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The Born theory for bremsstrahlung from high-energy electrons colliding with extended (finite-mass) nuclei is
reexamined. Higher-order effects are included into the Born approximation by making use of the weak-potential
Sommerfeld-Maue prescription in an additional contribution to the transition amplitude. Predictions are made for
the differential cross section (with respect to the photon degrees of freedom) and for the polarization correlations
between the incoming electron and the emitted photon. It is found that at collision energies exceeding 20 MeV
the cross section as well as the polarization correlations are strongly influenced by nuclear recoil and nuclear
structure effects, particularly at backward photon angles. Numerical results are presented for bremsstrahlung
from 10–100 MeV electrons colliding with protons, 19F and 89Y nuclei.
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I. INTRODUCTION

The investigation of polarization effects in high-energy
bremsstrahlung during an electron-nucleus encounter is a
sensitive tool to gain supplementary information on QED
effects and on the nuclear structure. If only scattering cross
sections are considered, the electric contribution, resulting
from the charge interaction between electron and nucleus, adds
incoherently to the magnetic contribution which is due to the
particle current interaction between the collision partners. The
polarization correlations, on the other hand, are influenced
by the interference effects between electric and magnetic
scattering. Thus the relativistic and nuclear structure effects
will be more easily seen in polarization measurements than in
mere intensity measurements.

The study of the bremsstrahlung polarization correlations
from low-energy electron scattering has a long tradition
(highlighted by the seminal works of Tseng and Pratt [1]
on the theory side and of Nakel and collaborators [2] on the
experimental side). This subject has recently been taken up in a
series of experimental investigations [3–7] at collision energies
between 0.1–3.5 MeV. For high-energy electron scattering,
i.e., for energies above 20 MeV, the basic subject has been
the investigation of the intensity of bremsstrahlung emitted by
unpolarized electrons [8]. An exception was the consideration
of the spin asymmetry from the scattering of unpolarized
electrons by polarized target nuclei in the GeV region
[9].

The motivation for investigating high-energy brems-
strahlung has primarily been the consideration of radiative
corrections to electron-nucleus scattering if only the electron
or the nucleus, but not the photon, is observed [10–13].
A second topic of interest is the measurement of beam
polarization during an experiment. This can be done with
the help of Compton polarimetry which is based on the
polarization transfer in electron-photon interactions. It is a
challenge to apply this technique above electron energies of,
say, 10 MeV [5], but there are strong arguments that such
polarization measurements are feasible up to several tens of
MeV [14,15].

Since accurate partial-wave calculations are only feasible
up to at most 5–10 MeV [16–18], the lowest-order

Born approximation (usually termed ‘first-order’ Born
approximation although it is a second-order process [19])
is commonly used for collision energies extending into the
nuclear physics regime. Motivated by the fact that the spin
asymmetry A (for electrons spin-polarized perpendicular
to the reaction plane) vanishes in the first-order Born
approximation, there are—in particular for low-energy
scattering—several attempts to use the second-order Born
approximation. This theory is hampered by divergences in
some contributions to the transition amplitude which however,
can be handled to provide a finite cross section [20]. For
energies below 1 MeV the second-order Born approximation
was, e.g., applied to the calculation of A in [21]1 and [22].

A widely used approximation, which includes the Born
series to all orders but which is restricted to weak potentials
(Z/c � 1) or ultrahigh electron energies, is the Sommerfeld-
Maue model (also termed Elwert-Haug theory [23]). In
this theory the Dirac functions for the incoming and the
scattered electron are approximated by the semirelativistic
Sommerfeld-Maue wave functions [24] which allow for an
analytic evaluation of the radiation matrix element [25]. The
disadvantage of this theory in its application to high-energy
bremsstrahlung is its formulation for point-like nuclei only.

In the nuclear physics regime there are several effects which
introduce changes into the standard bremsstrahlung theories as
applied for low collision energies. First, the finite mass of the
nucleus has to be taken into consideration, which leads to recoil
effects [11]. These recoil corrections consist of a kinematical
contribution, due to the modification of the energy balance,
and of a dynamical contribution (also called ‘virtual Compton
effect’ [9]), which originates from bremsstrahlung emission
by the nucleus [26,27]. Secondly, in addition to the charge
interaction, also the magnetic scattering has to be accounted
for (see, e.g., [8]). Moreover, there are modifications due to the
finite nuclear size [28]. The nuclear structure effects [13,29]
also cause the presence of an anomalous magnetic moment and

1Formula (24) of that work, claiming that A is linearly dependent on
the nuclear charge Z, has to be treated with care. The approximation
leading to Eq. (24) is incorrect for the larger Z, and one always has
|A| � 1, also in a consistent second-order Born theory.
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may even allow for resonant intermediate nuclear states [9] or
the excitation of the nucleus [30].

While the high-energy bremsstrahlung calculations in the
middle of last century usually suffer from several additional
approximations which were made in order to reduce the
computational task, nowadays computers allow for an exact
evaluation of the bremsstrahlung models in question. In the
present work we start from the conventional first-order Born
approximation which is modified to include nuclear recoil
as well as magnetic and nuclear structure effects (Sec. II).
Section III provides a detailed comparison with results from
the (point-nucleus) Bethe-Heitler theory for the differential
cross section (integrated over the electron degrees of freedom),
for the linear polarization P1 and for the circular polarization
correlation P3 which can be calculated in the first-order
Born approximation. Assuming that the sum of magnetic and
recoil contributions to scattering will induce similar (mostly
moderate) modifications of the higher-order correction terms,
as they do for the first-order terms, we include the higher-order
effects by making use of the Sommerfeld-Maue prescription
for spinless point nuclei (Sec. IV). With this higher-order
theory the spin asymmetry A and the polarization correlation
P2 are calculated (Sec. V). The results are summarized in
Sec. VI. Atomic units (h̄ = m = e = 1) are used throughout.
In particular, it is important to retain the electron mass m, even
at ultrahigh collision energies.

II. THE BORN APPROXIMATION (PWBA) FOR
STRUCTURED NUCLEI

We provide an outline of the Born theory for high-energy
bremsstrahlung by generalizing the formalism for electron-
electron bremsstrahlung [2,31] to the radiative interaction
between a spin-polarized electron and a heavy collision partner
of nuclear charge Z and spin 1

2 . Restriction is made to the
case where only the photon, but not the scattered particles are
observed.

A. The first-order transition amplitude with kinematical recoil

Consider the emission of a photon with polarization
direction eλ by a relativistic beam electron with total energy Ei

and mass m during the encounter with a nucleus at rest (termed
‘electron bremsstrahlung’). The first-order Born approxima-
tion for this process consists of two Feynman diagrams, one
where the electron emits the photon after the interaction with
the nucleus and the other where the two processes occur in the
reversed order [Fig. 1(a)]. Let u(σi )

ki
be the free Dirac four-spinor

of the electron in its initial state, described by the momentum
four-vector ki ≡ (kν

i ) = (Ei/c, ki) and the spin polarization σi ,

and let u
(σf )
kf

be the respective four-spinor for the final electronic

state. Let U
(si )
Pi

and U
(sf )
Pf

be the four-spinors describing,

respectively, the initial and final states of a spin- 1
2 nucleus.

We have Pi = (Enuc,i/c, 0) and Pf = (Enuc,f /c, Pf ), where
Enuc =

√
P2c2 + M2

T c4 is the total energy of the nucleus
of mass MT and three-momentum P , and si and sf are,
respectively, the nuclear spin projections. In the notation of
Bjorken and Drell [32] the transition amplitude relating to

FIG. 1. Feynman diagrams (a) for electron bremsstrahlung,
(b) for nucleus bremsstrahlung. The respective momentum transfer
to the nucleus is denoted by q and Q.

these two diagrams is given by [29,31]

Ael
f i = 1

q2

3∑
ν=0

(
u

(σf )+
kf

[
(αe∗

λ)
1

k/f + k/ − m
γ ν

+ γ0γ
ν 1

k/i − k/ − m
γ0(αe∗

λ)

]
u

(σi )
ki

)

× Z

2π2c2

(
U

(sf )+
Pf

γ0�ν(q)U (si )
Pi

)
, (2.1)

where k = (ω/c, k), with ω = |k|c, is the four-momentum of
the emitted photon. In Eq. (2.1) the following abbreviation is
used:

1

p/ ± k/ − m
= −αc( p ± k) + βmc2 + (Ep ± ω)

( p ± k)2 − ((Ep±ω

c

)2 − m2c2
) γ0,

(2.2)
Ep =

√
p2c2 + m2c4.

q = Pf − Pi = (q0, q) is the four-momentum transfer, with
q2 = (Enuc,f /c − Enuc,i/c)2 − P2

f , and �ν(q) accounts for the
nuclear structure and anomalous magnetic moment effects by
means of [32–34]2

γ0�ν(q) = F1(q)

{
1
−αl

+ κ

2MpcZ
F2(q)

×
{
γ0qα, ν = 0
γ0Ml(q), ν = l = 1, 2, 3, (2.3)

where γ ν, β and α = (α1, α2, α3) are Dirac matrices,
Ml(q) = −αlq0 + i(q × �)l with �l = (σl 0

0 σl
), and where

σ = (σ1, σ2, σ3) is the vector of Pauli spin matrices. F1 and F2

are, respectively, the Dirac and Pauli form factors, and κ is the
anomalous magnetic moment in units of the Bohr magneton
(with Mp the proton mass).

From the conservation of the four-momentum,

Pf = ki + Pi − kf − k, (2.4)

one obtains, upon squaring both sides of Eq. (2.4) (following
[2] by using k2

i = k2
f = m2c2, P 2

i = P 2
f = M2

T c2, k2 = 0), a

2In Eq. (2.6) of [34] Mpc should be replaced by Mpc2 since in that
work q is of dimension [energy].
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quadratic equation for the final electron momentum |kf | with
the solution

|kf | = 1

f 2
1 c2 − f 2

2

(
af2 + f1c

√
a2 + f 2

2 c2 − f 2
1 c4

)
,

a = c2 + Ei(MT − |k|/c) − MT |k|c + ki k, (2.5)

f1 = Ei/c
2 + MT − |k|/c, f2 = k̂f (ki − k).

Note that |kf | depends on the unit vector k̂f in the direction
of the scattered electron [11]. In the limit MT → ∞, the low-
energy relation Ef ≡ Ef ∞ = Ei − ω is recovered instead.

A consequence of taking the energy transfer to the nucleus
into consideration is the termination of the bremsstrahlung
spectrum at a frequency ωmax which can be considerably
smaller than the low-energy short-wavelength limit ωSWL =
Ei − mc2. The fact that ωmax is not fixed but depends on
the photon angle θk is well known from electron-electron
bremsstrahlung [2]. Generalizing the respective formula to the
case of electron-nucleus collisions, ωmax is found from

ωmax = |kmax|c = MT c2(Ei − c2)

Ei − |ki |c cos θk + MT c2
. (2.6)

At large Ei (Ei ≈ |ki |c), one has approximately ωmax ≈
Ei/(1 + Ei

MT c2 (1 − cos θk)).

B. The dynamical recoil

Since the nucleus has nonzero momentum Pf after the
collision, it will also contribute to the photon emission.
However, the amplitude for this ‘nuclear bremsstrahlung’ is
in general reduced by a factor qZ/MT c [26]. Again, two
Feynman diagrams have to be considered for this process
[Fig. 1(b)], including the one where the photon is emitted prior
to the electron-nucleus encounter [26,27]. The corresponding
transition amplitude is given by [29]

Anuc
f i = − Z

Q2

3∑
ν=0

(
u

(σf )+
kf

γ0γ
νu

(σi )
ki

)

×
(

U
(sf )+
Pf

[
γ0E/

1

P/f + k/ − MT

�ν(Q)

+ γ0�ν(Q)
1

P/i − k/ − MT

E/

]
U

(si )
Pi

)
× Z

2π2c2
, (2.7)

where Q = ki − kf is the respective momentum transfer. The
emission of the photon is also influenced by the nuclear
structure effects, hence αe∗

λ is replaced by γ0E/ with

E/ = �(K)e∗
λ, �(K) = (�l(K)) = −(�l(K)). (2.8)

The argument K = (K0, K ) in the matrix �l from Eq. (2.3)
relates to an outgoing photon the momentum of which is
directed away from the nuclear line in the Feynman diagrams,
in contrast to the virtual photons represented by q or Q. The
argument of �l for an outgoing photon can be determined from
the fact that �l has to behave like γl under time reversal, or
equivalently, under complex conjugation. With γ +

l = −γl and
(γ0αl)+ = αlγ0 = −γ0αl it follows from �l(K)+ = −�l(k)
that K = (−ω/c, k) for a photon with four-momentum k.
The form factors F1(K) and F2(K) entering into �l(K)

only depend on the modulus of K [32]. Since K2 = 0 and
F1(0) = F2(0) = 1, the form factors can be disregarded.

C. The differential cross section and
the polarization correlations

We restrict ourselves to a scenario where the nucleus is
initially unpolarized. Since neither the outgoing electron nor
the recoiling nucleus are observed, we have to average over the
initial nuclear spin si and to sum over the final spins sf and σf .
In addition we have to integrate over the energy and the solid
angle d�f of the scattered electron. The doubly differential
cross section for the emission of a photon with frequency ω and
polarization direction eλ into the solid angle d�k is obtained
from [2,34,35]

d2σ

dωd�k

(ζ i , eλ) = 4π2ω

c3v

(
m

2MT c2

)2 1

2

∑
si

∑
sf ,σf

∫
d�f

× |kf |Ef

fre

∣∣Ael
f i + Anuc

f i

∣∣2
, (2.9)

with v the collision velocity and Ael
f i and Anuc

f i the amplitudes
from, respectively, Eqs. (2.1) and (2.7). The recoil factor fre

originates from the integration over the momentum |kf | of the
electron [2,28],∫ ∞

0
k2

f d|kf |δ(Ei + Enuc,i − Ef − Enuc,f − ω)

= k2
f

d
d|kf | (Ef + Enuc,f )

, (2.10)

using that Enuc,f =
√

P2
f c2 + M2

T c4 with Pf from Eq. (2.4).
Thus, when compared to the case Pf =0, one obtains

fre = 1 − k̂f qEf

|kf |Enuc,f
. (2.11)

The prefactor (m/2MT c2)2 in Eq. (2.9) arises from the
normalization of the nuclear free four-spinors to 2MT c2 [33].
ζ i denotes the spin vector of the beam electron, and the
corresponding spinor is given by

u
(σi )
ki

= e−iϕs/2 cos
αs

2
u

(+)
ki

+ eiϕs/2 sin
αs

2
u

(−)
ki

, (2.12)

with the basis vectors u
(±)
ki

(describing electron spins aligned
with ki) defined by

u
(±)
ki

=
√

Ei + c2

2Ei

(
1

σ ki c
Ei+c2

)
χ± 1

2
,

(2.13)

χ 1
2

=
(

1

0

)
, χ− 1

2
=

(
0

1

)
,

and where αs and ϕs are, respectively, the polar and azimuthal
angles of ζ i .

There are seven independent polarization correlations
between ζ i and eλ, originally classified by Tseng and Pratt [1].
One can distinguish between those which are related to a
linearly or to a circularly polarized photon. A linearly polarized
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photon is characterized by

eλ = sin ϕλeλ1 + cos ϕλeλ2 , ϕλ ∈ [0, π ),

eλ1 =
⎛
⎝ 0

1
0

⎞
⎠ , eλ2 =

⎛
⎝− cos θk

0
sin θk

⎞
⎠ , (2.14)

where a coordinate system has been chosen with the z-axis
along ki , the y-axis normal to the reaction plane, i.e., along
ki × k [where k = ω

c
(sin θk, 0, cos θk)], and the x-axis along

ey × ki . The polarization correlations P1 and P2 (also termed
Stokes parameters [36]) are defined by (dσ abbreviating
d2σ/dωd�k)

P = dσ (ζ i , eλ(ϕλ)) − dσ (ζ i , eλ(ϕλ + π/2))

dσ (ζ i , eλ(ϕλ)) + dσ (ζ i , eλ(ϕλ + π/2))
, (2.15)

where for in-plane electron spin polarization (i.e., ϕs =
0) P = P1 (independent of αs) if ϕλ = 0 and P = P2(αs) =
−C31 cos αs + C11 sin αs if ϕλ = π/4. P2 is thus described
by two parameters, C31 = −P2(0) and C11 = P2(90◦) (see
also [37]).

Circularly polarized photons, i.e., photons in helicity
eigenstates, are characterized by

e∗
± = 1√

2

(
eλ2 ± ieλ1

)
, (2.16)

where the upper sign (respectively, the lower sign) denotes
right- (respectively left-)circularly polarized photons. The
polarization correlation P3 is defined for ϕs = 0 by [36,38]

P3(αs) = dσ (ζ i , e+) − dσ (ζ i , e−)

dσ (ζ i , e+) + dσ (ζ i , e−)
= C32 cos αs − C12 sin αs, (2.17)

and is also characterized by two parameters, C32 = P3(0) and
C12 = −P3(90◦). The spin asymmetry A requires ζ i to be
perpendicular to the scattering plane (i.e., αs = π/2, ϕs =
−π/2) and is calculated from

A =
∑

λ(dσ (ζ i , eλ) − dσ (−ζ i , eλ))∑
λ(dσ (ζ i , eλ) + dσ (−ζ i , eλ))

, (2.18)

where
∑

λ denotes the sum over the two photon polarizations.
Note that A is independent of the chosen representation of eλ.

III. NUMERICAL RESULTS WITHIN
THE BORN APPROXIMATION

Let us start with providing results for the bremsstrahlung
cross sections and for the polarization correlations P1 and
P3 which can be calculated within the plane-wave Born
approximation (PWBA). For the Born theory to be applicable,
restriction is made to nuclei where Z/c is small. The validity
of the Born approximation can be verified by comparing the
results from the Bethe-Heitler (BH) theory (see, e.g., [2,19]
and Sec. IV) with those from the Sommerfeld-Maue (SM)
theory. For protons the Born approximation is excellent, and it
works also well for the 19F nucleus (see, e.g., [1]). In particular,

the cross sections agree in general within 1% except at photon
frequencies near ωSWL, since the BH cross section tends to
zero at the short-wavelength limit (while it remains finite in
the SM theory). For the heaviest nucleus considered, 89Y, the
deviations between the BH and SM theory are well below 20%,
except at the back-most photon angles if the ratio R between
the photon frequency and the beam energy gets close to unity.
For example, when R = 0.5, no restriction on the angle θk is
necessary, while for R = 0.8, the deviations will exceed 20%
if θk � 160◦.

For the specification of the form factors we assume
a spherically symmetric charge distribution �(r), which is
generally the case for spin 1

2 nuclei. For moderate momentum
transfers q the electric form factor GE(q) (also identified with
FL(q)(1 + q2/4M2

T c2)−1/2, see, e.g., [39]) can be approxi-
mated by the Fourier transform

GE(q) = 4π

Z

∫ ∞

0
r2dr�(r)j0(q̃r), (3.1)

where j0 is a spherical Bessel function and q̃ =
√

−q2. �(r),
normalized to Z, can be taken from [40] for protons and
from the tables of [41] for the heavier nuclei. Fermi charge
distributions are used with parameters c0 = 2.58 fm and
a = 0.567 fm for 19F and c0 = 4.76 fm and a = 0.571 fm
for 89Y.

The experimental magnetic moments of the three nuclei
are μexp = 2.79 for protons, 2.629 for 19F and −0.13742 for
89Y [42], defining κ = μexp − Mp

MT
. The magnetic form factor

GM (q) (also identified with
√

2Mpc

q̃
FT (q) [39,43]) for 1H and

19F is extracted from the literature [40,43] as described in [34].
For the 89Y nucleus the relation between GM (q) and the

M1 magnetization current density J11(r) is used (in [44], FL ≡
FC, FT ≡ FM ),

GM (q) = N0

q̃

∫ ∞

0
r2drJ11(r)j1(q̃r). (3.2)

From the linear behavior of the spherical Bessel function
j1(x) as x → 0 [viz. j1(q̃r)/q̃r → 1

3 ] and from the normal-
ization GM (0) = μexp [33], the constant N0 can be obtained,
N0 = 3μexp(

∫ ∞
0 J11(r)r3dr)−1. J11(r) is taken from a fit to

experiment as plotted in [44]. From Eqs. (3.1) and (3.2)
the Dirac and Pauli form factors are obtained by means of
[32,34,43]

F1(q) =
(

GE(q) − q2

4MpMT c2
GM (q)

)/(
1 − q2

4M2
T c2

)

F2(q) =
(

GM (q) − Mp

MT

F1(q)

)/
κ. (3.3)

For the separate study of recoil and magnetic effects the
form factors as well as the anomalous magnetic moment can
be switched off in the transition amplitudes Ael

f i and Anuc
f i , and

the corresponding model will be referred to as BRM theory. If,
in addition, the dynamical recoil and the magnetic interaction
is also switched off (so that only the kinematical recoil with
ν = 0 is retained), the model will be called BR0 theory. For a
compilation of the models, see Table I.
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TABLE I. Theoretical models for bremsstrahlung calculations.
BR0 and BRM are only auxiliary models to demonstrate the
importance of recoil and magnetic scattering.

Models Ingredients

BH Plane-wave Born; fixed point nucleus
BR0 Plane-wave Born; point nucleus, kinematical recoil
BRM Plane-wave Born; point nucleus, total recoil,

magnetic scattering
PWBA Plane-wave Born; extended nucleus, total recoil,

magnetic scattering

SM Higher-order, semirelativistic functions; fixed point nucleus
WPA Higher-order, semirelativistic functions; extended

nucleus, total recoil, magnetic scattering in
plane-wave Born

These different models are investigated for protons, the
case most extensively discussed in the literature. Figure 2(a)
shows the angular dependence of the bremsstrahlung cross
section for a beam energy Ei,kin = Ei − c2 = 50 MeV and for
the ratio R = ω/Ei,kin = 0.5. It is seen that the Bethe-Heitler
theory performs very well up to photon angles near 120◦.
The inclusion of the kinematical recoil (as considered in the
BR0 theory) leads to a slight decrease of the cross section
at the back-most angles, while the inclusion of the magnetic
effects (via the BRM theory) overcompensates this decrease.
The consideration of the anomalous magnetic moment (in the
PWBA) leads to a further increase (whereas the momentum
transfer is still too small to cause a noticeable decrease of the
proton form factors).

In the early papers the recoil effects were genuinely disre-
garded, with reference to the work by Drell [26] for collision
energies up to 200 MeV. Drell did consider the dynamical
recoil, but restricting himself to the potential contribution [i.e.,
setting ν = 0 in Eqs. (2.1) and (2.7)] and to photons emitted
close to the beam direction, he found that recoil does not affect
the cross section. This is, however, no longer true for wide-
angle bremsstrahlung. As demonstrated in Fig. 2(a), the ν = 0

approximation (with dynamical recoil included) is incorrect
and recoil becomes increasingly important with increasing
photon angle. In fact, there is a significant cancellation between
the recoil affecting the potential scattering and the recoil
affecting the magnetic scattering, with the BRM results being
again close to the BH results.

In the linear polarization P1 the influence of recoil effects
and magnetic scattering is much larger (the ν = 0 approxi-
mation including dynamical recoil would even lead to large
positive values of P1 beyond 60◦). From Fig. 2(b) it follows
that the BH theory fails already in the forward hemisphere,
and that the PWBA leads to a strong enhancement of P1 in the
angular region 60◦–150◦. At very small angles (below 10◦),
corresponding to electron-nucleus distances much larger than
the nuclear charge distribution, all theories coincide. As known
from earlier investigations above 1 MeV [17,37,45], P1 has a
forward maximum for a ratio R close to 1, which decreases in
height and is shifted to smaller θk as Ei increases. When R gets
smaller or Ei is sufficiently high, a forward minimum develops
which, for the parameters of Fig. 2(b), lies at θk = 0.6◦ and has
a value of −0.44 (suppressed in the figure). Note that P1 = 0
at 0◦ and 180◦ where the reaction plane collapses to a line.

The dependence on ω for fixed beam energy is displayed
in Fig. 3 at the two photon angles 100◦ and 170◦. From
Fig. 3(a) it is seen that the sensitivity of the cross section to
the relativistic nuclear effects increases with ω. Also displayed
is the reduction of the short-wavelength limit as compared to
the BH theory, which is the more pronounced the larger the
photon angle. In Fig. 3(b) one can trace the transition of an
increase of P1 near the short-wavelength limit in the BH theory
to a decrease of P1 in the PWBA by successively including the
kinematical recoil (BR0 theory), the dynamic recoil and the
Dirac magnetic moment (BRM theory) and finally the nuclear
structure effects (PWBA).

In Fig. 4 it is shown how the magnetic and the nuclear
structure effects come into play at backward angles when the
collision energy is increased, while the photon angle and the
ratio R are kept fixed. A comparison between the BH theory
and the PWBA shows that for protons these effects lead to

FIG. 2. (a) Doubly differential cross section and (b) linear polarization P1 for 50 MeV e + p collisions with photon emission at
ω = 25 MeV as a function of photon angle θk . Solid line, PWBA; dotted line, BRM theory; long-dashed line, BH theory; short-dashed
line, BR0 theory [lowermost curve in (a), second curve from top in (b)]; dash-dotted line, ν = 0 but with dynamical recoil included.
(1 fm2/MeV sr = 10−5 b/keV sr.)

064609-5



D. H. JAKUBASSA-AMUNDSEN PHYSICAL REVIEW C 87, 064609 (2013)

FIG. 3. (a) Doubly differential cross section and (b) linear polarization for 50 MeV e + p collisions as a function of frequency ω of the
emitted photon. The upper curves in (a) and the three lower curves in (b) are for photon angle θk = 100◦, the lower curves in (a) and the upper
curves in (b) are for θk = 170◦. Solid line, PWBA; dotted line, BRM theory; long-dashed line, BH theory; short-dashed line, BR0 theory (for
170◦ only).

an increase of the cross section, the more so, the closer the
photon frequency is to ωmax. Correspondingly, the changes in
linear polarization [Fig. 4(b)] increase both with ω and with
Ei . For the smaller values of R,P1 is more negative while for
the larger values, P1 is reduced as compared to the BH results
(at energies beyond 20 MeV).

Turning now to the heavier nuclei 19F and 89Y, we show
in Fig. 5 the angular dependence of the bremsstrahlung
cross sections for 50 MeV electrons and emitted photons of
frequency 25 MeV and 40 MeV. The magnetic effects (as
considered in the BRM theory) increase the cross sections
as they do for protons [Fig. 2(a)]. However, in contrast to
the hydrogen nucleus, the PWBA differs from the BH theory
already in the forward hemisphere. Moreover, the PWBA leads
to cross sections below the ones from the BH theory, the more
so, the heavier the nucleus. This is due to the presence of the
form factors which can be considerably smaller than unity.
Heavy nuclei have a large extension which comes into play
at the backward angles that involve high momentum transfers
and hence close encounters.

We note that the influence of magnetic and nuclear structure
effects on the bremsstrahlung cross sections was already
studied by Ginsberg and Pratt [46] within a Born theory that
neglects recoil [13]. Their basic results are confirmed by the
present calculations: the increase of magnetic and nuclear
structure effects both with collision energy and photon angle,
the increase of the magnetic effects with ω (at fixed Ei) for
backward angles and their independence of ω for small θk , as
well as the lowering of the cross sections through the form
factors for the heavier nuclei.

As concerns the polarization correlations P1 and P3 we must
keep in mind that in the Bethe-Heitler theory (where the cross
section is proportional to Z2) they are independent of Z and
hence the same for all nuclei. In fact, the angular dependence of
P1 for 19F is very similar to the one for 1H [for the parameters of
Fig. 2(b)] even when the nuclear structure effects are included.
A closer look shows, however, that the increase of P1 through
the inclusion of κ (as compared to the BRM results) which is
dominant for 1H, is for 19F counterbalanced by a decrease due
to the form factors. As a consequence the BRM and PWBA

FIG. 4. (a) Doubly differential cross section and (b) linear polarization for e + p collisions as a function of beam energy Ei,kin at photon
angle θk = 170◦. The ratio R = ω/Ei,kin = 0.1 (upper curves), 0.5 (middle curves), 0.8 (lower curves). Solid line, PWBA; long-dashed line,
BH theory.
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FIG. 5. Doubly differential cross section for 50 MeV electrons
colliding with 19F (Z = 9; the seven lower curves) and 89Y (Z = 39;
the four upper curves) as a function of photon angle θk . The four
lowermost curves are for ω = 40 MeV (R = ω/Ei,kin = 0.8), the
other curves are for ω = 25 MeV (R = 0.5). Solid line, WPA; dash-
dotted line, PWBA (hardly distinguishable from WPA); long-dashed
line, BH theory; dotted line, BRM theory.

results nearly coincide for all angles in the case of 19F (at
50 MeV and R = 0.5). In Fig. 6(a) P1 is shown at a larger
photon energy (R = 0.8) where the shape is now different,
with an extra shoulder near 60◦. The higher-order effects are
still tiny, even for the higher energy Ei,kin = 80 MeV (and
ω = 40 MeV) where the difference between the BRM theory
and the PWBA is now quite prominent. Figure 6(b) shows P1

for 89Y where the basic change with respect to 19F concerns the
growing importance of the higher-order effects with increasing
nuclear charge. For Z = 39 the WPA (see Sec. IV) leads to
a noticeable reduction of P1 as compared to the PWBA at
all but the smallest angles. In fact, the WPA results for P1

agree within 10% for the two nuclei (at equal parameters,
50 MeV and R = 0.8) when θk � 150◦. If only R is kept

FIG. 7. Linear polarization for 50 MeV e + 19F collisions as a
function of photon frequency ω. The lower curves are for photon
angle θk = 100◦, the upper curves are for θk = 170◦. Solid line, WPA;
dash-dotted line, PWBA; dotted line, BRM theory; long-dashed line,
BH theory; short-dashed line, SM theory (uppermost curve; for 170◦

only).

fixed but the energy is increased (from 50 to 80 MeV), P1

gets more negative in a wide angular regime. Not shown in
Fig. 6 is, besides the maximum, the minimum of P1 near
zero (which amounts to −0.453 in θk = 0.36◦ at 80 MeV and
ω = 40 MeV as compared to −0.137 in θk = 0.58◦ at 50 MeV
and ω = 40 MeV; note that at such small angles, the BH theory
is valid).

In Fig. 7 the frequency dependence of P1 is shown for
19F at θk = 100◦ and 170◦. As compared to Fig. 3(b), the
spectrum extends nearly to ωSWL since the difference between
ωmax and ωSWL is inversely proportional to MT [at fixed Ei and
θk , see Eq. (2.6)]. One should also note that the higher-order
effects are visible at the backward angle beyond ω = 40 MeV

FIG. 6. Angular distribution of the linear polarization for electrons colliding (a) with 19F and (b) with 89Y nuclei. For 19F the photon
frequency ω = 40 MeV and the collision energy is 50 MeV (R = ω/Ei,kin = 0.8), respectively 80 MeV (R = 0.5). For 89Y the collision energy
is 50 MeV and the photon frequency ω = 40 MeV (R = 0.8), respectively 25 MeV (R = 0.5). Solid line, WPA; dash-dotted line, PWBA;
dotted line, BRM theory; long-dashed line, BH theory. The curves for R = 0.8 are marked by + (WPA, BH) and × (PWBA, BRM).
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FIG. 8. Angular distribution of the circular polarization correlation P3 for 50 MeV electrons colliding with 19F and 89Y. (a) For longitudinally
spin-polarized electrons (C32) and (b) for transversely (in-plane) spin-polarized electrons (C12). The two bunches of curves are, respectively,
for ω = 25 MeV (corresponding to R = 0.5) and ω = 40 MeV (R = 0.8). Solid line, WPA; dash-dotted line, PWBA; long-dashed line, BH
theory. The two curves in (a) marked by + (WPA) and × (PWBA) are the results for 89Y (at ω = 40 MeV). All other results are for 19F. The
two curves in (b) marked by + (BH) and × (PWBA) are for ω = 40 MeV.

(i.e., beyond R = 0.8) which is in addition illustrated by the
comparison between the SM and the BH results. For 100◦, the
PWBA is valid at all frequencies.

It is important that for bremsstrahlung, due to the presence
of the dynamical recoil which increases with Z, the recoil
effects do not disappear for heavy nuclei (in contrast to elastic
electron scattering without radiation). We have tentatively
switched off the dynamical recoil (by setting Anuc

f i = 0) in the
BRM model for 89Y. For Ei,kin = 50 MeV and ω = 40 MeV
we have found that for the cross section, the results are similar
to those in the BRM theory up to, say, θk = 120◦, but the
deviations increase strongly for larger θk(40% reduction at
160◦, a factor of 2 at 175◦ as compared to the BRM results).
For P1, things are even worse, a 10% reduction already at 70◦
(with a maximum of 80% reduction at 140◦–150◦).

Now we turn to the circular polarization correlations C32

and C12 for which, in contrast to P1, it is necessary that the
beam electron is polarized. According to Eq. (2.17), C32 is
accessible for electrons polarized along the beam direction,
i.e., for electrons in a helicity eigenstate. For C12, on the other
hand, the electrons have to be polarized transversely to the
beam axis, with ζ i in the reaction plane. The decrease of C32

with photon angle [Fig. 8(a)] from near unity (if ω is near
ωmax) at θk = 0 to negative values close to −1 at θk = 180◦ is
very similar to the one known from lower collision energies
[1,17,38]. Also the reduction of the helicity transfer from the
electron to the photon at small angles when ω is lowered,
combined with a flattening of the angular dependence, is true
both at low and high beam energies. For angles beyond 100◦
and an energy of 50 MeV, the recoil and nuclear structure
effects lead to a strong decrease of C32, the more so, the heavier
the nucleus. Again, it is seen that higher-order effects are small
for 19F, but important for 89Y. In contrast to P1 [Fig. 6] the onset
of the higher-order effects occurs at a much higher angle,
and they are most pronounced in the backward hemisphere.
In the case of C12 [Fig. 8(b)] the nuclear structure effects
even produce a change of slope in the angular dependence (as

compared to the BH theory) if ω gets close to ωmax. Like P1,
also C12 has extrema at small angles. For not veiling the
large-angle behavior, the minimum is suppressed in the figure
(−8.79 × 10−2 at ω = 25 MeV and −5.07 × 10−2 at ω =
40 MeV, both at θk = 0.25◦).

IV. HIGHER-ORDER THEORY (WPA)

Let us provide an extension of the PWBA which takes
the higher-order potential coupling between the electron and
the nucleus into account. Since we restrict ourselves to small
values of Z/c (the so-called weak-potential approximation)
the Sommerfeld-Maue theory can be used for the treatment
of the higher-order effects. If recoil and magnetic effects
are disregarded, the higher-order contribution �Mf i,0 to the
bremsstrahlung transition operator can be expressed in terms
of the difference

�Mf i,0 = MSM
f i,0 − MBH

f i,0. (4.1)

The Sommerfeld-Maue transition operator is defined by

MSM
f i,0 = 2π2c2

Z

∫
d rχ+

f,SM(r)(αe∗
λ)e−ikrχi,SM(r), (4.2)

where χi,SM and χf,SM are the reduced Sommerfeld-Maue
wave functions [24,25] (i.e., without electronic four-spinors
u

(σi )
ki

and u
(σf )
kf ∞ , respectively. For example, the initial electronic

state is described by ψ
(σi )
i (r) = χi,SM(r)u(σi )

ki
with χi,SM(r) =

Nie
iki r (1 − ic

2Ei
α∇)1F1(iη, 1, i(|ki |r − ki r)), where Ni =

eπη/2�(1 − iη)(2π )−3/2, η = ZEi/(|ki |c2) and 1F1 a con-
fluent hypergeometric function). Upon neglecting the term
quadratic in α∇ [which is of order (Z/c)2], Eq. (4.2) can
be evaluated analytically as, e.g., given in [23,25,35].3

3In [35], the first term in (A.3) should read [1 + cα p0/2E′
f ]αI0.
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MBH
f i,0 is the first-order Born (Bethe-Heitler) transition

operator [2,19],

MBH
f i,0 = 1

q2∞

{
αe∗

λ

αc(kf ∞ + k) + βc2 + Ei

(kf ∞ + k)2 − k2
i

+ αc(ki − k) + βc2 + Ef ∞
(ki − k)2 − k2

f ∞
αe∗

λ

}
. (4.3)

This expression derives from the electronic transition operator
in Eq. (2.1) if the magnetic scattering is disregarded (i.e.,
only ν = 0 is retained) and if, in addition, MT → ∞ (i.e.,
if recoil is neglected) such that Ef is replaced by Ef ∞ =√

k2
f ∞c2 + c4 = Ei − ω and consequently −q2 is replaced

by q2
∞ ≡ (ki − kf ∞ − k)2.

If the modifications arising from recoil and magnetic
scattering (quantified by the difference between the BRM and
the BH results) are moderate, say, below 20%, the higher-order
perturbation of the ν � 1 terms and of Anuc

f i may be neglected.
It will then be sufficient just to include Eq. (4.1) in the potential
scattering (ν = 0) contribution to the electron bremsstrahlung
matrix element. In this approximation, termed WPA, the cross
section is calculated from Eq. (2.9) with Ael

f i + Anuc
f i replaced

by Ael
f i + �Af i,0 + Anuc

f i , where

�Af i,0 = (
u

(σf )+
kf

�Mf i,0u
(σi )
ki

) Z

2π2c2

(
U

(sf )+
Pf

γ0�0(q)U (si )
Pi

)
.

(4.4)

In this theory the linearity of the transition amplitude in the
form factors is retained. This may be justified by considering
the second-order Born amplitude (see, e.g., [2,22]). From
Eq. (3.1) it follows that the Fourier transform V (q) of the
nuclear potential, generated by �(r), factorizes according to
V (q) = V0(q) · GE(q) where V0 corresponds to a point-like
nucleus. Hence the form factors enter into the second-order
Born amplitude as products GE(ki − k − p) · GE(p − kf )
where p is an integration variable. Taken into consideration
that the corresponding integrand is peaked both for p = kf

and for p = ki − k, it follows that one is approximately
left with a linear dependence on GE(ki − k − kf ) = GE(q)
since GE(0) = 1. Whereas for elastic electron scattering
such an approximation fails near the zeros of GE(q), the
additional integral over the electronic degrees of freedom in
the bremsstrahlung case implies an average over a range of
momentum transfers such that the above-mentioned peaking
approximation will be less severe. This averaging is the more
effective the larger the final energy of the electron.

V. RESULTS FOR THE POLARIZATION
CORRELATIONS P2 AND A

For the numerical evaluation of the WPA we recall some
important properties of the Sommerfeld-Maue transition op-
erator MSM

f i,0 in Eq. (4.2). As explicitly formulated in [35], it is
determined by four parameters, α̃, β̃, γ̃ , δ̃, which are quadratic
functions of the electron and photon momenta. It has complex
first-order poles (plus branch cuts) at γ̃ = 0 and at α̃ + β̃ = 0
(i.e., when z ≡ α̃δ̃−β̃γ̃

α̃(γ̃+δ̃)
= 1), which appear near ϑf = θk and

ϕf = 0 (where ϑf and ϕf are, respectively, the polar and
azimuthal angles of kf ). These poles approach the real axis
when Ei → ∞ but, because of the finite electron mass, the
transition operator and hence the corresponding integrand in
Eq. (2.9) is never singular. Due to the semirelativistic nature
of the Sommerfeld-Maue functions the poles agree with those
of the Bethe-Heitler transition operator (4.3) rather than with
those of the recoil-modified amplitudes (2.2). Therefore one
cannot account for the kinematical recoil in the SM theory by
merely replacing |kf,∞| with |kf |. If one introduces in addition
modified parameters such that the zeros of the modified γ̃ and
α̃ + β̃ agree with the poles of Eq. (2.2) (which can be achieved

by changing γ̃ to −((kf + k)2 − ( (Ef +ω)2

c2 − c2))/2 + iε and β̃

to (ki − k)kf − k2
f /2 − ( (Ei−ω)2

c2 − c2)/2 − iε with ε = +0),
a quite good account of the kinematical recoil for the heavier
nuclei can be obtained. However, taken into consideration that
hydrogen does not require a higher-order theory and that for
19F or heavier nuclei kinematical recoil effects are at most
in the percent region, the WPA as formulated in Sec. IV is
sufficiently accurate in this respect.

The applicability of the WPA, as measured in terms
of the deviations between the BH and the BRM models,
is governed by similar criteria as those which control the
smallness of the higher-order effects. This is related to the fact
that the contribution of recoil and magnetic scattering to the
bremsstrahlung cross section, while being small in the forward
hemisphere, also increases with photon frequency and angle.
However, instead of the nuclear charge, the decisive parameters
are now the beam energy besides the fraction R = ω/Ei,kin.
Thus, both for 19F and 89Y, the deviations between the BH and
the BRM cross section results are 15–20% for 50 MeV and
R = 0.5 in the worst case (θk = 180◦), while they will exceed
20% for θk � 160◦ if R = 0.8, but even if R = 0.5 when the
beam energy is increased to 80 MeV.

The linear polarization correlation P2 and the spin asymme-
try A are only accessible by the WPA since they vanish in the
first-order Born approximation [1,22] and hence in the PWBA.
Accordingly, their moduli are much smaller than those of P1

or P3 as long as Z/c (i.e., the higher-order effect) is small.
It follows from Fig. 9 (in comparison with Figs. 6 and 8)
that for the two nuclei considered, 19F and 89Y, the respective
reduction is between one and three orders of magnitude in
the backward hemisphere. In the figure, comparison is made
with the SM theory to display the recoil and nuclear structure
effects. In contrast to P1 or P3, the onset of these effects
is already at forward angles. For P2(0), corresponding to
electrons spin-polarized along the beam direction [Fig. 9(a)],
the SM theory becomes invalid for 89Y if θk � 20◦. While
the SM theory predicts a negative value at all angles, the
WPA leads to a positive P2(0) beyond 50◦–70◦. The change
of the angular distribution by the relativistic nuclear effects is
even more striking in the case of transversely spin-polarized
electrons [Fig. 9(b)], where the decrease of P2(90◦) with
angle continues beyond 5◦ whereas the SM theory predicts an
increase of the polarization correlation in the angular region
5◦–30◦ for both targets.

The spin asymmetry A, relating to electrons spin-polarized
perpendicular to the plane spanned by ki and k, is independent
of the photon polarization. For Z/c small, A increases linearly
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FIG. 9. Angular distribution of the linear polarization correlation P2 for 50 MeV electrons colliding with 19F and 89Y. The photon frequency
is ω = 25 MeV. (a) For longitudinally spin-polarized electrons [P2(0)] and (b) for transversely (in-plane) spin-polarized electrons [P2(90◦)].
Solid line, WPA; short-dashed line, SM theory.

with Z and has a pronounced peak in the backward hemisphere
(which moves to the back-most angles when ω approaches
ωmax [37,38]). The consideration of recoil and nuclear structure
effects leads to a significant reduction of the spin asymmetry
at large θk . When the collision energy is increased (but R
and θk kept fixed), A decreases strongly (even more in WPA
than in the SM theory) which is shown for 19F in Fig. 10(a)
by comparing the results for collision energies 50 MeV and
80 MeV at R = 0.5. Not shown in the figure is a small
minimum of A at angles close to zero (where the SM theory is
valid). As known from investigations at lower energy [37]
this minimum depends on the ratio R and develops into
a broad minimum at much higher angles when ω → ωmax.
Keeping R = 0.5 fixed, the minimum of A is −1.81 × 10−5 at
θk = 0.5◦ for 50 MeV e + 19F, but is less pronounced for the
higher collision energy (−7.86 × 10−6 at 0.3◦ for 80 MeV).
In contrast, for the heaviest nucleus 89Y the minimum is much
deeper than for 19F (−7.74 × 10−5 at 0.5◦ for 50 MeV e + 89Y
and R = 0.5), but still small as compared to the backward

maximum. Figure 10(b) displays the strong increase of A when
ω → ωmax which holds true for all angles in the backward
hemisphere. At small ω and large angles this feature is even
enhanced by the recoil and nuclear structure effects. The
increase with ω at the backward angles when ω approaches
the high-energy end of the spectrum is, albeit less than for A,
common to all polarization correlations. It mirrors the fact that
polarization asymmetries are highly relativistic effects which
are enhanced at large momentum transfers.

VI. CONCLUSION

We have investigated the high-energy behavior of the
bremsstrahlung intensity and polarization correlations within
the plane-wave Born approximation and the higher-order weak
potential approximation, taking into account the relativistic
nuclear effects which comprise the recoil of the nucleus, the
magnetic scattering as well as the nuclear structure effects in

FIG. 10. Spin asymmetry A for electrons spin-polarized perpendicular to the reaction plane colliding with 19F and 89Y nuclei. (a) As a
function of photon angle θk for 89Y with Ei,kin = 50 MeV and ω = 25 MeV (uppermost curves), as well as for 19F at Ei,kin = 50 MeV and
ω = 25 MeV (middle curves) and at Ei,kin = 80 MeV and ω = 40 MeV (lowermost curves). (b) As a function of photon frequency ω for
50 MeV e + 19F collisions at θk = 100◦ and 160◦. Solid line, WPA; short-dashed line, SM theory. The results for θk = 100◦ are marked with +
(WPA) and × (SM).
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terms of form factors and the anomalous magnetic moment.
Due to the averaging procedure over a finite range of momen-
tum transfers, inherent in the summation over the unobserved
final states of the scattered electron, the validity of the WPA,
as controlled by the smallness of both the higher-order effects
and the recoil and magnetic scattering effects, extends to
considerably higher nuclear charges Z than is the case for
elastic electron scattering. Thus, in our examples, we could
cover the range 1 � Z < 40. The necessary restrictions, such
as avoiding photon frequencies too close to the high-energy
end of the spectrum for backward photon emission, guarantee
the correctness of the WPA cross sections as well as of
those polarization correlations (P1, P3) which do not vanish
in the PWBA. However, the WPA estimates for the linear
polarization P2 and the spin asymmetry A at beam energies
near 50 MeV and beyond might suffer from inaccuracies,
particularly for the 89Y nucleus.

In accord with early cross section results on high-energy
bremsstrahlung [46], we have found that the relativistic nuclear
effects increase with photon angle θk , with photon frequency ω
(at large angles) and with collision energy Ei,kin. In particular,
for protons and energies up to 100 MeV the photon intensity
increases with angle in the backward hemisphere relative to
the Bethe-Heitler theory, because of the magnetic scattering.
For the heavier and more extended nuclei, there is a strong
reduction of the cross section from the additional influence of
the form factors.

The conjecture, put forth in the literature, that recoil is
negligible could only be confirmed for very small photon
angles. In contrast, for wide-angle bremsstrahlung this is
no longer true. Because of the presence of the dynamical
recoil which behaves like qZ/MT c, recoil is nearly equally
important for heavy nuclei as it is for protons. In most cases
the cross section results are not qualitatively changed by the
consideration of recoil (if magnetic scattering is included).
An exception is the reduction of the high-energy end of the
spectrum by the kinematical recoil, the more so (being a
q/MT c effect), the larger θk , the higher the beam energy and
the lighter the nucleus. Consequently, the cross section drops
rapidly below the BH result when the maximum frequency is
reached.

Turning to the polarization correlations we have verified
that the dependence of their angular distribution on collision
energy and photon frequency, established earlier for fixed
point nuclei, remains in general valid up to beam energies

of 10–20 MeV. At higher energies the perturbation due
to recoil, magnetic scattering and nuclear structure effects
leads to noticeable modifications which are in general much
stronger than for the cross sections. These modifications
are again most prominent at the backward photon angles
and at high frequencies which are associated with a large
momentum transfer to the nucleus, respectively with small
electron-nucleus distances.

The linear polarization P1, being most easily accessible to
experiment because a polarized electron beam is not required,
is studied in greatest detail. In the Bethe-Heitler theory the
angular distribution of P1 is independent of the target (at fixed
ω and Ei,kin). This is no longer true when the relativistic nuclear
effects are accounted for, although the angular dependence
remains mostly similar for the different targets. In particular
we have found that for a fixed backward angle P1 decreases
strongly with photon frequency for all targets, due to the
dynamical recoil and the magnetic scattering. This is to be
contrasted to the increase of P1 with ω in the BH theory near
the short-wavelength limit.

A particular object in view, investigated in many low-
energy experiments, is the spin asymmetry A. Relating to an
electron spin-polarized perpendicular to the reaction plane it is
extremely sensitive to relativistic effects which are strong for
heavy nuclei at short electron-nucleus distances and hence
lead to large spin asymmetries. Characteristic of A is the
large maximum at angles near or beyond 140◦. Moreover, A
grows strongly (by several orders of magnitude) when, at fixed
Ei,kin, ω is increased to the high-energy end of the spectrum.
While the increase of A with ω is not notably changed when
the relativistic nuclear effects are taken into consideration,
the maximum of A is considerably reduced, the more so, the
higher the collision energy. A similar reduction of the spin
asymmetry by the nuclear structure effects is known from
elastic electron scattering [34,47]. This similarity is, however,
only true for electrons spin-polarized perpendicular to the scat-
tering plane. For longitudinally spin-polarized electrons, for
example, helicity transfer (measured by C32 in bremsstrahlung)
is reduced at the backward angles, the more so, the heavier
the nucleus and the higher ω. For elastic electron scattering
the helicity transfer is enhanced by the nuclear structure
effects. This behavior contradicts the results for heavy point
nuclei where the respective polarization correlations agree at
ultrahigh collision energies [38]. Experiments on high-energy
bremsstrahlung are highly welcome.
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