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Alternative scenarios of relativistic heavy-ion collisions. I. Baryon stopping
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Simulations of relativistic heavy-ion collisions within the three-fluid model employing a purely hadronic
equation of state (EoS) and two versions of the EoS involving deconfinement transition are presented. The
latter are an EoS with the first-order phase transition and that with a smooth crossover transition. The model
setup is described in detail. The analysis is performed in a wide range of incident energies 2.7 GeV � √

sNN �
39 GeV in terms of the center-of-mass energy. Results on proton and net-proton rapidity distributions are
reported. Comparison with available data indicate certain preference of the crossover EoS. It is found that
predictions within deconfinement-transition scenarios exhibit a “peak-dip-peak-dip” irregularity in the incident
energy dependence of the form of the net-proton rapidity distributions in central collisions. This irregularity is a
signal of deconfinement onset occurring in the hot and dense stage of the nuclear collision.
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I. INTRODUCTION

Over the last decade relativistic heavy ion physics has made
tremendous progress in the understanding of the QCD phase
diagram in the domain of high temperatures and low baryon
density [1]. However, a number of important questions still
remain open. These are: At which incident energy does an
onset of deconfinement happen? What is the order of the
deconfinement transition at high baryon densities? Is there
a critical end point in the phase diagram? These questions
form the main motivation for the currently running beam-
energy-scan program [2] at the Relativistic Heavy-Ion Collider
(RHIC) at Brookhaven National Laboratory (BNL) and low-
energy-scan program [3] at Super Proton Synchrotron (SPS) of
the European Organization for Nuclear Research (CERN), as
well as the newly constructed Facility for Antiproton and Ion
Research (FAIR) in Darmstadt [4] and the Nuclotron-based
Ion Collider Facility (NICA) in Dubna [5].

This paper starts a series of papers, in which I hope to
shed light on the first two questions formulated above. In
these papers I will report results of thorough simulations
of relativistic heavy-ion collisions in the energy range from
2.7 GeV to 39 GeV (in terms of center-of-mass energy,√

sNN ). This domain covers the energy range of the RHIC
beam-energy-scan and SPS low-energy-scan programs, as
well as energies of the future FAIR and NICA facilities
and the Alternating Gradient Synchrotron (AGS) at BNL.
Though experiments at the AGS have been already stopped,
experimental data taken at the AGS are still unique since they
were neither updated nor repeated in any newer measurements
so far. The simulations were performed within a model of
the three-fluid dynamics (3FD) [6] employing three different
equations of state (EoS): a purely hadronic EoS [7] (hadr. EoS),
which was used in the major part of the 3FD simulations so far
[6,8–11], and two versions of EoS involving the deconfinement
transition [12]. These two versions are an EoS with the
first-order phase transition and that with a smooth crossover
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transition. Since neither EoS includes a critical end point,
these simulations do not touch the last question formulated
above.

This article is planned as a series of papers because it
concerns a great number of bulk observables (rapidity and
transverse spectra, flow observables, and multiplicities) for
various species and a large number of incident energies, their
comparison with available data, and also illustrations of global
evolution of collisions within different scenarios (i.e., EoS’s).
Analysis of the whole set of observables will be useful for
revealing possible correlations in the energy evolution of these
observables within different scenarios, which can be used as
experimental indications of the deconfinement onset or its
absence.

It is reasonable to start this series with an analysis
of the baryon stopping because a degree of stopping of
colliding nuclei is one of the basic characteristics of the
collision dynamics, which determines a part of the incident
energy of colliding nuclei deposited into a produced fireball
and hence into the production of secondary particles. The
deposited energy in its turn determines the nature (hadronic
or quark-gluonic) of the produced fireball and thereby its
subsequent evolution. Therefore, a proper reproduction of
the baryon stopping is of prime importance for theoretical
understanding of the dynamics of the nuclear collisions. I
will argue that certain irregularity in the incident-energy
dependence of the baryon stopping may indicate an onset of
deconfinement.

The paper is organized as follows. In Sec. II a brief survey
of the 3FD model is presented: basic ideas and choice of
parameters relevant for the present simulations. Properties
of the EoS’s used in the present simulations are illustrated
in Sec. III. Predictions of proton and net-proton rapidity
distributions and their comparison with available experimental
data are presented in Sec. IV. Analysis of the form of these
rapidity distributions and its evolution with incident energy
rise is done in Sec. V. In Sec. VI a summary of results is
formulated. Results on baryon stopping in simulations with
deconfinement transitions have already been briefly reported
(without details) in Ref. [13].
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II. 3FD MODEL

The 3FD model [6] is a straightforward extension of the
two-fluid model with radiation of direct pions [14–16] and
(2 + 1)-fluid model [17,18]. The above models were extended
in such a way that the created baryon-free fluid (which is called
a “fireball” fluid, following the Frankfurt group) is treated on
equal footing with the baryon-rich ones. A certain formation
time τ is allowed for the fireball fluid, during which the matter
of the fluid propagates without interactions. The formation
time is associated with a finite time of string formation. It
is similarly incorporated in kinetic transport models such as
UrQMD [19] and HSD [20].

Unlike the conventional hydrodynamics, where local in-
stantaneous stopping of projectile and target matter is assumed,
a specific feature of the 3FD is a finite stopping power resulting
in a counter-streaming regime of leading baryon-rich matter.
The basic idea of a three-fluid approximation to heavy-ion
collisions [14,22] is that at each space-time point x = (t, x) a
generally nonequilibrium distribution function of baryon-rich
matter, fbr(x, p), can be represented as a sum of two distinct
contributions

fbr(x, p) = fp(x, p) + ft(x, p), (1)

initially associated with constituent nucleons of the projectile
(p) and target (t) nuclei. In addition, newly produced particles,
populating the midrapidity region, are associated with a fireball
(f) fluid. Therefore, the three-fluid approximation is a minimal
way to simulate the finite stopping power at high incident
energies.

The above assumptions are implemented into the formula-
tion of the 3FD model as follows [6]. There is a set of continuity
equations (reflecting the baryon number conservation)

∂μJμ
α (x) = 0, (2)

for α = p and t, where Jμ
α = nαuμ

α is the baryon current defined
in terms of baryon density nα and hydrodynamic four-velocity
uμ

α normalized as uαμuμ
α = 1. Equation (2) implies that there

is no baryon-charge exchange between p and t fluids, as well
as that the baryon current of the fireball fluid is identically
zero, J

μ
f = 0. Equations of the energy-momentum exchange

between fluids are formulated in terms of energy-momentum
tensors T μν

α of the fluids

∂μT μν
p (x) = −Fν

p (x) + Fν
fp(x), (3)

∂μT
μν

t (x) = −Fν
t (x) + Fν

ft (x), (4)

∂μT
μν

f (x) = −Fν
fp(x) − Fν

ft (x)

+
∫

d4x ′δ4(x − x ′ − UF (x ′)τ )

× [
Fν

p (x ′) + Fν
t (x ′)

]
, (5)

where the Fν
α are friction forces originating from interfluid

interactions. Fν
p and Fν

t in Eqs. (3) and (4) describe energy-
momentum loss of the baryon-rich fluids due to their mutual
friction. A part of this loss |Fν

p − Fν
t | is transformed into

thermal excitation of these fluids, while another part (Fν
p +

Fν
t ) gives rise to particle production into the fireball fluid [see

Eq. (5)]. Fν
fp and Fν

ft are associated with the friction of the

fireball fluid with the p and t fluids, respectively. Here τ is the
formation time, and

Uν
F (x ′) = uν

p(x ′) + uν
t (x ′)

|up(x ′) + ut(x ′)| (6)

is a free-propagating four-velocity of the produced fireball
matter. According to Eq. (5), this matter gets formed only
after the time span U 0

F τ upon the production, and in different
space point x′ − UF (x ′) τ , as compared to the production
point x′.

The nucleon-nucleon cross sections at high energies are
strongly forward-backward peaked. This fact, which originally
served as a justification for subdividing baryonic matter into
target and projectile fluids, was used in [23] to estimate the
friction forces, Fν

p and Fν
t , proceeding from only NN elastic

scattering. Later these friction forces were calculated [24]
based on (both elastic and inelastic) experimental inclusive
proton-proton cross sections. In the present calculations the
following form of the projectile-target friction is used:

Fν
α = ϑ2ρξ

p ρ
ξ
t

[(
uν

α − uν
ᾱ

)
DP + (

uν
p + uν

t

)
DE

]
, (7)

α = p or t, p̄ = t and t̄ = p. Here, ρξ
α denotes a kind of “scalar

density” of the p and t fluids (see below),

DP/E = mN V
pt

rel σP/E(spt), (8)

where mN is the nucleon mass, spt = m2
N (uν

p + uν
t )2, V

pt
rel =

[spt(spt − 4m2
N )]1/2/2m2

N is the mean relative velocity of the p
and t fluids, and σP/E(spt) are determined in terms of nucleon-
nucleon cross sections integrated with certain weights (see
[14,16,24] for details):

σP (spt) =
∫

θc.m.<π/2
dσNN→NX

(
1 − cos θc.m.

pout

pin

)
, (9)

σE(spt) =
∫

θc.m.<π/2
dσNN→NX

(
1 − Eout

Ein

)
. (10)

Here the integration is restricted to the forward hemisphere

(θc.m. < π/2) of the center-of-mass scattering angles θc.m.,
pin = (spt/4 − m2

N )1/2, and Ein = s
1/2
pt /2 are the incoming

momentum and energy of the nucleon in the NN c.m. frame,
respectively, and pout and Eout are the corresponding outgoing
quantities. σP (spt) is nonzero at any physical spt, as is seen
from Eq. (9). At the same time, the σE(spt) quantity, which is
responsible for the fireball production, is zero for spt below the
inelastic threshold. The overall ϑ2 factor in Eq. (7) controls
the unification of p and t fluids into a single one, when their
relative velocity gets small enough (for details see [6]).

The above friction (7) is a certain extension of that derived
in [24]. The original derivation [24] was performed under the
assumption that baryon-rich fluids consist of only nucleons,
and only proton-proton cross sections were used in Eqs. (9) and
(10). The extension is required because the original derivation
[24] does not take into account:

(i) various mesonic and baryonic species produced in the
collision

(ii) possible multiparticle interactions which are quite
probable in the dense medium,
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(iii) possible medium modifications of cross sections and
effective masses, and

(iv) quark and gluon interactions, if deconfinement occurs.

In view of these uncertainties, it is reasonable to make
a provision for tuning the above friction. For this purpose,
tuning factors ξ (spt ) in the scalar densities of the p and t fluids
are introduced

ρξ
α(spt ) = (

ρbar.
α + 2

3ρmes.
α

)
ξh(spt ) + 1

3

(
ρq

α + ρg
α

)
ξq(spt ),

(11)

where ρbar.
α , ρmes.

α , ρq
α , and ρ

g
α are scalar densities of all baryons,

all mesons, quarks, and gluons, respectively, defined in the
conventional way. These quantities are supplied together with
the EoS. Factors like 2/3 and 1/3 in Eq. (11) take into account
the assumed scaling of cross sections in accordance with the
naive valence-quark counting. In view of the above-mentioned
uncertainties of the estimated friction, in Eq. (11) different
tuning factors are introduced for hadronic and quark-gluon
phases: ξh and ξq , respectively.

The friction between baryon-rich fluids was fitted to
reproduce the stopping power observed in proton rapidity
distributions for each EoS. The results, together with those
for formation time τ and freeze-out energy density εfrz, are
summarized as follows:

(i) Hadronic EoS with incompressibility K = 190 MeV
[7] (hadr. EoS):

ξ 2
h (s) = 1 +

[
ln

(
s1/2

2mN

)]1/4

, (12)

τ = 2 fm/c, εfrz = 0.4 GeV/fm3. (13)

The ξq factor is not applicable here because of the pure
hadronic nature of the EoS. The incompressibility K =
190 MeV is also chosen on the condition of the best
reproduction of available data.

(ii) EoS with the first-order deconfinement transition [12]
(two-phase EoS):

ξ 2
h (s) = 1, ξ 2

q (s) = 60
4m2

N

s
, (14)

τ = 0.17 fm/c, εfrz = 0.4 GeV/fm3. (15)

(iii) EoS with crossover deconfinement transition [12]
(crossover EoS):

ξ 2
h (s) = 1, ξ 2

q (s) = 200
4m2

N

s
, (16)

τ = 0.17 fm/c, εfrz = 0.4 GeV/fm3. (17)

Within the hadronic scenario (hadr. EoS) the friction has to
be enhanced in order to reproduce the baryon stopping at high
energies, Elab � 10A GeV. Though such an enhancement is
admissible in view of the above-mentioned uncertainties, the
value of the enhancement looks suspiciously high, indeed, at√

sNN = 17.3 GeV, i.e., at the top SPS energy, ξ 2
h = 2.2.

At scenarios with deconfinement transitions there is no need
to modify the hadronic friction. This can be considered as
an indirect argument in favor of such scenarios. At the same

time, the quark-gluon modification factor ξ 2
q decreases with the

energy rise, which is in agreement with our expectations that
the quark-gluon friction should get weaker at high energies
because of the approaching to the regime of the asymptotic
freedom.

Freeze-out was performed according to the procedure
described in [6] and in more detail in [25,26]. The baryon
stopping turns out to be only moderately sensitive to the
freeze-out energy density εfrz. The freeze-out energy density
was chosen mostly on the condition of the best reproduction
of secondary particle yields.

The formation time τ also affects the baryon stopping,
especially at high incident energies (top SPS and higher
ones), when the fireball fluid is well developed. In fact, τ
reduces the effect of the friction between the fireball and
baryon-rich fluids. The larger τ is, the later this friction
starts to act and hence the weaker effect is produced by
this friction. Therefore, the fitted value of τ is essentially
related to the strength of the fireball-baryon-rich friction. There
are other full-scale [i.e., (3 + 1)-dimensional] approaches to
modeling nuclear collisions, which take into account the
deconfinement transition. These have their advantages, as
well as disadvantages as compared to the 3FD model. The
conventional hydrodynamical model of Refs. [27,28] does
such simulations in a very similar way but without taking
into account the incomplete stopping of colliding nuclei at
the initial stage of the reaction. Therefore, such kinds of
simulations are justified only at moderately high energies.
Another class of fluid models uses (hadronic) kinetic codes
to “cook” the initial fireball which is subsequently considered
within the hydro simulation with possible deconfinement
transitions [29–32]. Such approaches disregard effects of
deconfinement transitions at the stage of interpenetration
of colliding nuclei, and hence cannot be used for analysis
of the baryon stopping, which is the prime goal of this
article. Kinetic models with a deconfinement transition, i.e.,
a multiphase transport model [33] and a more consistent
model of parton-hadron-string dynamics [34], overcome this
problem. Moreover, they avoid the problem of freeze-out
inherent in hydrodynamic models. However, kinetic models
are able to treat only a crossover transition. The first-order
transition remains beyond the scope of kinetics. Contrary to
other hydrodynamic approaches, the 3FD model can treat a
deconfinement transition at the initial stage of the collision
with due account of incomplete stopping of colliding nuclei,
through in essentially rougher approximation than that in
kinetic models. At the same time the 3FD model is able to
work with the first-order transition unlike kinetic models.

In the present run of computations, higher incident energies
were reached as compared with previous runs. This became
possible because of the implementation of an adaptive grid
in the code. The size of the cell is made gradually larger
with the expansion of the system proceeded. Thus, when the
system occupies the larger space, the code does not require a
larger number of cells and, hence, a higher RAM memory. The
adaptive grid does not make the accuracy worse since spatial
distributions become smoother at the expansion, that relaxes
requirements on the grid step. The adaptive grid made possible
computations up to 62.4 GeV incident energy in terms of the
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c.m. nucleon-nucleon energy, i.e.,
√

sNN . However, results for
the top energy of 62.4 GeV are still not quite accurate, since
an accurate computation requires unreasonably high memory
and CPU time. This should be kept in mind when results for
this energy are displayed.

III. EQUATIONS OF STATE

Figure 1 illustrates differences between three considered
EoS’s. The deconfinement transition makes an EoS softer at
high densities. The two-phase EoS is based on the Gibbs
construction, taking into account simultaneous conservation
baryon and strange charges. However, the displayed result
looks very similar to the Maxwell construction, corresponding
to conservation of only baryon charge, with the only difference
that the plateau is slightly tilted, which is practically invisible.
This invisible slope of the plateau results from plotting the
pressure at the additional condition of strange density being
equal to zero rather than at constant strange chemical potential.
Application of the Gibbs construction in hydrodynamical
simulations silently assumes that the interphase equilibration
in the mixed-phase region is faster than the hydrodynamical
evolution.

The two-phase and crossover EoS’s still differ even at very
high densities. The latter means that the crossover transition
constructed in Ref. [12] is very smooth. The hadronic fraction
survives up to very high densities. In particular, this is seen
from Fig. 2: the fraction of the quark-gluon phase (WQGP)
reaches a value of 0.5 only at very high energy densities. In this
respect, this version of the crossover EoS certainly contradicts
results of the lattice QCD calculations, where a fast crossover,
at least at zero chemical potential, was found [35]. Therefore, a
true EoS is somewhere in between the crossover and two-phase
EoS’s of Ref. [12].

T=10, 100, 200 MeV

hadr. EoS
2-phase EoS
crossover EoS

0 4 8 12 16 20
n/n0

0

5

10

15

20

P
/(

n 0
m

N
)

FIG. 1. (Color online) Pressure scaled by the product of normal
nuclear density (n0 = 0.15 fm−3) and nucleon mass (mN ) versus
baryon density scaled by the normal nuclear density for three
considered equations of state. Results are presented for three
different temperatures T = 10, 100, and 200 MeV (bottom-up for
corresponding curves).
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FIG. 2. (Color online) Dynamical trajectories of the matter in the
central box of the colliding nuclei (4 fm×4 fm×γc.m.4 fm), where
γc.m. is the Lorentz factor associated with the initial nuclear motion in
the c.m. frame, for central collisions of Au + Au at

√
sNN = 3.3, 4.9,

27, and 39 GeV (b = 2 fm), and Pb + Pb at
√

sNN = 6.4, 8.9, and 17.4
(b = 2.4 fm). The trajectories are plotted in terms of baryon density
(nB ) and the energy density minus nB multiplied by the nucleon mass
(ε − mNnB ). Only expansion stages of the evolution are displayed.
Symbols on the trajectories indicate the time rate of the evolution:
time span between marks is 1 fm/c. For the two-phase EoS (a) the
shadowed “mixed phase” region is located between the borders, where
the QGP phase starts to rise (WQGP = 0) and becomes completely
formed (WQGP = 1). For the crossover EoS (b) the displayed borders
correspond to values of the QGP fraction WQGP = 0.1, 0.5, 0.7, and
0.9. Inaccessible region is restricted by ε(nB, T = 0) − mNnB from
above.

Figure 2 demonstrates that the onset of the deconfinement
transition in the calculations happens at top-AGS–low-SPS
energies. Similarly to what has been done in [36], the figure
displays dynamical trajectories of the matter in the central box
placed around the origin r = (0, 0, 0) in the frame of equal
velocities of colliding nuclei: |x| � 2 fm, |y| � 2 fm, and
|z| � γc.m. 2 fm, where γc.m. is the Lorentz factor associated
with the initial nuclear motion in the c.m. frame. Initially,
the colliding nuclei are placed symmetrically with respect to
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 crossover EoS
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FIG. 3. (Color online) The same as in Fig. 2 but for trajectories
for all three different EoS’s within the same frame.

the origin r = (0, 0, 0), z is the direction of the beam. At a
given density nB , the zero-temperature compressional energy,
ε(nB, T = 0), provides a lower bound on the energy density
ε, so the accessible region is correspondingly limited. In the
case of the crossover EoS only the region of the mixed phase
between WQGP = 0.1 and WQGP = 0.5 is displayed, since in fact
the mixed phase occupies the whole (ε-nB) region. The ε-nB

representation is chosen because these densities are dynamical
quantities and, therefore, are suitable to compare calculations
with different EoS’s.

Only expansion stages of the evolution are displayed, where
the matter in the box is already thermally equilibrated, as
a rule. The exceptions are central collisions at

√
sNN = 27

and 39 GeV, in which the matter in the box is not still
thermalized in the beginning of the expansion stage. This
nonequilibrium stage of the expansion is displayed by dashed
lines in Fig. 2. The criterion of the thermalization is the equality
of longitudinal and transverse pressures in the box with an
accuracy better than 10%. Evolution proceeds from the top
point of the trajectory downwards. Symbols mark the time
intervals along the trajectory. Subtraction of the mNnB term
is taken for the sake of suitable representation of the plot. The
size of the box was chosen to be large enough such that the
amount of matter in it can be representative to conclude on
the onset of deconfinement and to be small enough to consider
the matter in it as a homogeneous medium. Nevertheless, the
matter in the box still amounts to a minor part of the total matter
of colliding nuclei. Therefore, only the minor part of the total
matter undergoes the deconfinement transition at 10A GeV
energy.

As seen, the deconfinement transition starts at the top AGS
energies in both cases. It gets practically completed at low SPS
energies in the case of the two-phase EoS. In the crossover
scenario it lasts till very high incident energies.

The trajectories for different EoS’s are very similar at
lower incident energies, as is seen from Fig. 3. At higher
energies trajectories for deconfinement scenarios remain very
similar, while the hadronic-EoS trajectories differ from those
mentioned above and exhibit a peculiar behavior. It happens

because of a long (as compared with the interpenetration time
of colliding nuclei) formation time of the fireball fluid, see
Eq. (13). At the first stage the expansion proceeds when the
fireball fluid has not been formed yet. Then the formation
starts and the energy density (but not the baryon density) even
slightly rises. When the formation is practically completed,
the trajectory returns to its normal evolution—downward in
energy and baryon densities.

IV. PROTON AND NET-PROTON RAPIDITY
DISTRIBUTIONS

A direct measure of the baryon stopping is the net-
baryon (i.e., baryons-minus-antibaryons) rapidity distribution.
However, since experimental information on neutrons is
unavailable, we have to rely on net-proton (i.e., proton-
minus-antiproton) data. Presently there exist experimental data
on proton (or net-proton) rapidity spectra at AGS [37–40]
and SPS [41–45] energies. These data were analyzed within
various models [6,8,27,28,30,34,46–50]. The most extensive
analysis has been done in [6,48]. Here I would like to repeat
this analysis. The motivation is to perform simulations with
different EoS’s within the same dynamical model, i.e., the 3FD
model, in order to reveal differences produced by different
scenarios.

Figure 4 presents calculated rapidity distributions of pro-
tons (for AGS energies) and net-protons (for SPS energies) and
their comparison with available data. Notice that the difference
between protons and net-protons is negligible at the AGS
energies. At the top AGS energy of 10A GeV their difference
is 0.03% at the midrapidity, see a compilation of experimental
data in Ref. [51]. The contribution of weak decays of strange
hyperons into proton yield was disregarded in accordance with
measurement conditions of the NA49 collaboration. At the
AGS energies the contribution of weak decays is negligible.
Correspondence between the fraction of the total reaction cross
section related to a data set and a mean value of the impact
parameter was read off from the paper [52] in the case of NA49
data. For Au + Au collisions it was approximately estimated
proceeding from geometrical considerations.

As seen from Fig. 4, at lower AGS energies all EoS’s
predict the same results, since at these energies only the
hadronic parts of all EoS’s are relevant. Results of the
two-phase EoS start to differ from those of the hadr. and
crossover EoS’s beginning from 6A GeV and the first in central
collisions. At higher energies this difference extends to more
peripheral collisions. Unlike other scenarios, the two-phase-
EoS distributions exhibit a dip at midrapidity even in central
collisions. This dip contradicts the available experimental
data and is very robust: variation of the model parameters
(14) and (15) in a wide range does not remove this dip.
Therefore, it is a direct consequence of the onset of the
first-order phase transition, which starts precisely at these
energies in the two-phase scenario, see Fig. 2. Calculations
within one-fluid (i.e., conventional hydrodynamics) [27,28]
confirm this conclusion. This dip survives even in one-fluid
calculations involving the first-order phase transition in spite of
an immediate baryon stopping inherent in the one-fluid model.
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FIG. 4. (Color online) Rapidity spectra of protons [for AGS energies, (a) block of panels] and net-protons (p − p̄) [for SPS energies,
(b) block of panels] from collisions of Au + Au (AGS) and Pb + Pb (SPS) calculated within three considered scenarios. Experimental data
are from the E895 [37], E877 [38], E917 [39], E866 [40], and NA49 [41–45] collaborations. The percentage shows the fraction of the total
reaction cross section, corresponding to experimental selection of events. For the E917 data [39] these are 0–5%, 5–12%, 12–23%, 23–39%,
and 39–81%. Feedback of weak decays into p and p̄ yields is disregarded.

Notice that one-fluid calculations without deconfinement
transition manifest a “normal” (for the one-fluid model) result,
i.e., no dip. According to the analysis of Ref. [27] this dip is
a consequence of larger pressure gradients in the longitudinal
direction developed in the deconfinement-transition scenario.
In 3FD calculations, this dip transforms into midrapidity peak
at higher energies (30A GeV and 40A GeV). With a further
rise in energy (Elab > 40A GeV) the midrapidity peak again
turns into a dip, see also Fig. 5. The latter dip is already a
normal behavior which results from the incomplete stopping
of baryons and takes place at arbitrary high energies.

As has been already mentioned, the behavior “peak-dip-
peak-dip” in central collisions within the two-phase-EoS
scenario is very robust with respect to variation of the model
parameters (14) and (15) in a wide range. It certainly disagrees
with data at 8A GeV, 10A GeV, and 40A GeV energies. It also
disagrees with data at 20A GeV and 30A GeV. However, the
latter data have a preliminary status, and hence it is too early
to draw any conclusions from a comparison with them. This
behavior is in contrast with that for the hadronic-EoS scenario,
where the form of distribution in central collisions gradually
evolves from a peak at the midrapidity to a dip. The case of the
crossover EoS is intermediate. One could conclude in favor of

a weak wiggle, since the distributions at 10A and 15A GeV
exhibit a shallow dip while at 20A GeV looks like a plateau.

Beginning from 158A GeV to higher incident energies (see
Fig. 5) predictions of different scenarios for the net-proton
distributions remain quite similar, at the expense of the
substantial enhancement of the hadronic friction in the case of
the hadronic EoS, see Eq. (12). At the same time a difference
of proton spectra increase with the energy rise. In calculations
for energies above 158A GeV, a contribution of weak decays
into proton and net-proton yields were taken into account in
accordance with the experimental procedure of the STAR and
PHENIX collaborations.

A comparison with available data indicates a certain prefer-
ence of the crossover EoS, though the crossover scenario does
not perfectly reproduce the data either. Predictions of different
scenarios for net-protons diverge to the largest extent in the
energy region 8A GeV � Elab � 40A GeV. Unfortunately
data at 20A and 30A GeV still have a preliminary status and
disagree with any considered scenario. Updated experimental
results at energies 20A and 30A GeV are badly needed to
pin down the preferable EoS and to check a trend of the
“peak-dip-peak-dip” irregularity in the net-proton rapidity
distributions.
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FIG. 5. (Color online) Rapidity spectra of protons [(a) block of panels] and net-protons [(b) block of panels] from central collisions of
Au + Au (b = 2 fm) at low RHIC energies. Feedback of weak decays into p and p̄ yields is taken into account.

A preference of the deconfinement-transition scenarios is
seen at incident energies above the top SPS one, see Fig. 6,
where midrapidity values of the net-proton and proton rapidity
spectra from central collisions of Au + Au (at AGS and RHIC
energies) and Pb + Pb (at SPS energies) are plotted as functions
of the incident center-of-mass energy. In Fig. 6 the midrapidity
values are displayed in a wider energy range. I would like to
remind the reader that results for the top calculated energy
of

√
sNN = 62.4 GeV are very approximate, since a more

accurate computation requires unreasonably high memory and
CPU time. As seen, a visible difference between net-protons
and proton data, as well as between predictions of hadronic
EoS and EoS’s with deconfinement transitions starts only
at RHIC energies. At these energies the hadronic scenario
certainly overestimates the proton midrapidity density.

V. ANALYSIS OF “PEAK-DIP-PEAK-DIP” IRREGULARITY

Preliminary results of the above-discussed “peak-dip-peak-
dip” irregularity have been already reported in Refs. [54,55].
There the friction forces for the two-phase and crossover
scenarios were poorly tuned and hence the corresponding
simulations poorly reproduced available experimental data.

Therefore, conclusions were based on a certain trend of
the results of simulations. Here I present calculations with
thoroughly tuned friction forces in the quark-gluon phase,
which made it possible to reasonably (and often better
than in the hadronic scenario) reproduce a great number of
observables in a wider (than before [54,55]) incident energy
range 2.7 GeV � √

sNN � 39 GeV.
In order to quantify the “peak-dip-peak-dip” irregular-

ity, it is useful to make use of the method proposed in
Refs. [13,54,55]. For this purpose the data on net-proton
rapidity distributions are fitted by a simple formula

dN

dy
= a (exp {−(1/ws) cosh(y − yc.m. − ys)}

+ exp {−(1/ws) cosh(y − yc.m. + ys)}) , (18)

where a, ys , and ws are parameters of the fit. The form
(18) is a sum of two thermal sources shifted by ±ys from
midrapidity. The width ws of the sources can be interpreted
as ws = (temperature)/(transverse mass), if we assume that
collective velocities in the sources have no spread with respect
to the source rapidities ±ys .

The above fit has been done by the least-squares method.
Data were fitted in the rapidity range |y − yc.m.|/yc.m. < 0.7.
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FIG. 6. (Color online) Midrapidity value of the net-proton (a) and
proton (b) rapidity spectrum from central Au + Au (at AGS and RHIC
energies, b = 2 fm) and Pb + Pb (at SPS energies, b = 2.4 fm) colli-
sions as a function of the incident center-of-mass energy for three con-
sidered EoS’s. Experimental data are from the E895 [37], E877 [38],
E917 [39], E866 [40], NA49 [41–45], and STAR [53] collaborations.

The choice of this range is dictated by the data. As a rule,
the data are available in this rapidity range, sometimes the
data range is even narrower (80A GeV and new data at
158A GeV [45]). The above constraint is imposed in order to
treat different data in approximately the same rapidity range.
Another reason for this cut is that the rapidity range should
not be too wide in order to exclude the contribution of cold
spectators. I keep the old data at 158A GeV [41] in the analysis
because these are known in a wider rapidity range as compared
with the new ones [45]. A narrow rapidity range results in large
error bars of the fit. To evaluate errors of the fit parameters,

FIG. 7. (Color online) Parameters of fit (18), ys (a–c) and ws

(d–f), deduced from analysis of experimental data of net-proton
rapidity distributions (points with error bars), as well as from that of
results of 3FD simulations with different EoS’s (shaded areas between
respective lines). Fits of preliminary experimental data are displayed
by open symbols, while those for confirmed data by filled symbols.
Lines, restricting shaded areas for different EoS’s, are obtained by
fits within different rapidity ranges: upper curves in the range of
|y − yc.m.|/yc.m. < 0.5, lower curves in |y − yc.m.|/yc.m. < 0.7. Grey
bands in all the panels indicate the areas: between 0.25 yc.m. and
0.35 yc.m. for ws (d–f), and 0.4 yc.m. and 0.5 yc.m. for ys (a–c).

I estimated the errors produced by the least-squares method,
as well as performed fits in different rapidity ranges:
|y − yc.m.|/yc.m. < 0.5 and |y − yc.m.|/yc.m. < 0.7, where it
is appropriate. The error bars present the largest uncertainties
among those mentioned above.

A similar fit was applied to the calculated distributions.
Since experimental data at AGS and RHIC energies were taken
from Au + Au collisions while at SPS, the Pb + Pb collisions
were studied, the calculations were performed respectively
for Au + Au (b = 2 fm) and Pb + Pb (b = 2.4 fm) central
collisions. In fact, at the same incident energy the computed
results for Pb + Pb collisions at b = 2.4 fm are very close
to those for Au + Au at b = 2 fm. Therefore, the related
irregularity of the energy dependence of the fit parameters
is negligible. Similarly to the experimental data, the fit of
the computed results was also performed in two ranges,
|y − yc.m.|/yc.m. < 0.7 and |y − yc.m.|/yc.m. < 0.5, in order to
estimate the uncertainty associated with a variation of this
range. This uncertainty turned out to be a dominant one in the
case of computed data. Therefore, in Figs. 7 and 8 results of
the fit of computed spectra are presented by shaded areas with
borders corresponding to the fit ranges |y − yc.m.|/yc.m. < 0.7
and |y − yc.m.|/yc.m. < 0.5.

Parameters ys and ws deduced from the fit of experimen-
tal data exhibit no significant irregularities in their energy
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FIG. 8. (Color online) Midrapidity reduced curvature [see
Eq. (19)] of the net-proton rapidity spectrum as a function of
the incident center-of-mass energy of colliding nuclei as deduced
from experimental data and predicted by 3FD calculations with
different EoS’s. Upper borders of the shaded areas correspond to
fits confined in the region of |y − yc.m.|/yc.m. < 0.7, lower borders,
in |y − yc.m.|/yc.m. < 0.5.

dependence: they monotonously rise with the energy within
the error bars of the fit, see Fig. 7. Grey bands in all the
panels of Fig. 7 are drawn to guide the eye. They indicate
the areas: between 0.25 yc.m. and 0.35 yc.m. for ws (lower raw
of panels), and between 0.4 yc.m. and 0.5 yc.m. for ys (upper
raw of panels), where the major part of experimental points
are located. In particular, a similar (but based on different,
double-gaussian fit) analysis of Ref. [56] also shows the
absence of any spectacular irregularities in excitation functions
of these parameters. This is more so in view of the fact that the
analysis of Ref. [56] was performed only at Elab � 20A GeV.
The parameters deduced from the fit of distributions computed
within hadronic and crossover scenarios also manifest quite
monotonous behavior with incident energy. At the same time,
the results of the two-phase scenario exhibit certain, however
not strong, irregularity.

The representation in terms of ys and ws is not quite
spectacular. These parameters are interrelated to some extent.
They produce a similar effect on the rapidity distribution,
especially if it is fitted in a narrow rapidity range. Therefore,
it is desirable to find a single quantity which characterizes
the shape of the rapidity distribution in the midrapidity range.
Such a parameter is a reduced curvature of the spectrum in the
midrapidity defined as follows:

Cy =
(

y3
c.m.

d3N

dy3

)
y=yc.m.

/(
yc.m.

dN

dy

)
y=yc.m.

= (yc.m./ws)
2(sinh2 ys − ws cosh ys). (19)

The factor 1/ (yc.m.dN/dy)y=yc.m.
is introduced in order to

get rid of the overall normalization of the spectrum, i.e., of
the a parameter in terms of the fit (18). The second part
of Eq. (19) presents this curvature in terms of parameters
of the fit (18). Thus, the reduced curvature, Cy , and the
midrapidity value of the distribution are two independent
quantities quantifying the spectrum in the midrapidity range.
Excitation functions of Cy deduced both from experimental
data and results computed with different EoS’s are displayed
in Fig. 8. Figure 8 demonstrates how the distribution shape

evolves from a convex form at low incident energies to a
concave form at high energies.

The irregularity in data is distinctly seen here as a zigzag
irregularity in the energy dependence of Cy . Of course, this is
only a hint to irregularity since this zigzag is formed only
due to the preliminary data of the NA49 collaboration. A
remarkable observation is that the Cy energy dependence in the
first-order-transition scenario manifests qualitatively the same
zigzag irregularity, cf. Fig. 8(b), as that in the data fit, while
the hadronic scenario produces purely monotonous behavior.
The crossover EoS represents a very smooth transition, as
mentioned above. Therefore, it is not surprising that it produces
only a weak wiggle in Cy , cf. Fig. 8(c).

As it was argued in Ref. [13], the “peak-dip-peak-dip”
irregularity is very natural in a system undergoing a phase
or crossover transition. First, it is associated with the softest
point of a EoS [57]. Therefore, the irregularity is weaker
in the crossover scenario than in the first-order-transition
one. Indeed, the softest points in the crossover EoS is less
pronounced than in the first-order-transition one [58]. There
is no softest point in the hadronic EoS and hence there is no
irregularity.

The second reason of this irregularity is a change in the
nonequilibrium regime. The 3FD model takes into account
the leading nonequilibrium of the nuclear collision associated
with a finite stopping power of the nuclear matter. It simulates
the finite stopping power by means of friction between three
fluids. Naturally, this friction changes when deconfinement
happens. In the case of the crossover scenario this change in
the friction is very smooth. Therefore, it does not contribute
to the irregularity. At the same time this change in the friction
enhances the irregularity in the first-order-transition scenario.
As it was demonstrated in Ref. [54], if the same friction is
used in both phases, the reduced curvature calculated with
the two-phase EoS exhibits only a weak wiggle in Cy with
considerably smaller amplitude as compared with the zigzag in
actual calculations with different frictions in different phases.
These different frictions appear quite naturally in the 3FD
model. The hadronic friction was estimated in Ref. [24]
and works well at lower AGS energies. Therefore, there are
no reasons to modify it. The partonic friction, while not
microscopically estimated, is fitted to reproduce data at high
incident energies. This is a reason to believe that it is a proper
choice.

It is important to emphasize that the “peak-dip-peak-dip”
irregularity is a signal from the hot and dense stage of the
nuclear collision, rather than from the freeze-out stage as the
most part of the signals are.

VI. SUMMARY

Proton and net-proton rapidity distributions in collisions
of heavy nuclei Au + Au (at AGS and RHIC energies) and
Pb + Pb (at SPS energies) were analyzed in a wide range of
incident energies 2.7 GeV � √

sNN � 39 GeV in terms of the
center-of-mass energy per nucleon pair. The analysis was done
within a model of the three-fluid dynamics [6] employing three
different equations of state: a purely hadronic EoS [7] and two
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versions of EoS involving the deconfinement transition [12].
These are an EoS with the first-order phase transition and that
with a smooth crossover transition. The crossover transition
constructed in Ref. [12] is very smooth. The hadronic fraction
survives up to very high energy densities. In this respect, this
version of the crossover EoS certainly contradicts results of
the lattice QCD calculations, where a fast crossover, at least at
zero chemical potential, was found. Therefore, a true EoS is
somewhere in between the crossover and two-phase EoS’s of
Ref. [12].

Scenarios based on EoS’s with deconfinement transitions
have a theoretical advantage as compared to the purely
hadronic ones. In order to reproduce the baryon stopping at
high incident energies, the friction between counter-streaming
fluids have to be enhanced within the hadronic scenario as
compared to its estimate based on experimental inclusive
proton-proton cross sections [24]. Though such enhancement
is admissible in view of uncertainties of the estimated friction,
the value of the enhancement looks too high. In scenarios with
deconfinement there is no need to modify the hadronic friction.
This can be considered as an indirect argument in favor of such
scenarios.

It was found that predictions within the first-order-transition
scenario, i.e., with the two-phase EoS, exhibit a “peak-dip-
peak-dip” irregularity in the incident energy dependence of
the form of the net-proton rapidity distributions. At low
energies, up to Elab = 6A GeV, rapidity distributions for central
collisions have a peak at midrapidity, similar to results with
other EoS’s. Beginning from 8A GeV, this peak turns into
a dip at midrapidity. Then again a peak is realized, starting
from 30A GeV. With further energy rise (Elab > 40A GeV)
the midrapidity peak again transforms into a dip, which is
already a normal behavior which takes place at arbitrary high
energies. This behavior is in contrast with that for the hadronic
scenario, where the form of distribution in central collisions
gradually evolves from peak at midrapidity (at Elab < 10A
GeV) to a dip (at Elab ∼> 10A GeV). The case of the crossover
EoS is intermediate. Only a weak wiggle of the type of
“peak-dip-peak-dip” is observed in the energy range of 10A
GeV � Elab � 20A GeV.

The behavior of the “peak-dip-peak-dip” type in central
collisions within the two-phase-EoS scenario is very robust
with respect to a variation of the model parameters in a wide
range. It certainly disagrees with data at 8A GeV, 10A GeV,
and 40A GeV energies. It also disagrees with data at 20A GeV
and 30A GeV, which have a preliminary status, and hence it
is too early to draw any conclusions from a comparison with
them.

However, the experimental data also exhibit a trend of the
“peak-dip-peak-dip” irregularity in the energy range 8A GeV
� Elab � 40A GeV. Again this trend is based on preliminary
data at energies of 20A GeV and 30A GeV. Therefore, updated
experimental results at 20A and 30A GeV are badly needed
to pin down the preferable EoS and to check the trend
of the “peak-dip-peak-dip” behavior in net-proton rapidity
distributions. An irregularity in the baryon stopping is a signal
of deconfinement occurring in the compression stage of a
nuclear collision. It is a combined effect of the softest point
of a EoS and a change in the nonequilibrium regime from a
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FIG. 9. (Color online) Midrapidity densities of various produced
particles as functions of the incident center-of-mass energy of
colliding nuclei predicted by 3FD calculations with different EoS’s.
Experimental data are from a compilation of Ref. [51] complemented
by recent data from the STAR collaboration [59] and the latest update
of the compilation of NA49 numerical results [60,61].

hadronic to a partonic one. It is important to emphasize that
this irregularity is a signal from the hot and dense stage of the
nuclear collision.

An effective method to quantify the “peak-dip-peak-dip”
irregularity is the analysis of the distribution shape in terms of
the reduced curvature of the spectrum in the midrapidity Cy .
In terms of Cy this irregularity is distinctly seen as a zigzag
irregularity in the energy dependence of Cy .
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FIG. 10. (Color online) Strangeness suppression factor as a
function of the center-of-mass energy of colliding nuclei.
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Comparison with available data, including those at RHIC
energies, indicate a certain preference of the crossover EoS,
though the crossover-EoS scenario in the presently used ver-
sion does not perfectly reproduce the data either. Predictions
of different scenarios for net-protons diverge to the largest
extent in the energy region 8A GeV � Elab � 40A GeV.
The preliminary data at 20A and 30A GeV disagree with
any of the considered scenarios. At incident energies above
the top SPS one, the hadronic scenario certainly overestimates
the proton midrapidity density, while deconfinement scenarios
reasonably reproduce it.

Anticipating results of subsequent papers, it should be
mentioned that the 3FD simulations with the same set of
parameters described here also reproduce other observables, of
course, with different degrees of success depending on applied
EoS. As an example, Fig. 9 demonstrates excitation functions
of midrapidity values of various produced particles. As before,
results for the top calculated energy of

√
sNN = 62.4 GeV

should be taken with care, since accurate computation is still
unavailable for this energy. The strangeness production at low
incident energies is overestimated within the 3FD model. This
is not surprising, since any EoS in the 3FD model is based on
the grand canonical ensemble. This shortcoming can be easily
cured by the introduction of a phenomenological factor γS [62],

which accounts for an additional strangeness suppression due
to the constraints of the canonical ensemble. The midrapidity
densities of strange particles, displayed in Fig. 9, are multiplied
by γS factor, which in turn is presented in Fig. 10. As seen, at
Elab > 10A GeV there is no need for additional strangeness
suppression.

As seen from Fig. 9, the purely hadronic EoS certainly fails
at high energies. A preferable EoS is the crossover one, similar
to that for proton rapidity distributions. These calculations,
as well as those of other observables, will be discussed in
subsequent papers.
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and D. H. Rischke, Nucl. Phys. A 619, 391 (1997); M. Reiter,
A. Dumitru, J. Brachmann, J. A. Maruhn, H. Stöcker, and
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