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Shear and bulk viscosities of strongly interacting “infinite” parton-hadron matter within the
parton-hadron-string dynamics transport approach
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We study the shear and bulk viscosities of partonic and hadronic matter as functions of temperature T within the
parton-hadron-string dynamics (PHSD) off-shell transport approach. Dynamical hadronic and partonic systems
in equilibrium are studied by the PHSD simulations in a finite box with periodic boundary conditions. The ratio
of the shear viscosity to entropy density η(T )/s(T ) from PHSD shows a minimum (with a value of about 0.1)
close to the critical temperature Tc, while it approaches the perturbative QCD limit at higher temperatures in line
with lattice QCD (lQCD) results. For T < Tc, i.e., in the hadronic phase, the ratio η/s rises fast with decreasing
temperature due to a strong decrease of the entropy density s in the hadronic phase at decreasing T . Within
statistics, we obtain practically the same results in the Kubo formalism and in the relaxation time approximation.
The bulk viscosity ζ (T )—evaluated in the relaxation time approach—is found to strongly depend on the effects
of mean fields (or potentials) in the partonic phase. We find a significant rise of the ratio ζ (T )/s(T ) in the vicinity
of the critical temperature Tc, when consistently including the scalar mean-field from PHSD, which is also in
agreement with that from lQCD calculations. Furthermore, we present the results for the ratio (η + 3ζ/4)/s,
which is found to depend nontrivially on temperature and to generally agree with the lQCD calculations as well.
Within the PHSD calculations, the strong maximum of ζ (T )/η(T ) close to Tc has to be attributed to mean-field
(or potential) effects that in PHSD are encoded in the temperature dependence of the quasiparticle masses, which
is related to the infrared enhancement of the resummed (effective) coupling g(T ).
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I. INTRODUCTION

High-energy heavy-ion reactions are studied experimen-
tally and theoretically to obtain information about the prop-
erties of nuclear matter under the extreme conditions of high
baryon density and/or temperature. Ultrarelativistic heavy-ion
collisions at the Relativistic Heavy-Ion Collider (RHIC) and
the Large Hadron Collider (LHC) at CERN have produced
a new state of matter, the quark-gluon plasma (QGP), for a
couple of fm/c. The produced QGP shows features of a strongly
interacting fluid unlike a weakly interacting parton gas [1–4].
Large values of the observed azimuthal asymmetry of charged
particles in momentum space, i.e., the elliptic flow v2 [5–9],
could quantitatively be well described by hydrodynamics up
to transverse momenta on the order of 1.5 GeV/c [10–15]. A
perfect fluid has been defined as having a zero shear viscosity,
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η; yet semiclassical arguments have been given suggesting
that the shear viscosity cannot be arbitrarily small [16].
Indeed, the lower bound for the shear viscosity to entropy
density ratio η/s = 1/4π was conjectured by Kovtun-Son-
Starinets (KSS) [17] for infinitely coupled supersymmetric
Yang-Mills gauge theory based on the anti de Sitter/conformal
field theory (AdS/CFT) duality conjecture. On the basis of
holographically dual computations [18], also for the bulk
viscosity of strongly coupled gauge theory plasmas a lower
bound was conjectured: ζ/η � 2(1/3 − c2

s ), where cs is the
speed of sound. Empirically, relativistic viscous hydrodynamic
calculations—using the Israel-Stewart framework—require a
very small but finite η/s of 0.08–0.24 in order to reproduce the
RHIC elliptic flow v2 data [19–22]. The main uncertainty in
these estimates results from the equation of state and the initial
conditions employed in the hydrodynamical calculations as
well as in the temperature dependence of η/s(T ).

Thus not only the absolute values of the shear and bulk
viscosities are of great interest but also the temperature
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dependence of these coefficients, which is expected to be
quite strong. There is evidence from atomic and molecular
systems that η/s should have a minimum in the vicinity of the
phase transition or—in case of strong interactions at vanishing
chemical potential—of the rapid crossover between hadronic
matter and the quark-gluon plasma [23–25]. Furthermore, it is
argued that the ratio of the bulk viscosity to entropy density ζ/s
should have a maximum close to Tc—as suggested by lattice
QCD—and might even diverge in the case of a second-order
phase transition [26–31]. Such a peak in the bulk viscosity can
lead to instabilities in viscous hydrodynamics simulations for
heavy-ion collisions and possibly to clusterization effects [32].

Shear and bulk viscosities of strongly interacting systems
have been evaluated within different approaches. Calculations
have been performed at high temperatures, where perturbation
theory can be applied [33,34], as well as at extremely
low temperatures [34–36]. First results for shear and bulk
viscosities obtained within lattice QCD (lQCD) simulations
above the critical temperature of pure gluon matter have
been presented in Refs. [37–40]. There are several methods
for the calculation of shear and bulk viscosities for strongly
interacting systems: the relaxation time approximation (RTA)
[41], the Chapmann-Enskog (CE) method [42], and the
Green-Kubo approach [43,44]. The RTA method has been
used to calculate the viscosity [16,30,45–50], as well as the
Green-Kubo approach [4,46,51–55], for both hadronic and
partonic matter providing a rough picture of the transport
properties of strongly interacting matter.

In this study we calculate the shear and bulk viscosities
as a function of temperature (or energy density) with the
parton-hadron-string dynamics (PHSD) transport approach
that has provided a good description of collective flow
properties and differential particle spectra in nucleus-nucleus
collisions from lower CERN Super Proton Synchrotron (SPS)
to RHIC energies [56–60]. In this approach the shear and
bulk viscosities do not enter as external parameters but are
generic properties of the matter under consideration and can
be calculated for systems in equilibrium as a function of
temperature explicitly without incorporating any additional
parameters. Furthermore, the PHSD aproach allows one to
evaluate the transport coefficients within the partonic phase as
well as within the hadronic phase on the same footing.

The paper is organized as follows. In Sec. II we provide a
brief reminder of the off-shell dynamics and the ingredients of
the PHSD transport approach. We then first present in Sec. III
the actual results for the shear and bulk viscosities in “infinite”
parton-hadron matter within the PHSD employing the Green-
Kubo formalism and the RTA and compare these results to
the available lQCD results. The summary and conclusions are
given in Sec. IV.

II. THE PHSD TRANSPORT APPROACH

In this work we extract the shear and bulk viscosities
for infinite parton-hadron matter employing different meth-
ods within the PHSD transport approach [56,57], which is
based on generalized transport equations on the basis of
the off-shell Kadanoff-Baym equations [61,62] for Green’s
functions in phase-space representation (in the first-order

gradient expansion, beyond the quasiparticle approximation).
The approach consistently describes the full evolution of a
relativistic heavy-ion collision from the initial hard scatterings
and string formation through the dynamical deconfinement
phase transition to the strongly interacting quark-gluon plasma
(sQGP) as well as hadronization and the subsequent inter-
actions in the expanding hadronic phase. In the hadronic
sector PHSD is equivalent to the hadron-string dynamics
(HSD) transport approach [63,64]—a covariant extension of
the Boltzmann-Uehling-Uhlenbeck approach [65]—that has
been used for the description of pA and AA collisions
from GSI Heavy Ion Synchrotron (SIS) to RHIC energies
in the past. In PHSD the partonic dynamics is based on
the dynamical quasiparticle model (DQPM) [66–68], which
describes QCD properties in terms of single-particle Green’s
functions (in the sense of a two-particle irreducible approach)
and reproduces lattice QCD results—including the partonic
equation of state—in thermodynamic equilibrium.

A. Reminder of the DQPM

In the scope of the DQPM the running coupling constant
g2 (squared) for partons is approximated (for T > Tc) by

g2(T/Tc) = 48π2

(11Nc − 2Nf ) ln[λ2(T/Tc − Ts/Tc)2]
, (1)

where the parameters λ = 2.42 and Ts/Tc = 0.56 have been
extracted from a fit to the lattice data for purely gluonic
systems (Nf =0) as described in Ref. [68]. In Eq. (1), Nc = 3
stands for the number of colors, Tc is the critical temperature
(=158 MeV), and Nf denotes the number of flavors. In the
actual PHSD calculations for Nf = 3 we employ a slightly
different analytical form for g2(T/Tc) that has been fitted to
the lattice data from Ref. [69]. For the details we refer the
reader to Ref. [70].

The functional forms for the dynamical quasiparticle
masses (for gluons and quarks) are chosen so that they become
identical to the perturbative thermal masses in the asymptotic
high-temperature regime; i.e., for gluons

M2
g (T ) = g2(T/Tc)

6

[(
Nc + 1

2
Nf

)
T 2 + Nc

2

∑
q

μ2
q

π2

]
,

(2)

and for quarks (antiquarks)

M2
q(q̄)(T ) = N2

c − 1

8Nc

g2

(
T 2 + μ2

q

π2

)
, (3)

but the running coupling g(T/Tc) is the resummed coupling
of Eq. (1). The effective quarks, antiquarks, and gluons in the
DQPM have finite widths, which for μq = 0 are adopted in
the following form [71]:

�g(T ) = 1

3
Nc

g2T

8π
ln

(
2c

g2
+ 1

)
, (4)

�q(q̄)(T ) = 1

3

N2
c − 1

2Nc

g2T

8π
ln

(
2c

g2
+ 1

)
, (5)
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where the parameter c = 14.4 is related to a magnetic cutoff
(see Ref. [4]).

In line with Ref. [68], the parton spectral functions are no
longer δ functions in the invariant mass squared but have a
Lorentzian form,

ρj (ω, p) = �j

Ej

(
1

(ω − Ej )2 + �2
j

− 1

(ω + Ej )2 + �2
j

)

= 4ω�j(
ω2 − p2 − M2

j

)2 + 4�2
jω

2
, (6)

with the notation E2
j (p2) = p2 + M2

j − �2
j , where the index j

stands for quarks, antiquarks, and gluons (j = q, q̄, g). The
spectral function (6) is antisymmetric in ω and normalized as∫ ∞

−∞

dω

2π
ωρj (ω, p) =

∫ ∞

0

dω

2π
2ωρj (ω, p) = 1. (7)

The parameters �j and Mj from the DQPM have been defined
above. Note, however, that the decomposition of the total
width �j into the collisional width (due to elastic and inelastic
collisions) and the decay width is not addressed in the DQPM.
The effective cross sections for each of the various partonic
channels as a function of the energy density ε, which fixes the
partial widths of the dynamical quasiparticles as well as the
various interaction rates, have been determined in Ref. [72].

B. Hadronization in PHSD

The hadronization, i.e., the transition from partonic to
hadronic degrees of freedom and vice versa, is described
in PHSD by covariant transition rates for the fusion of
quark-antiquark pairs to mesonic resonances or three quarks
(antiquarks) to baryonic states [57], e.g., for q + q̄ fusion to
a meson m of four-momentum p = (ω, p) at space-time point
x = (t, x):

dNm(x, p)

d4xd4p

= TrqTrq̄ δ
4(p−pq −pq̄)δ4

(
xq + xq̄

2
− x

)

×ωqρq(pq)ωq̄ρq̄(pq̄)|vqq̄ |2Wm

(
xq − xq̄,

pq − pq̄

2

)
×Nq(xq, pq)Nq̄(xq̄, pq̄)δ(flavor, color). (8)

In Eq. (8) we have introduced the shorthand notation,

Trj =
∑

j

∫
d4xj

∫
d4pj

(2π )4
, (9)

where
∑

j denotes a summation over discrete quantum num-
bers (spin, flavor, color); Nj (x, p) is the phase-space density
of parton j at space-time position x and four-momentum
p. In Eq. (8) δ(flavor, color) stands symbolically for the
conservation of flavor quantum numbers as well as color
neutrality of the formed hadron m, which can be viewed as
a color-dipole or “prehadron.” Furthermore, vqq̄ (ρp) is the ef-
fective quark-antiquark interaction from the DQPM (displayed
in Fig. 10 of Ref. [67]) as a function of the local parton

(q + q̄ + g) density ρp (or energy density). Furthermore,
Wm(x, p) is the dimensionless phase-space distribution of the
formed prehadron; i.e.,

Wm(ξ, pξ ) = exp

(
ξ 2

2b2

)
exp

[
2b2

(
p2

ξ − (Mq − Mq̄)2

4

)]
,

(10)

with ξ = x1 − x2 = xq − xq̄ and pξ = (p1 − p2)/2 = (pq −
pq̄)/2 (which had been introduced in Ref. [73]). The width
parameter b has been fixed by

√
〈r2〉 = b = 0.66 fm (in the rest

frame), which corresponds to an average rms radius of mesons.
We note that the expression (10) corresponds to the limit
of independent harmonic oscillator states and that the final
hadron-formation rates are approximately independent of the
parameter b within reasonable variations. By construction the
quantity (10) is Lorentz invariant; in the limit of instantaneous
“hadron formation,” i.e., ξ 0 = 0, it provides a Gaussian
dropping in the relative distance squared (r1 − r2)2. The
four-momentum dependence reads explicitly (except for a
factor 1/2)

(E1 − E2)2 − (p1 − p2)2 − (M1 − M2)2 � 0 (11)

and leads to a negative argument of the second exponential
in Eq. (10) favoring the fusion of partons with low relative
momenta pq − pq̄ = p1 − p2.

Note that, due to the off-shell nature of both partons and
hadrons, the hadronization process obeys all conservation laws
(i.e., the four-momentum conservation and the flavor current
conservation) in each event, the detailed balance relations,
and the increase in the total entropy S for rapidly expanding
systems. The physics behind Eq. (8) is that the inverse reaction,
i.e., the dissolution of hadronic states to quark-antiquark pairs
(in the case of mesons), at low energy density is inhibited
by the large masses of the partonic quasiparticles according
to the DQPM. Vice versa the resonant q–q̄ pairs have a large
phase-space to decay to several 0− octet mesons. We recall that
the transition matrix element becomes huge below the critical
energy density [57]. For further details on the PHSD off-shell
transport approach and hadronization we refer the reader to
Refs. [56,57,70,72,74].

III. CALCULATION OF SHEAR AND BULK VISCOSITY
COEFFICIENTS

In this section we concentrate on the extraction of the shear
and bulk viscosities for “infinite” parton-hadron matter em-
ploying the Green-Kubo formalism and the RTA. We simulate
the “infinite” matter within a cubic box with periodic boundary
conditions at various values for the energy density within
PHSD. The size of the box is fixed to 93 fm3. The initialization
is done by populating the box with light (u, d) and strange (s)
quarks, antiquarks, and gluons. If the energy density in the sys-
tem is below the critical energy density (εc ≈ 0.5 GeV/fm3),
the evolution proceeds through the dynamical phase transition
(as described in Sec. II B) and ends up in an ensemble of
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interacting hadrons. The system is initialized slightly out of
equilibrium and, at all energy-densities, approaches kinetic and
chemical equilibrium during it’s evolution within PHSD as was
shown in our previous investigations in Ref. [72]. After equili-
bration, the properties of the system at given temperature T can
be studied. For more details we refer the reader to Ref. [72],
where the particle abundances, spectra, fluctuations, and spec-
tral functions have been studied. In the present work we extend
our investigations to the calculation of transport coefficients.

A. The Kubo formalism

The Kubo formalism relates linear transport coefficients
such as heat conductivity and shear and bulk viscosities to
nonequilibrium correlations of the corresponding dissipative
fluxes and treats dissipative fluxes as perturbations to local
thermal equilibrium [43,44]. The Green-Kubo formula for the
shear viscosity η is as follows [75]:

η = 1

T

∫
d3r

∫ ∞

0
dt〈πxy(0, 0)πxy(r, t)〉, (12)

where T is the temperature of the system and 〈· · · 〉 denotes the
ensemble average in thermal equilibrium. In Eq. (12), πxy is
the shear component (nondiagonal spacial part) of the energy
momentum tensor πμν :

πxy(r, t) ≡ T xy(r, t) =
∫

d3p

(2π )3

pxpy

E
f (r, p; t), (13)

where the scalar mean-field Us (from PHSD) enters in the
energy E = √

p2 + U 2
s .

In our numerical simulation—within the test particles
representation—the volume averaged shear component of the
energy momentum tensor can be written as

πxy(t) = 1

V

N∑
i=1

px
i p

y
i

Ei

, (14)

where V is the volume of the system and the sum is over all
particles in the box at time t . Note that the scalar mean-field
contribution Us only enters via the energy E. Taking into
account that point particles are uniformly distributed in our
box [implying πxy(r, t) = πxy(t)], we can simplify the Kubo
formula for the shear viscosity to

η = V

T

∫ ∞

0
dt〈πxy(0)πxy(t)〉. (15)

The correlation functions 〈πxy(0)πxy(t)〉 are empirically found
to decay almost exponentially in time,

〈πxy(0)πxy(t)〉 = 〈πxy(0)πxy(0)〉 e−t/τ , (16)

as shown in Fig. 1, where τ is the respective relaxation time.
Finally, we end up with the Green-Kubo formula for the shear
viscosity:

η = V

T
〈πxy(0)2〉τ, (17)

which we use to extract the shear viscosity from the PHSD
simulations in the box at given energy density. Note that the
temperature T is uniquely related to the energy density ε(T )
in PHSD (in thermodynamic equilibrium).

FIG. 1. (Color online) The correlation functions 〈πxy(0)πxy(t)〉,
which are normalized by 〈πxy(0)2〉, as a function of time from the
PHSD simulations in the box (open symbols) for systems at different
energy densities. The corresponding exponential fits are given by
dashed lines; the extracted relaxation times τ are given too.

We check the numeric stability of the method by plotting
the respective relaxation times τ , extracted from the PHSD
simulations in the box, as a function of the number of test
particles in Fig. 2. The results for the relaxation time τ
converge for Ntest � 400 independent of the energy density. In
this study, we use a high amount of microcanonical simulations
in the ensemble average (Ntest = 500), which leads to reliable
(within statistical error bars) results.

We also note that our numerical results for η do not depend
on the volume V of the box within reasonable variations by
factors of 6 as shown in Fig. 3.

B. The relaxation time approximation

The starting hypothesis of the RTA is that the collision
integral can be approximated by

C[f ] = −f − f eq

τ
, (18)

FIG. 2. (Color online) The relaxation time τ as a function of the
number of test particles obtained by the PHSD simulations in the box
(symbols) for systems at different energy densities. The dashed lines
provide the convergent values for the relaxation time τ .
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FIG. 3. (Color online) The shear viscosity η as a function of
temperature from the PHSD simulations in the box for various
volumes of the box: V = 125 GeV/fm3 (green squares), V =
343 GeV/fm3 (red circles), and V = 729 GeV/fm3 (blue triangles).

where τ is the relaxation time. In this approach it has been
shown that the shear and bulk viscosities (without mean-field
or potential effects) can be written as [76–78]

η = 1

15T

∑
a

∫
d3p

(2π )3

|p|4
E2

a

τa(Ea)f eq
a (Ea/T ), (19)

ζ = 1

9T

∑
a

∫
d3p

(2π )3

τa(Ea)

E2
a

[(
1−3v2

s

)
E2

a−m2
a

]2
f eq

a (Ea/T ),

(20)

where the sum is over particles of different type a (in our case,
a = q, q̄, g). In the PHSD transport approach the relaxation
time is given by

τa(T ) = �−1
a (T ), (21)

where �a(T ) is the width of particles of type a = q, q̄, g as de-
fined by Eqs. (4) and (5). In our numerical simulation—within
the test particle representation—the volume averaged shear
and bulk viscosities are given by the following expressions:

η = 1

15T V

N∑
i=1

|pi |4
E2

i

�−1
i , (22)

ζ = 1

9T V

N∑
i=1

�−1
i

E2
i

[(
1 − 3v2

s

)
E2

i − m2
i

]2
, (23)

where the speed of sound vs = vs(T ) is taken from lQCD
[69] or the DQPM, alternatively. Note that vs(T ) from both
approaches is practically identical since it is governed by the
DQPM, which reproduces the lQCD results.

C. Results for the shear viscosity

In Fig. 4 we present the shear viscosity to entropy density
ratio η/s as a function of temperature T of the system extracted
from the PHSD simulations in the box, where the viscosity
was extracted employing the RTA (red line + diamonds)
and the Kubo formalism (blue line + dots). We find that
these approaches give roughly the same η/s as a function
of temperature within error bars. For comparison, the results

FIG. 4. (Color online) The shear viscosity to entropy density
ratio η/s as a function of temperature of the system obtained
by the PHSD simulations using different methods: the RTA (red
line + diamonds) and the Kubo formalism (blue line + dots). The
other symbols denote lQCD data for pure SUc(3) gauge theory
from Ref. [37] (magenta squares), from Ref. [39] (open and solid
triangles), and from Ref. [40] (black open and solid circles). The
orange dashed line demonstrates the Kovtun-Son-Starinets bound
[17] (η/s)KSS = 1/(4π ). For comparison, the results from the virial
expansion approach (green line) [24] are shown as a function of
temperature too.

from the virial expansion approach [24] are given by the green
line as well as lQCD data for pure SUc(3) gauge theory. The
results for T < Tc stem from PHSD in the relaxation time
framework and rapidly rise with decreasing temperature. This
is mainly because of a strong decrease of the entropy density,
s → 0 at T → 0 as e−mπ /T .

The behavior of the specific shear viscosity with tem-
perature in PHSD is in agreement with the results of the
scaling hadron masses and couplings and “heavy quark bag”
(SHMC-HQB) approach [49,50,79], where the partonic phase
is described in the “heavy quark bag” model. However, we
obtain considerably lower values for the shear viscosity,
in particular, in the partonic phase. The low viscosity of
the quark-gluon matter in PHSD is caused by the stronger
interaction between the degrees of freedom and is supported
by the successful description of experimental data on the
collective flow in heavy-ion collisions within PHSD [57,60].

At T < Tc, the PHSD results for the viscosity of the
hadronic matter at vanishing quark chemical potential μq = 0
qualitatively agree with the calculations in Refs. [80–83]. On
the other hand, let us note that the results for the hadronic
phase here have to be extended to finite μq before applications
to realistic heavy-ion collisions can be performed. This is the
topic of a separate forthcoming study.

D. Mean-field or potential effects

We recall that for vanishing quark chemical potential the
partonic mean fields are essentially of scalar type and vector
or tensor fields are suppressed, since the average quark current
is zero. Furthermore, partonic mean fields affect the bulk
viscosity but not the shear viscosity (except for a contribution
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in the energy E in the denominator). According to Ref. [78],
the expression for the bulk viscosity with potential effects
reads

ζ = 1

T

∑
a

∫
d3p

(2π )3

τa(Ea)

E2
a

f eq
a (Ea/T )

×
[(

1

3
− v2

s

)
|p|2 − v2

s

(
m2

a − T 2 dm2
a

dT 2

)]2

. (24)

In the numerical simulation the volume averaged bulk viscosity
(including the mean-field effects from PHSD) is evaluated as

ζ= 1

T V

N∑
i=1

�−1
i

E2
i

[(
1

3
−v2

s

)
|p|2 − v2

s

(
m2

i − T 2 dm2
i

dT 2

)]2

.

(25)

By using the DQPM expressions for the masses of quarks and
gluons (for μq = 0),

m2
q(T/Tc) = 1

3
g2(T/Tc)T 2, m2

g(T/Tc) = 3

4
g2(T/Tc)T 2,

we can calculate the derivatives with respect to T 2. Thus all
quantities in Eq. (25) are uniquely determined within PHSD.
We recall that the DQPM description of thermodynamic
properties of lQCD results [69] and its implementation in
PHSD give practically the same results [72]. The derivation
of partonic mean fields as well as their values can be found in
Ref. [66].

E. Results for the bulk viscosity

In Fig. 5 we show the bulk viscosity to entropy density ratio
ζ/s as a function of temperature T of the system obtained
by the PHSD simulations in the box employing the RTA
with mean-field (or potential) effects (red line + diamonds)
and without potential effects (blue line + open triangles) for

FIG. 5. (Color online) The bulk viscosity to entropy density
ratio ζ/s as a function of temperature T extracted from the PHSD
simulations in the box using the RTA with mean-field effects (red
line + diamonds) and without potential effects (blue line + open
triangles). The available lQCD data from Ref. [38] are given by
green squares and from Ref. [40] by black open and solid circles,
respectively.

the partons. For comparison, we show in the same figure
the available lQCD data [38,40]. Without mean-field effects
we find an almost constant ratio ζ (T )/η(T ) (see below),
which is not in line with the findings from the lattice. Thus
the dynamical mean fields (as incorporated in PHSD) play
a decisive role in the temperature dependence of the bulk
viscosity ζ (T ) of the strongly interacting quark-gluon plasma.
The increase of the bulk viscosity per unit entropy at T ≈ Tc

is generated by the collective interaction of partons via mean
fields rather than by their scatterings. At high temperature
the mean-field effects are less pronounced and the values
for the bulk viscosity of partonic matter from PHSD are
approaching those obtained in the scope of the SHMC-HQB
model [49,50,79].

On the hadronic side, we observe that ζ/s falls with
temperature, which is in agreement with the results of the
SHMC-HQB model [49,50,79] and of the chiral model for
an interacting pion gas [84,85]. However, we do not see a
divergent behavior of the bulk viscosity to entropy density
ratio for T → 0 as predicted in Ref. [85].

Further related quantities are of interest, in particular, the
specific sound (η + 3ζ/4)/s. A sound wave propagation in the
z direction with wavelength λ = 2π/k is damped according
to

T03(t, k) ∝ exp

[
−

(
4
3η + ζ

)
k2t

2(ε + p)

]
, (26)

where T03 is the momentum density in the z direction, ε is
the energy density, and p is the pressure. Thus both the shear
η and bulk ζ viscosities contribute to the damping of sound
waves in the medium and provide a further constraint on the
viscosities. In Fig. 6 we present the specific sound channel
(η + 3ζ/4)/s as a function of temperature T of the system
obtained by the PHSD simulations in the box using the RTA
with mean-field effects (red line + diamonds). It is compared
with lQCD results for pure SUc(3) gauge theory from Ref. [86]
(green circles) and from combining results of Refs. [37,38]

FIG. 6. (Color online) The specific sound channel (η + 3ζ/4)/s
as a function of temperature T of the system obtained by the PHSD
simulations in the box using the RTA with mean-field effects (red
line + diamonds). It is compared with lQCD data from Ref. [86]
(green circles) and from combining the results of Refs. [38,40]
(blue squares).
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FIG. 7. (Color online) The bulk to shear viscosity ratio ζ/η as
a function of temperature of the system obtained by the PHSD
simulations in the box employing the RTA with mean-field effects (red
line + diamonds) and without potential effects (blue line + circles).
It is compared with lQCD data from Refs. [37,38] (green squares).
Note the logarithmic scale in ζ/η.

(blue squares). Note that the PHSD calculations correspond
to unquenched three-flavor QCD and thus are not expected to
match the results for the pure gauge theory exactly.

Finally, in Fig. 7, we show the bulk to shear viscosity ratio
ζ/η as a function of temperature of the system extracted from
the PHSD simulations in the box using the RTA with mean-
field (or potential) effects (red line + diamonds) and without
potential effects (blue line + circles). Whereas an almost
temperature-independent result is obtained in the partonic
phase when discarding mean-field effects, a strong increase
close to Tc is found in the PHSD when including the mean
fields for the partons. The results for the shear to bulk viscosity
ratio in the deconfined phase are in agreement with the lattice
data [37,38] and with Ref. [87]. Since the PHSD gives a
minimum in the shear viscosity η and a strong maximum in
the bulk viscosity ζ close to Tc (note the logarithmic scale), the
ratio ζ/η has a sizable maximum in the area of the (crossover)
phase transition.

IV. SUMMARY AND CONCLUSIONS

We have employed the off-shell PHSD approach in a finite
box with periodic boundary conditions for the study of the
shear and bulk viscosities as a function of temperature (or
energy density) for dynamical infinite partonic and hadronic
systems in equilibrium. The PHSD transport model is based on
a lQCD equation of state [69] and well describes the entropy

density s(T ), the energy density ε(T ), and the pressure p(T )
in thermodynamic equilibrium in comparison to the lQCD
results [56,57,72]. We have employed the Kubo formalism
as well as the RTA to calculate the shear viscosity η(T ). We
find that both methods provide very similar results for the
ratio η/s with a minimum close to the critical temperature
Tc while approaching the perturbative QCD limit at higher
temperatures. For T < Tc, i.e., in the hadronic phase, the ratio
η/s rises fast with decreasing temperature due to a lower
interaction rate of the hadronic system and a significantly
smaller number of degrees of freedom (or entropy density).
Our results are, furthermore, also in almost quantitative
agreement with the ratio η(T )/s(T ) from the virial expansion
approach in Ref. [24] as well as with lQCD data for the pure
gauge sector.

We have, furthermore, evaluated the bulk viscosity ζ (T )
in the RTA and focused on the effects of mean fields (or
potentials) in the partonic phase. Here we find a significant
rise of the ratio ζ (T )/s(T ) in the vicinity of the critical
temperature Tc due to the scalar mean fields from PHSD. The
result for this ratio is in line with that from lQCD calculations.
Additionally, the specific sound (η + 3ζ/4)/s(T ) has been
calculated and presents a nontrivial temperature dependence;
the absolute value for this combination of the shear and bulk
viscosities is in an approximate agreement with the lattice
gauge theory. Furthermore, the ratio ζ (T )/η(T ) within the
PHSD calculations shows a strong maximum close to Tc,
which has to be attributed to mean-field (or potential) effects
that in PHSD are encoded in the infrared enhancement of the
resummed coupling g(T ).

Because the PHSD calculations have proven to describe
single-particle as well as collective observables from relativis-
tic nucleus-nucleus collisions from lower SPS to top RHIC
energies, the extracted transport coefficients η(T ) and ζ (T )
are compatible with experimental observations in a wide
energy/temperature range. Furthermore, the qualitative and
partly quantitative agreement with lQCD results is striking.
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