the spatial
distribution of the produced energy density become important.
In particular, subnucleon size fluctuations (with characteristic
length scales less than 1 fm) contribute significantly to the
initial geometry of matter produced in the collision.

The spatial eccentricities that characterize the geometry of
the initial state can be defined as

εn =
√

〈rn cos(nφ)〉2 + 〈rn sin(nφ)〉2

〈rn〉 , (1)

where 〈·〉 is either an average over all participant nucleon
positions characterized by the nucleon centers or an average
weighted by the deposited energy density.

In each realization of the MC-Glauber model, all partic-
ipants contribute equally to the energy density deposited in
the system. For example, two nucleons that barely touched
each other in the collision are assumed to deposit the same
amount of energy as two nucleons that interacted with zero
relative impact parameter. However, in a microscopic parton
model based picture of the hadron, it is natural to expect that
peripheral nucleon-nucleon collisions deposit significantly
less matter than the central ones. This is because the parton
density decreases rapidly with impact parameter [40], a picture
confirmed by phenomenological descriptions of diffractive
deeply inelastic scattering data from the HERA collider in
the framework of the IP-Sat dipole model [41]. This physics
is naturally incorporated in the IP-Glasma approach, with the
saturation scale depending on the impact parameter [32].

In many Glauber model computations, the energy even in a
peripheral collision is deposited in the center of the wounded
nucleons [42]. This is sketched in the leftmost configuration
shown in Fig. 1 and corresponds to the ellipticity ε2 ≈ 1
and triangularity ε3 = 0, when participant centers are used
to compute the average in Eq. (1). However, on the basis
of the parton model arguments outlined, one expects that
peripheral nucleon-nucleon collisions will deposit most of
the produced energy in the region of overlap, as illustrated
in the middle figure of Fig. 1. In this case, both the ellipticity
ε2 = 0 and the triangularity ε3 = 0, if one assumes an isotropic
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FIG. 1. (Color online) Various models of the energy density
deposition (denoted by red dots) in nucleon-nucleon collisions. In
the left plot (a) the energy density is produced at the center of the
colliding nucleons even for grazing collisions. The center and right
plots (b) and (c) correspond to different eccentricities depending
on the matter distribution in the nucleon overlap region. For the
configuration depicted on the left eccentricity ε2 ≈ 1, whereas for the
configuration in the center ε2 = 0.

energy density deposition. Following the shape of the overlap
region for the deposition of energy density, as sketched in the
rightmost figure in Fig. 1, can produce instead eccentricities
that are anywhere in between the two extremes of the other
two configurations.

In A + A collisions, because of the large number of
overlapping nucleons, these finer details of geometry are less
important. In contrast, these different microscopic pictures will
have significant consequences for multiparticle production in
nucleon-nucleon and nucleon-nucleus collisions. We note that
in the IP-Sat framework, where particle production occurs
only in the geometrical overlap regions, a good description
is obtained of the n-particle multiplicity distributions in
proton-proton collisions at central rapidities from 200 GeV
to 7 TeV [43,44].

We now outline the IP-Glasma model, which has been
discussed at length elsewhere [32,33]. In this model, which
goes significantly beyond the treatment of hadron colli-
sions in [43,44], incoming gluon fields are computed from
fluctuating color charges via the classical QCD Yang-Mills
equations. In an individual nucleon, the color charges are
assumed to follow a local Gaussian distribution with variance
g2μ2

p(x, xT ), a quantity proportional to the saturation scale

Q
(p)
s (x, xT ) in the proton. This latter quantity is determined

from the IP-Sat dipole model [41] with parameters fit to HERA
data on inclusive and exclusive final states [45]. Products of
the nucleon dipole S matrices generate lumpy configurations of
glue in nuclei and are in agreement with extant fixed target data
on electron-nucleus scattering [46]. This gives the variance
g2μ2

A of Gaussian distributed nuclear charge distributions.
The latter, in the MV model [47,48], is used to solve for
the coherent classical gauge fields of the nuclei before the
collision. Here, as opposed to the previous implementation
described in Refs. [32,33], we compute x = Qs(x, xT )/

√
s

self-consistently at every transverse position xT . Further, the
running coupling is evaluated locally as αs(Q̄S(x, xT )), where
Q̄S = max(QA

S ,QB
S ), where Q

A(B)
S are the saturation scales of

the projectile (target).
The solution for the transverse (longitudinal) gauge fields

after the collision is obtained in Schwinger gauge Aτ = 0 and
is given by the sum (commutator) of the incoming purely
transverse fields to determine the initial energy and number
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FIG. 2. (Color online) System size in p + p and p + Pb colli-
sions as a function of the number of gluons to the power of 1/3,
(dN/dy)1/3, computed in the IP-Glasma model. rmax is the maximal
radius for which the energy density of the Yang-Mills fields are
above a minimal value of εmin = α
4

QCD, with α = 1 (solid symbols)
and α = 10 (open symbols). Note different energies for p + p and
p + Pb.

content of the Glasma fields [49–54]. The gauge fields are
regulated by an infrared mass scale m = 0.1 GeV, which
ensures the unphysical Coulomb tail from solutions of the
Yang-Mills equations is suppressed at large distances. This
procedure and the fact that the incoming fields are pure gauges
ensure that no energy density will be deposited in regions
where at least one of the incoming fields vanishes. This key
property of the solutions determines that in p + A (d + A)
collisions the system size is dominated by the size of the
incoming proton (and neutron).

In Fig. 2, the system size rmax, the maximal radius for
which the energy density of the Yang-Mills fields is above a
minimal value of ε = α
4

QCD (with α ∈ {1, 10}), is presented.
We observe that the system sizes in p + p and p + Pb are
comparable and grow approximately linearly as a function
of the number of gluons to the power of 1/3. Rather than
the difference between p + p and p + Pb, the result is more
sensitive to the choice of the value of α, albeit relatively weakly
given that the energy density changes by an order of magnitude.
This uncertainty represents intrinsic nonperturbative effects
that cannot be further quantified within our present knowledge
of QCD.

Our observation of the scaling of the system sizes in p +
p and p + Pb collisions indicates that their Hanbury Brown
Twiss (HBT) radii3 should be comparable in value. Indeed,
for the same number of produced particles and comparable
sizes of two systems, leading to comparable energy densities,
both systems are very similar and we do not expect to observe
significant differences in their HBT radii. Let us note that we
do not calculate explicitly HBT radii in p + p and p + Pb;
we only compare both systems based on their sizes and energy

3It is interesting to note that a very similar trend to that of our
rmax is observed in p + p data on HBT radii measured at LHC [55],
where all HBT radii grow approximately linearly with the number of
produced particles to the power of 1/3.
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FIG. 3. (Color online) Eccentricities ε2 and ε3 as a function of
dN/dy in the IP-Glasma model for p + Pb (solid symbols) and p + p

(open symbols) collisions.

densities. If subsequently fluid dynamical evolution in p + A
collisions is significant relative to p + p collisions, we would
then anticipate significantly different HBT radii in p + Pb,
as recently discussed in Ref. [29]. Thus, HBT radii will help
to discriminate between models of the spatial distribution of
matter in the initial state and the magnitude of radial flow
experienced in each.

In Fig. 3, the ellipticity and triangularity computed in the
IP-Glasma model are plotted as a function of dN/dy, the gluon
number per unit rapidity in the model. The ellipticities in p + p
collisions are significantly lower than in p + Pb collisions,
except at very low values of the multiplicity. The triangularity
ε3 in p + p collisions is very small and is comparable to the
ellipticity. The triangularity in p + Pb collisions is consistently
larger than in p + p, though distinctly smaller than the
ellipticity in p + Pb up to very high multiplicities.

In Fig. 4, we plot ε2, ε3 in proton-lead collisions in the IP-
Glasma model as a function of the number of participants Npart

and compare the results to two different realizations of the MC
Glauber model. Computing eccentricities using participant
centers in a MC-Glauber model, as done in Ref. [27], the results
are along the lines anticipated in our discussion of Fig. 1.
ε2 is exactly unity and ε3 = 0 for Npart = 2. A similar trend
for ε2 at low Npart is observed when computing eccentricities
using Gaussian energy densities (with width σ0 = 0.4 fm) in
the centers of participants (MC-Glauber 1) as a weight. In this
case the eccentricities are noticeably lower. The MC-Glauber 1
realization of the Glauber model is similar to the one employed
in the computations of Refs. [27–29] for proton-nucleus and
deuteron-nucleus collisions.

Assigning a Gaussian distributed energy density to the
midpoint between two colliding nucleons (MC-Glauber 2), as
illustrated in the middle figure in Fig. 1, reduces the resulting
eccentricities significantly, with the difference in ε2 between
models 1 and 2 being approximately a factor of 2. We have
checked that decreasing the smearing width from σ0 = 0.4 fm
increases both eccentricities.

We have used a black disk approximation of the cross
section, meaning that nucleons are wounded whenever their
geometric distance from a nucleon of the other nucleus is
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FIG. 4. (Color online) Eccentricities ε2 (a) and ε3 (b) as a function
of the number of wounded nucleons Npart. In the MC-Glauber
(participant centers) model the energy density is deposited in the
centers of wounded nucleons (without smearing). Smearing energy
densities with the Gaussian distribution (σ0 = 0.4 fm) results in the
MC-Glauber 1 model. In the MC-Glauber 2 model the energy density
is smeared about the midpoint between colliding nucleons.

less than rNN = √
σNN/π , where σNN is the nucleon-nucleon

inelastic cross section. Alternatively, one can introduce a
smooth profile of the nucleon that determines the probability
for an interaction at a given nucleon-nucleon distance. This
profile can be extracted from the p + p differential elastic
cross-section data [56] and can be approximated by a Gaus-
sian [57–59]. Its use has been argued to be preferable because it
does not result in extremely large elastic nucleon-nucleon cross
sections as the hard-sphere case. Using a smooth profile, we
find an increase in both the system size (by up to 50%) and the
eccentricities (by up to a factor of 2). Again, it demonstrates
that eccentricities in p + Pb collisions are very sensitive to
details of nucleon-nucleon interactions.

In the IP-Glasma model, both the ellipticity and triangular-
ity coincide with model MC-Glauber 2 for all but the smallest
values of Npart. This agreement is, however, a coincidence for
the value of σ0 = 0.4 fm chosen in the MC-Glauber model
and will not hold if this parameter is varied. In the IP-Glasma
model, there is no such free parameter.
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FIG. 5. (Color online) Initial energy density distribution (arbi-
trary units, increasing from blue to red) in the transverse plane in a
d + Au collision in (a) the MC-Glauber model and (b) the IP-Glasma
approach. The nucleon positions (open circles for the deuteron, solid
circles for gold) are exactly the same in the two cases.

The differences between the MC-Glauber realizations used
in hydrodynamical models and the IP-Glasma model are
strikingly seen in deuteron-gold collisions. For the deuteron,
we use the Hulthen form of the wave function,

φpn(r) = 1√
2π

√
ab(a + b)

b − a

e−ar − e−br

r
, (2)

with r being the distance between the proton and the neutron
and the parameters a = 0.228 fm−1 and b = 1.18 fm−1 [60].
Integrating φ2

pn over z =
√

r2 − r2
T , where rT is the distance

between the proton and the neutron in the projection onto the
transverse plane, we obtain the thickness function Td (rT ).

In Fig. 5, we show plots with a typical deuteron con-
figuration in the transverse plane (denoted by open circles)
superposed on transverse projections of the nucleon positions
in the gold nucleus (denoted by solid circles). In the top plot,
we show the energy density contours from the MC-Glauber
1 model and in the bottom plot we show the corresponding

IP-Glasma model results. These are seen to be quite different.
In the latter, it is observed that the peaks in the contour are
closely associated with the centers of the deuteron nucleon
positions and vary strongly depending on the number of gold
nucleon positions in their immediate vicinity. In the former
MC-Glauber case, significant energy densities are seen even
in regions where nucleons of the gold nucleus are widely
separated in transverse spatial position from the deuteron
nucleons. Nucleons that have been marginally grazed produce
as much energy density as those that have suffered a head-on
collision. In the IP-Glasma model, because the mean distance
in the projection onto the transverse plane between the two
nucleons in a deuteron is 2.52 fm, the majority of events have
widely separated interaction regions. This is quite different in
the MC-Glauber model.

Whether eccentricity is a relevant measure in deuteron-gold
collisions depends sensitively on the radial separation of the
regions where energy density is deposited. If they are too
far apart for hydrodynamic flow to bring them into contact
over the system’s lifetime, the eccentricity will be a poor
measure of flow. If they are close enough at the same
eccentricity to influence subsequent flow, the eccentricity
will track flow better. Thus, eccentricity in deuteron-gold
collisions, in contrast to nucleus-nucleus collisions, is at best
a qualitative measure of anisotropic flow.

III. FLOW IN PROTON-PROTON AND
PROTON/DEUTERON-NUCLEUS COLLISIONS

An interesting compilation of the ratio of the elliptic flow
coefficient to the ellipticity v2/ε2 versus the multiplicity at
central rapidity in proton-nucleus, deuteron-nucleus, and a
variety of centralities in nucleus-nucleus collisions can be
found in Ref. [5]. This scaling may be taken to suggest the
same pattern of collective flow in the smaller size systems
as in the larger size one. However, as noted, the effect of
the different eccentricity computations on v2/ε2 for p/d-A
collisions is dramatic because ε2 in the IP-Glasma model is two
to five times smaller than the MC-Glauber model depending on
Npart. For A + A collisions, the differences in the eccentricity
computations are not as large [32], and the scaling of v2/ε2 is
less sensitive to model assumptions.

In addition, from the point of view of examining the
presence of collective flow in the system, a more useful
variable against which to plot v2/ε2 is the multiplicity per
unit transverse overlap area S⊥ [61]. Such a compilation,
for a wide range of centralities in heavy-ion collisions at
the LHC and RHIC can be found in Ref. [62]. With this
criterion however, when the x axis is divided by S⊥, the
scaling of v2/ε2 is broken immediately for d + Au collisions.
Indeed, the initial transverse area in d + Au is approximately
a factor of two larger than in p + A collisions. It will be
interesting to calculate the transverse area for all colliding
systems systematically in different models and investigate
further the model dependence of scaling of v2/ε2 in smaller
size systems. This study will be reported elsewhere.

To study whether the behavior of the eccentricities pre-
sented in Fig. 4 is a good representation of the generated
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and IP-Glasma model for pT > 0.5GeV and η/s = 0.08. v2 decreases
with Npart. Results for p + p collisions are for b = 0 fm.

flow if the system behaves hydrodynamically, we compute the
root mean square v2 and v3 integrated over pT > 0.5 GeV for
different Npart in the MC-Glauber 1 and IP-Glasma model. We
use a constant η/s = 0.08, an initial time of hydrodynamic
evolution τ0 = 0.2 fm and a freeze-out temperature of Tfo =
120 MeV. The normalization of the initial energy density in the
IP-Glasma model was tuned to reproduce the charged particle
multiplicity in p + p collisions at 7 TeV. In the MC-Glauber
1 model the normalization of the energy density was set to
approximately produce the same amount of charged particles
as the IP-Glasma model. Because we are only interested in
general trends in this work and not a detailed comparison to
experimental data, we have not performed any fine tuning of
parameters to reproduce particle spectra in p/d + A collisions.
The reader should note, however, that these initial conditions,
specifically the very low η/s and small τ0, can reasonably be
considered to provide upper bounds on the magnitude of the
generated flow.4

We show results for the integrated root mean square v2 and
v3 for p + Pb collisions in Fig. 6 and for d + Au collisions
in Fig. 7. The first thing to note is the qualitative difference
between the centrality dependence of v2 in p + Pb and d + Au
collisions. While in p + Pb collisions v2 drops with increasing
Npart as expected from ε2(Npart) in d + Au we find the opposite
behavior. This behavior is expected qualitatively from ε2(Npart)
in d + Au collisions [27]. However, as per our discussion in
the previous section, ε2 alone is not necessarily useful for a
quantitative understanding of flow in d + Au collisions.

In p + Pb collisions, given the eccentricity ε2 of the MC-
Glauber 1 model in Fig. 4, one might naively expect an increase
of v2 by a factor of three when going from Npart = 20 to
Npart = 7 if it scales with ε2. While we do find the same trend,
v2 changes by a relatively smaller factor of approximately 1.7.
In the IP-Glasma model, the change in v2 with Npart is larger
(a factor of 2.5) even though the eccentricity ε2 varies more
slowly than in the MC-Glauber 1 model. For Npart = 14, v2 is

4For nucleus-nucleus collisions at RHIC and the LHC, average
values of η/s = 0.12 and η/s = 0.2, respectively, give the best fits to
data [63].
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FIG. 7. (Color online) Integrated 〈v2
2〉1/2 and 〈v2

3〉1/2 for charged
hadrons in d + Au collisions at different Npart in the MC-Glauber 1
and IP-Glasma model for pT > 0.5 GeV and η/s = 0.08. v2 increases
with Npart.

approximately a factor of two smaller than in the MC-Glauber
1 model and about 60% lower for Npart = 20. v3 is nearly flat
in the MC-Glauber 1 model and decreases with Npart in the
IP-Glasma model for both p + Pb and d + Au collisions.

We conclude that for small size systems, like p + Pb or
d + Au, there is no simple quantitative scaling of the flow
with eccentricity. Further, a smaller ellipticity in a different
initial state model does not necessarily lead to smaller v2 in
that model, because the geometries (and system sizes) may
be so drastically different that ε2 is not a sufficient predictor
of v2. This is seen strikingly for the flow generated in p + p
collisions relative to p + Pb collisions. On the basis of the
plots in Fig. 3, one might conclude that flow is much smaller
in p + p relative to p + A.

We computed the integrated (pT > 0.5 GeV) anisotropic
flow for p + p collisions at

√
s = 7 TeV in the IP-Glasma

model. We find 〈v2
2〉1/2 ≈ 0.02 at b = 0 fm and 〈v2

2〉1/2 ≈
0.035 at b = 1 fm; for b = 0 fm the multiplicities in p + p are
typically large, and the results can be qualitatively compared to
those in p + Pb collisions. As shown in Fig. 6, v2 at Npart = 20
in p + Pb is comparable to the results in p + p collisions
within 50%. The latter values, computed in the IP-Glasma
model, are given by the points at Npart = 2 in Fig. 6. We
further find 〈v2

3〉1/2 ≈ 0.01 for both studied impact parameters
in p + p collisions, to be compared to the values shown for
p + Pb in Fig. 6.

We next present v2 and v3 as functions of transverse
momentum pT for p + Pb collisions in Figs. 8 & 9 and for
d + Au collisions in Figs. 10 and 11. We see the same trend
as observed for the integrated vn.

Finally, we can qualitatively compare our results here to the
results of the LHC and RHIC experiments on proton-nucleus
and deuteron-nucleus collisions. The trend of v2 as a function
of centrality observed in p + Pb collisions appears to be
different from that of the ALICE data [3] on proton-lead
collisions at

√
s = 5.02 TeV/nucleon. However, the error

bars in the published data are too large to draw a definitive
conclusion at present. The ATLAS collaboration has also
presented [31] a quantity called v2(PC), which is defined
similarly to the ALICE v2 and has the same trend as the ALICE
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FIG. 8. (Color online) v2(pT ) for charged hadrons in p + Pb
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MC-Glauber (dashed lines) and IP-Glasma (solid lines) model.

results. However, the collaboration also presents results for
v2{4}, from four particle correlations, which appears to have
the opposite trend with centrality relative to v2(PC). The
computations of Ref. [30] appear to be in agreement with
this v2{4} quantity for the centralities compared. However, as
can be seen in Fig. 6, the IP-Glasma results are approximately
a factor of two lower for the Npart that correspond to the same
centrality selection. Note further that the IP-Glasma results
are for η/s = 0.08 and will be smaller for the η/s = 0.2
that gives a good description of v2 in A + A collisions at the
LHC. We also note that the RHIC d + Au results on the ridge
are reproduced by the MC Glauber 1 model. The differences
between this model and the IP-Glasma model (for integrated
v2 values) in these collisions can be seen in Fig. 7. More
quantitative studies and additional data will clearly help clarify
the role of hydrodynamics in the interpretation of the RHIC
and LHC results on the ridge in deuteron-gold and proton-lead
collisions, respectively.

IV. VALIDITY OF VISCOUS HYDRODYNAMICS

In the previous sections, we discussed the strong
dependence of the initial geometry on initial-state dynamics
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FIG. 9. (Color online) v3(pT ) for charged hadrons in p + Pb
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when one considers the especially small-sized systems one
has in proton/deuteron-nucleus collisions. We also discussed
the hydrodynamic flow resulting from these initial spatial
geometries. One may ask in addition under what conditions,
if any, hydrodynamics is applicable to these especially small-
sized systems. Hydrodynamics is usually a good EFT in the
late-time, long-wavelength limit of the theory. One way to
quantify whether this holds in the systems of interest is to
compare the relative magnitude of the viscous terms in the
stress-energy tensor to the ideal fluid terms. Considering for
simplicity only shear effects, and neglecting heat flow and bulk
viscosity, one has

T μν = T
μν

0 + πμν, (3)

where the ideal term T
μν

0 = (e + P )gμν − Pgμν and the
viscous part of the stress-energy tensor satisfies the equation

τπ�μ
α�ν

βuλ∂λπ
αβ + πμν

= − 4
3πμν(∂λu

λ) + η
[
(∇μuν + ∇νuμ) − 2

3�μν∇λu
λ
]
.

(4)

Here, e is the energy density and P the pressure, the metric
gμν = diag(1,−1,−1,−1), the transverse projector �μν =
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gμν − uμuν , and ∇μ = �μν∂ν . The relaxation time is set to
τπ = 3η/(e + P ).

We cannot initialize with the full T μν provided by the
IP-Glasma model at the initial time, because of its highly
nonequilibrium nature. Therefore, we are left with a choice
for π

μν
0 at the initial switching time τ = 0.2 fm between flow

in the Glasma and the later flow described by hydrodynamics.
We study the case π

μν
0 = 0, as often employed in viscous

hydrodynamic simulations, and the case where π
μν
0 takes on

its Navier-Stokes value,

π
μν
0 = η

(∇μuν + ∇νuμ − 2
3�μν∇λu

λ
)
. (5)

In this work we neglect gradients of the transverse velocities
at the initial time and only keep the dominant piece from the
longitudinal (boost-invariant) dynamics.

To avoid instabilities of the algorithm outside the freeze-out
surface, where viscous corrections can become very large, we
introduce a regulator that restricts the viscous correction to
be smaller than ten times the ideal part. In practice, we re-
quire

√
πμνπμν � 10

√
e2 + 3P 2 and implement a continuous

regulation of πμν to satisfy this requirement: πμν → π̂μν =
πμν tanh(ρ)/ρ , where ρ = √

πμνπμν/(10
√

e2 + 3P 2). We
have checked that the results presented for cells within the
freeze-out surface are very weakly sensitive to this regulator
when the code is stable without regulation. The only effect of
the regulator is to avoid instabilities that are triggered outside
the freeze-out surface.

To quantify the validity of the viscous hydrodynamic
approach for different collision systems, we can determine
the fraction of cells within the freeze-out surface that have
a viscous correction

√
πμνπμν that are either larger than

25% (Figs. 12 and 13) of the ideal fluid contribution√
e2 + 3P 2 or larger than 50% (Fig. 14) of the same. The ratio√
πμνπμν/

√
e2 + 3P 2 plays the role of an effective inverse

Reynolds number [64,65].
The results shown are for two different values of η/s, 0.08

and 0.2, and are for central (b = 0 fm) Pb + Pb and central
p + Pb collisions as a function of time τ for zero initial πμν in
Fig. 12 and for an initial Navier-Stokes πμν in Figs. 13 and 14.
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The results are averages over 10 events each. We find very
similar behavior in p + Pb and Pb + Pb collisions, with many
cells having large corrections at times τ � 2 fm, especially for
the larger value of η/s = 0.2. In the latter case, which gives the
best agreement with heavy-ion collision data at the LHC [63],
nearly all cells have corrections of at least 25% at early times,
even for zero initial πμν . In the case of Navier-Stokes initial
conditions, all cells within the freeze-out surface start out with
an at least 50% viscous correction. For the smaller η/s = 0.08,
viscous corrections are small after τ = 1 fm/c for both initial
πμν choices.

Although the results seem very similar for p + Pb and
Pb + Pb collisions, it is important to note that the lifetime
in Pb + Pb collisions is about 6 times longer than in p + Pb
collisions. This means that viscous corrections are large for a
significant fraction of the total lifetime of p + Pb collisions,
while they are large only for a small fraction of the total
lifetime of Pb + Pb collisions. In other words, depending on
the value of η/s, viscous hydrodynamics in the first 1–2 fm/c
is sensitive to not just the initial spatial geometry but also to
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Initialization with the Navier-Stokes value for π

μν
0 .
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details of how the viscous flow is initialized. While there is
still a significant part of the space-time evolution where viscous
hydrodynamics is a reliable framework for Pb + Pb collisions,
the same cannot be said for p + Pb collisions. In this case, the
system dilutes by 3–4 fm/c; thus, viscous hydrodynamics is
unreliable for approximately half the lifetime of the system in
p + Pb collisions, and therefore a source of potentially large
systematic errors. Similar conclusions and limits on the initial
time τ0 when viscous hydrodynamics becomes applicable have
been found in Ref. [65] for heavy-ion collisions.

V. SUMMARY AND OUTLOOK

In this work, we have demonstrated that different dynamical
assumptions can lead to qualitatively different results for
spatial ellipticities and triangularities in smaller size systems.
In contrast, the same range of dynamical assumptions give
qualitatively comparable results in heavy-ion collisions, with
some differences showing up in quantitative studies. Results
for the flow coefficients v2 are significantly different between
the MC-Glauber 1 model and the IP-Glasma model in proton-
nucleus collisions at the LHC. The results studied are for
η/s = 0.08, and one expects that v2 in both models will be
significantly smaller for the value of η/s = 0.2; this value best
describes the LHC Pb + Pb data in the IP-Glasma model. The
trend of v2 with centrality seen in both models is different from
the preliminary ALICE v2 and ATLAS v2(PC) data on p + Pb
collisions. More precise data from all the LHC experiments
can resolve this issue; the four-particle correlations measured
by ATLAS are an interesting step in this direction. With regard
to deuteron-gold collisions at RHIC, the differences in v2

between the MC-Glauber 1 and IP-Glasma model are smaller;
again, both results would be smaller for the η/s = 0.12 value
that gives the best fit to RHIC Au + Au data in the IP-Glasma
model. v3, even for the small η/s used here, is quite small at
both RHIC and the LHC.

In addition to details of the initial spatial geometry, flow in
small-sized systems can have large viscous contributions for
a significant fraction of the lifetime of the system. Within the
framework of the IP-Glasma + MUSIC model, we showed, for
instance, that for η/s = 0.2, viscous corrections are as large as

50% for times up to a fermi. In the Pb + Pb case, much of the
flow is built up at later times when these viscous corrections
are small, and second-order viscous hydrodynamics can be
considered a good effective description of the collective
dynamics. In contrast, because the lifetime of the system in
p + Pb collisions is much shorter than in Pb + Pb, the large
viscous corrections over a significant fraction of the lifetime
suggest second-order viscous hydrodynamics is less reliable
in such systems.

Hydrodynamics has provided us with a very successful
framework to interpret the results of momentum anisotropies
observed in heavy-ion collisions. The recent experiments on
proton/deuteron-nucleus collisions have brought to the fore
the question of the applicability of hydrodynamics to these
very small-sized systems. The interest in further studies along
the lines of this work is twofold. First, it would be important
to quantify where hydrodynamics breaks down to establish
a better understanding of the transport properties of the
quark-gluon plasma. Here a careful study of the ratio v2/ε2

as a function of the transverse density, Nch/S⊥, in various
systems could be very useful. However, as we emphasized in
this paper, this problem is not trivial because in small systems
various models lead to very different eccentricities.

Second, these studies focus our attention on a better
understanding of the initial nonequilibrium dynamics of strong
color fields. For instance, if the azimuthal collimation of the
nearside p + p, p + Pb, and d + Au ridge is not attributable
to hydrodynamic flow, a subtle long-range quantum interfer-
ence between saturated gluon fields is likely the successful
alternative explanation. However, if hydrodynamics is a viable
explanation, quantitative comparisons to data can help narrow
down the dynamics that generates the initial spatial geometries
that subsequently experience hydrodynamic flow.
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