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Rapid convergence of the Weinberg expansion of the deuteron stripping amplitude
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Theories of (d, p) reactions frequently use a formalism based on a transition amplitude that is dominated by the
components of the total three-body scattering wave function where the spatial separation between the incoming
neutron and proton is confined by the range of the n-p interaction, Vnp . By comparison with calculations based
on the continuum discretized coupled channels method we show that the (d, p) transition amplitude is dominated
by the first term of the expansion of the three-body wave function in a complete set of Weinberg states. We use
the 132Sn(d, p)133Sn reaction at 30 and 100 MeV as examples of contemporary interest. The generality of this
observed dominance and its implications for future theoretical developments are discussed.
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I. INTRODUCTION

There is growing interest and activity in transfer reaction
studies using radioactive beams, driven by increased secondary
beam intensities and motivated by the search for new physics
at the edge of nuclear stability [1,2] and by the need for
low-energy reaction rates for astrophysical applications [3,4].
The (d, p) reaction, measured in inverse kinematics, is well
suited for these purposes. It can provide spin-parity assign-
ments for nuclear states, allow determination of spectroscopic
strengths of single-particle configurations, and give asymptotic
normalization coefficients in the tail of overlap functions.
The reliability of this deduced nuclear structure information
depends on the existence of a reaction theory that describes
adequately the mechanism of the (d, p) reaction.

This paper uses a formulation of the A(d, p)B reaction
amplitude that emphasizes the components of the total
neutron + proton + target scattering wave function where the
spatial separations between the incoming neutron and proton
are confined by the range of the n-p interaction, Vnp. These
components contain both the bound and continuum states of
the n-p system. Since the n-p binding energy in the deuteron is
small and the optical potentials that generate the tidal breakup
forces are smooth functions of position, the strength of inelastic
excitations to the n-p continuum is expected to be concentrated
at low n-p relative energies. This suggests that the coupling
effects between different n-p states can be treated adiabatically
and leads to a simple prescription for calculating the scattering
wave function at small n-p separations [5].

In the adiabatic model the A(d, p)B transition amplitude
has exactly the same structure as that of the distorted-wave
Born approximation (DWBA), for which many computer
codes are available, which has led to its widespread use [2,5–9].
The adiabatic model frequently provides significant improve-
ments over the DWBA for A(d, p)B angular distributions and
giving consistent results for nuclear structure information [9].

There are two key ingredients in the adiabatic model: (i) the
assumption that only components of the three-body scattering
wave function with small n-p separation are needed for the
A(d, p)B transition amplitude and (ii) the validity of the
adiabatic treatment of deuteron breakup at the nuclear surface.

The primary purpose of this paper is to show that assumption
(i) is justified for a useful range of reaction energies when it
is implemented in terms of a precisely defined projection of
the three-body scattering wave function. This projection will
be shown to involve the first Weinberg state component of the
full wave function.

Investigations of how assumption (ii) influences the pre-
dicted (d, p) cross sections were carried out using the quasia-
diabatic model [10,11], the Weinberg states expansion (WSE)
method [8,12], the continuum discretized coupled channels
(CDCC) method, and also Faddeev equation methods [13,14].
The importance of nonadiabatic effects has been found to
depend on the target and incident energy and, in the worst
cases, these affected both the shapes and the magnitudes
of the calculated differential cross sections [12,14]. There
is therefore an important need to provide a practical way
of introducing corrections to the adiabatic approximation.
Our aim here is to provide a suitable definition of the
projection of the full scattering wave function implied by
assumption (i), which we call the first Weinberg projection.
We show that this projection, which is a function of only
a single vector coordinate, dominates the calculation of the
A(d, p)B transition amplitude. This result implies that to
include effects beyond the adiabatic approximation one can
focus on improvements to the calculation of this projection
only.

The CDCC method for solving the three-body problem
does not use the adiabatic approximation (ii). From a practical
point of view it is well adapted to the study of deuteron
breakup effects on A(d, p)B reactions. In principle in the
CDCC method one attempts to calculate the three-body scat-
tering wave function in the whole six-dimensional coordinate
space of the neutron + proton + target (n + p + A) three-body
system. Our approach is to compare calculations of the (d, p)
transition amplitude made using a complete CDCC wave
function with calculations which retain only the first few
Weinberg components of the full CDCC wave function.

In Sec. II we describe how the projection procedure
mentioned above is related to the Weinberg state and CDCC
expansion methods and we connect these. In Sec. III we
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construct the Weinberg components using the CDCC wave
functions and in Sec. IV we compare calculations of the (d, p)
transition amplitudes using the first few Weinberg components.
We summarize our results in Sec. V.

II. THREE-BODY WAVE FUNCTION AND ITS EXPANSION
IN THE CDCC AND WEINBERG STATE BASES

In the absence of inelastic excitations of the target and
residual nuclei A and B in the incident and outgoing channels,
the transition amplitude of the A(d, p)B reaction can be
written as [5]

Tdp = 〈χ (−)
p IAB |Vnp|�(+)〉. (1)

Here χ (−)
p is the outgoing proton distorted wave (where we

neglect certain 1/A corrections [15]), IAB is the overlap
function between the wave functions of A and B, Vnp is the
neutron-proton interaction, and �(+) is the projection of the
full many-body wave function onto the three-body, n + p + A,
channel with A in its ground state. The effect of coupling to
excited states of A is implicitly taken into account through the
use of complex nucleon optical potentials, but contributions
from transitions that explicitly excite components of A in the
initial state and B in the final state are ignored. We assume
that �(+) satisfies the Schrödinger equation

[Ed + iε − Hnp − TR − Un(rn) − Up(rp)]�(+)(r, R)

= iεφd (r)ei K d ·R, (2)

where Hnp = Tr + Vnp is the n-p relative motion Hamiltonian.
Here Ed = Ec.m. − εd , where εd is the deuteron binding energy
and Ec.m. is the three-body energy in the center-of-mass sys-
tem. Un and Up are the optical model potentials for the neutron
and the proton with the target nucleus, respectively, and K d

is the wave number associated with Ed . The coordinates rp

and rn are the proton and neutron coordinates with respect to
the target A while r = rp − rn and R = 1

2 (rn + rp) are the
relative and c.m. coordinates of the n-p pair. Also,

Tr = − h̄2

2μnp

∇2
r and TR = − h̄2

2μdA

∇2
R

are the kinetic energy operators associated with r and R, with
μnp and μdA the reduced masses of the n-p pair and the n +
p + A system, respectively. The right-hand side of Eq. (2)
specifies the incident boundary condition of a deuteron with
initial wave function φd and the physical total wave function
is to be calculated in the limit ε → 0+. The superscripts on
χ (−)

p and �(+) indicate that they obey ingoing and outgoing
waves boundary conditions, respectively. For simplicity, these
superscripts are omitted in the following text.

In the next two sections we describe two expansion schemes
for the total wave function �(r, R).

A. The Weinberg states expansion

For n-p separations r within the range of Vnp, the wave
function �(r, R) has the expansion [8,12]

�(r, R) =
∑

i

φW
i (r)χW

i (R), (3)

where the Weinberg states, φW
i , are solutions of the equation

[−εd − Tr − αiVnp]φW
i (r) = 0, i = 1, 2, . . . (4)

with fixed energy −εd and eigenvalues αi . For radii r > ri ,
where ri is such that αiVnp(r) is negligible, all of the Weinberg
states decay exponentially, like the deuteron ground-state
wave function. For r < ri , they oscillate with a wavelength
that varies with i, becoming increasingly oscillatory with
increasing i (see the examples given in [12] for the case of
a Hulthén form for Vnp).

The Weinberg states form a complete set of functions of r
for regions of the r axis on which Vnp is nonvanishing. They
are therefore well adapted to expanding � in this region. They
do not satisfy the usual orthonormality relation but instead
satisfy 〈

φW
i

∣∣Vnp

∣∣φW
j

〉 = −δij , (5)

where the value −1 for i = j has been chosen for convenience.
This form of orthonormality, with a weight factor Vnp,

means that if one wishes to represent an arbitrary state ϕ(r)
as a linear superposition of Weinberg states then the unique
choice of coefficients ai which minimizes the difference

	 =
∫

d r Vnp

∣∣∣∣ϕ −
∑

i

aiφ
W
i

∣∣∣∣
2

(6)

is

ai = −〈
φW

i

∣∣Vnp|ϕ〉. (7)

Use of a factor Vnp in Eq. (6), which weights r values
according to Vnp, provides a natural scheme for constructing
the expansion coefficients for states of n-p relative motion for
use in the (d, p) transition amplitude.

B. The CDCC basis method

The CDCC method involves the expansion of �(r, R) in
terms of a complete set of n-p continuum bin states φbin

i (see,
e.g., Ref. [16]), written

�(r, R) = φd (r)χ0(R) +
∑
i=1

φbin
i (r)χbin

i (R). (8)

The bin states are linear superpositions of continuum eigen-
functions of Hnp, on chosen intervals 	ki of n-p continuum
wave numbers, and are orthogonal in the usual sense. So, the
projection of the three-body Schrödinger equation of Eq. (2)
onto this set of spatially extended bin states leads to a set
of coupled-channel equations for the channel wave functions
χbin

i (R). The coupling potentials, generated from the nucleon
optical potentials, are long-ranged and link parts of the wave
function from all n-p, n-A, and p-A separations.

These CDCC equations can be solved numerically and their
convergence properties have been intensively studied.
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C. Connection between the CDCC and Weinberg
basis wave functions

It is known from experience with CDCC calculations that
the energy range of n-p continuum states that are coupled
to the incident deuteron channel is limited to tens of MeV.
Thus, we expect that inside the range of Vnp the wave function
�(r, R) will not be a strongly oscillatory function of r and
only a few terms of the Weinberg expansion will be needed to
evaluate the (d, p) matrix element. Note that this has nothing
to do with the strength of the coupling between Weinberg
components in �(r, R) or how rapidly the Weinberg expansion
for �(r, R) itself converges, but rather it relates to how rapid
the convergence of the sequence of contributions to the (d, p)
amplitude is from the different Weinberg components. We do
not obtain the latter from a set of coupled equations, as, e.g.,
was done successfully in Ref. [12], but rather from the CDCC
expansion of �(r, R). The quantitative issues arising from a
comparison with the approach of Ref. [12] will be addressed
elsewhere.

To connect the Weinberg and CDCC components of
�(r, R) we project �, expressed in the CDCC basis, onto
individual Weinberg states using the orthogonality property of
Eq. (5). The Weinberg distorted waves, χW

i , and those of the
CDCC basis, χbin

j , are related using

χW
i (R) = Ci0χ0(R) +

∑
j=1

Cijχ
bin
j (R). (9)

The transformation coefficients Cij are given by

Ci0 = −〈
φW

i

∣∣Vnp|φd〉 (=0, i �= 1),
(10)

Cij = −〈
φW

i

∣∣Vnp

∣∣φbin
j

〉
(i, j = 1, 2, . . .).

These coefficients also appear in the formulas
∣∣φbin

j

〉 =
∑

i

Cij

∣∣φW
i

〉
(11)

and ∫
d rVnp

∣∣φbin
j (r)

∣∣2 =
∑

i

|Cij |2 (12)

that quantify the contribution of each Weinberg state to a
particular CDCC bin state, in the presence of the weight
factor Vnp.

These Cij are determined entirely by the bound and
scattering states of Vnp in the energy range of the relevant
bin states. They do not depend on any other details of the
reaction, such as the deuteron incident energy, the transferred
angular momentum, or the structure of the target nuclei. The
values of Cij do depend on how the CDCC bin states were
constructed, the bin sizes 	ki , etc.; however, we have checked
that the changes in the computed χW

i are less than 0.1% with
typical choices of bin sizes, such as 	ki ≈ 0.1–0.15 fm−1.
Throughout this work a Hulthén potential was used for Vnp,
namely,

Vnp(r) = V0/(eβr − 1), (13)

10−2

10−1

100

 0  20  40  60  80

02 4 6 8 10 12 14

|C
ij|

Ebin (MeV)

(j=)

i=1
i=2
i=3
i=4
i=5

FIG. 1. (Color online) CDCC bin state to Weinberg state transfor-
mation coefficients Cij , of Eq. (9), for Weinberg states i = 1, 2, . . . , 5
and CDCC bin states j = 1, 2, . . . , 14. The deuteron ground state is
denoted by j = 0. The CDCC bins were calculated up to n-p relative
momenta kmax = 1.4 fm−1 in steps 	ki = 0.1 fm−1. See Sec. III for
full details.

with parameters V0 = −84.86 MeV and β = 1.22 fm−1 [12].
Only s-wave continuum states were included. These give the
largest contribution to �(r, R) at small r .

In Fig. 1 we show the calculated Cij for i � 5 for bin states
φbin

j calculated from CDCC calculations using the computer
code FRESCO [17]. The lower and upper horizontal axes show
the n-p continuum energies included in the CDCC and the
label of the different bins, with j = 1, . . . , 14, respectively.
The point with j = 0 shows the C10 that connects with the
deuteron ground state. Each line then corresponds to a different
Weinberg state, φW

i .
For the (d, p) reaction the most relevant continuum energies

lie in the range 0 to 40 MeV. From Eq. (11) and the
i dependence of the Cij for the lower energy (and j ) bins in
Fig. 1, we see that the bin states in the relevant energy range are
dominated by the first Weinberg component with only small
contributions from Weinberg states i = 2–5. This dominance
is particularly marked for the low-energy continuum, which is
the most strongly coupled to the deuteron ground state by the
breakup mechanism and that has the largest χbin

i (R) in Eq. (8).
At the higher continuum energies the bin states are mixtures
of several Weinberg states, as was expected.

In Eq. (9), this dominance of the i = 1 coefficients for low
continuum energies will make χW

1 the dominant Weinberg
distorted wave provided the contributions from continuum bins
with energies greater than of order 30 MeV are not large. In
the next section we present the details of CDCC calculations
and show that these qualitative observations are borne out
quantitatively for typical (d, p) reactions and energies.

III. CONSTRUCTION OF THE χW
i FROM THE CDCC WAVE

FUNCTION

In this section, as relevant topical examples, we construct
the Weinberg distorted waves χW

i for the 132Sn(d, p)133Sn
reaction at deuteron incident energies Ed = 100 and 30 MeV
at which the contributions from closed channels are negligible.
Neutron-rich target nuclei, for inverse kinematics (d, p)
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experiments at such energies per nucleon, are available at
several modern radioactive ion beam facilities such as RIKEN
[18], GANIL [19], NSCL [20], FLNR at Dubna [21], and IMP
at Lanzhou [22].

We solved the CDCC equations using nucleon optical
potentials, Un and Up, evaluated at half the incident deuteron
energy, taken from the KD02 systematics [23]. Only the central
parts of these potentials were used. Both the nuclear and
Coulomb potentials were used in constructing the coupling
potentials. The continuum bin states φbin were computed by
discretizing the s-wave n-p continuum using 	ki of 0.1 and
0.05 fm−1 up to kmax = 1.4 and 0.75 fm−1, corresponding
to maximum continuum energies of 81.9 and 23.5 MeV, for
Ed = 100 and 30 MeV, respectively. The coupled-channels
CDCC equations were solved up to Rmax = 100 fm because
of the long-range nature of the CDCC couplings [24]. The
CDCC calculations were performed using the computer code
FRESCO [17].

The χW
i were constructed from Eq. (8) using the coefficients

Cij discussed in the previous section. It was found that bins
up to a maximum continuum energy of 25 MeV are sufficient
for the convergence of χW

1 for both deuteron incident energies.
This is illustrated in Figs. 2(a) and 2(c), which show χW

1 for
partial waves with L = 18 and 12. Angular momenta L near

0.00

0.20

0.40

0.60

 0  3  6  9  12  15

R (fm)

100 MeV
L=18

(a)

|χW
1 | Emax=3.45

Emax=11.2
Emax=26.3
Emax=48.8
Emax=78.7

0.000

0.003

0.006

0.009

 0  3  6  9  12  15

R (fm)

100 MeV
  L=18

(b)

|χW
2 |

Emax=11.2
Emax=26.3
Emax=48.8
Emax=78.7

0.00

0.25

0.50

0.75

1.00

 0  3  6  9  12  15

R (fm)

30 MeV
  L=12

(c)

|χW
1 |

Emax=5.71
Emax=10.2
Emax=16.5
Emax=24.7

FIG. 2. (Color online) Convergence of selected partial waves of
the Weinberg components χW

i with respect to the maximum n-p
continuum energy included in Eq. (9). Results are for (a) χW

1 and
Ed = 100 MeV, (b) χW

2 and Ed = 100 MeV, and (c) χW
1 and Ed = 30

MeV. The partial wave values, L, associated with each χW
i are

indicated in each panel.

10−4

10−3

10−2

10−1

100

|χ
W i  

|

100 MeV, L=18

(a)

10−4

10−3

10−2

10−1

100

 0  4  8  12  16  20

| χ
W i  

|

R (fm)

30 MeV, L=12(b)

i=1
i=2
i=3

FIG. 3. (Color online) Calculated Weinberg state distorted waves
χW

i demonstrating the dominance of χW
1 . Curves compare the moduli

of χW
1 , χW

2 , and χW
3 for the 132Sn(d, p)133Sn reaction for (a) Ed =

100 MeV and partial wave L = 18 and (b) Ed = 30 MeV and partial
wave L = 12.

these values drive the dominant contributions to the (d, p)
reaction cross sections for Ed = 100 and 30 MeV, respectively.
Convergence of the χW

i with i > 1 was not achieved, as
anticipated from the behavior of the coefficients Cij shown
in Fig. 1. We demonstrate this in Fig. 2(b) for χW

2 and
Ed = 100 MeV. As is expected, from the Cij dependence on
j for i > 1, all i > 1 Weinberg components are about two
orders of magnitude smaller than χW

1 in the most important
radial region for the transfer amplitude. This is R ≈ 7 fm in
the present case (see Fig. 3).

The Weinberg distorted wave components χW
i constructed

above contain contributions from all CDCC basis components
within the range of Vnp. However, since χW

1 dominates over
all other Weinberg components, it is sufficient to perform one-
channel transfer reaction calculations with only χW

1 included.
We call calculations truncated in this way DWχ1A (distorted
wave with χW

1 approximation). For this purpose, we read
the calculated χW

i (i = 1, 2, 3) into the computer code TWOFNR

[25] and calculate the transfer amplitude within the zero-range
approximation. We use the same KD02 optical potential
systematics as used in the deuteron channel for the proton
distorted waves in the outgoing channel. In the model calcula-
tions presented, the neutron overlap function is approximated
as a single particle wave function (with � = 3) calculated using
a Woods-Saxon potential with standard radius and diffuseness
parameters, r0 = 1.25 fm and a0 = 0.65 fm and depth fitted to
separation energy of 2.47 MeV [26]. No spin-orbit potential
was used for this wave function.

The DWχiA differential cross sections are shown in Fig. 4
for 100- and 30-MeV incident deuteron energies, where the
differential cross sections corresponding to each of χW

1,2,3 and
their coherent sum are shown. Evident from these figures is
that the addition of channels χW

2 and χW
3 does not influence

the cross sections at the forward angles where the angular
distributions are usually measured and are most valuable for
spectroscopy. The χW

2 and χW
3 contributions are noticeable

at large angles where the cross sections are small, but even
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sum
CDCC−ZR

FIG. 4. (Color online) Comparisons of the calculated differential
cross sections for the 132Sn(d, p)133Sn reaction at (a) 100 MeV and
(b) 30 MeV, using Weinberg distorted wave components χW

1 , χW
2 ,

and χW
3 , showing the dominance of the first Weinberg component

χW
1 ; see the text for details.

there the changes are small. For comparison, the results of
CDCC-ZR calculations, which include the contributions to
transfer (in the zero-range approximation) from all of the
CDCC continuum bins used to construct χW

i , are also shown.
As was expected, the cross sections from the CDCC-ZR
calculation and from the coherent sums of the DWχiA
(i = 1, 2, 3) amplitudes agree very well at both of the energies
studied.

IV. SUMMARY

Using as an example the 132Sn(d, p)133Sn reaction at
energies of 15 and 50 MeV/nucleon typical of modern
radioactive ion beam facilities, we have demonstrated that
the dominant effects of deuteron breakup on calculations of
(d, p) reaction observables can be accommodated using a
one-channel distorted-wave calculation. These calculations go
well beyond the DWBA method in that no Born approximation

step is involved. This calculation requires knowledge of an
effective deuteron distorted wave, being the first component
of the expansion of the p + n + A scattering wave function
�(r, R) in Weinberg states. This component includes accu-
rately breakup contributions from the small n-p separations
that dominate the (d, p) reaction amplitude. It is defined as the
projection of �(r, R) onto the transfer reaction vertex, i.e.,
Vnp|φd〉.

Johnson and Tandy [8] showed that, by neglecting couplings
between components in the Weinberg expansion of the three-
body wave function, one obtains a simple prescription for
a potential that generates directly (an approximation to) the
first Weinberg component. (d, p) reaction calculations based
on this approximation, known as the adiabatic distorted wave
approximation (ADWA), have had some success in the analysis
of data. Successful and more complete calculations that
include the couplings between the Weinberg components have
also been published [12]. We have shown here that there is a
need to develop a simple procedure for correcting the ADWA,
focusing specifically on calculating accurately only the first
Weinberg component of the three-body scattering wave func-
tion �(r, R). This would be especially important for incident
energies of 3–10 MeV per nucleon, typical of TRIUMF [27],
HRIBF at ORNL [28] (where the 132Sn(d, p)133Sn reaction
has been measured [29,30]), and ISOLDE [31], for which the
influence of closed channels does not allow us to generate
reliably this component using the scheme described above.
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