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Investigation of 16O + 16O elastic scattering using the α-cluster folding model
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Angular distributions of 16O + 16O elastic scattering at energies that range from 124 to 1120 MeV have
been analyzed in the framework of the double folding (DF) optical model. Based upon the α-cluster structure
of the 16O nucleus, two different versions of the real DF optical potential have been generated by using three
effective α-α, α-nucleon (N ) and nucleon-nucleon (NN) interactions. A microscopic optical potential built upon
the M3Y effective NN interaction and the matter density distribution of the 16O nucleus has also been extracted.
The obtained real potentials, in conjunction with phenomenological squared Woods-Saxon imaginary parts, have
successfully reproduced seven sets of elastic-scattering data. No renormalization of the real folded α-cluster
potentials is required to fit the data. The energy dependence of the extracted real and imaginary volume integrals
and total reaction cross section has also been investigated.
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I. INTRODUCTION

The refractive (rainbow) structure observed in nucleus-
nucleus elastic scattering can provide information on the
heavy-ion (HI) optical potential at short internuclear dis-
tances. The rainbow phenomenon has been found in several
experiments [1–3] on light HI systems, such as 12C + 12C,
12C + 16O, and 16O + 16O. Some attempts [4,5] were carried
out to modify the M3Y effective nucleon-nucleon (NN)
interaction [6] by introducing an explicit density dependence
to account for the in-medium effects that are more substantial
at internuclear distances. This modification generated the
so-called DDM3Y effective interaction. New precise and
complete data for the 16O + 16O interaction revealed a very
clear sensitivity of large-angle scattering to the details of
the real potential at short distances at which there are large
density overlaps of the colliding nuclei. In this situation, the
double folding (DF) potential reveals a pronounced sensitivity
to the details of the considered effective nucleon-nucleon
interaction [7–9], and it has been shown that a consistent
description can only be obtained with distinct but small density
dependence [7–10].

Khoa et al. [11] used different density-dependent versions
of the M3Y effective NN interaction for analyses of the
refractive structure in the elastic scattering of the α nu-
cleus, 12C + 12C, and 16O + 16O data. Nicoli et al. [12]
have measured and have analyzed the elastic scattering of
16O + 16O at nine energies between 75 and 124 MeV by
using the phenomenological and folding model potentials. It
was found [11,12] that the real part of the optical potential
slightly varies with energy over the studied energy range.
The shape of the imaginary part, however, rapidly changes
with increasing energy higher than 90 MeV. Nonetheless, the
energy dependence of the volume integral of the real and
imaginary parts is in agreement with the dispersion relation
predictions. In addition, Khoa et al. [13] have performed a

detailed optical model (OM) analysis of the whole data set in
the energy range of 124–1120 MeV to study the evolution
of the refractive structure with increasing incident energy
by using both the phenomenological squared Woods-Saxon
(WS2) and the microscopic DF potentials. Over a wide energy
range from 7 to 70 MeV/nucleon, the 16O + 16O scattering
system has been studied by Oertzen et al. [14]. They obtained
excellent fits with data at all considered energies by using
deep real DF potentials that involved a NN interaction weakly
dependent on the density. In a more recent study, Khoa et al.
[15] measured and analyzed the data of inelastic 16O + 16O
scattering to the lowest 2+ and 3− excited states of 16O through
the energy range of 250–1120 MeV by using the inelastic form
factor extracted by the DF model.

On the other hand, the folding approach has been employed
in the framework of the α-cluster model [16,17] to extract a
semimicroscopic description of the α-nucleus and nucleus-
nucleus potentials. These potentials have proved to give a
good description of light HI elastic-scattering data [18–21].
In this context, El-Azab Farid et al. [19], El-Azad Farid [20],
Karakoc and co-workers [21], and Kurkcuoglu et al. [22]
have generated α-particle single folding cluster (SFC) and
light HI double folding cluster (DFC) optical potentials based
upon an appropriate α-α effective interaction. They [19–22]
assumed that projectile and target nuclei consist of an integral
multiple of a number of α particles. However, in some of
the studied reactions, it was essential to introduce reducing
renormalization coefficients (∼0.7–0.9) to obtain a successful
description of the HI elastic-scattering data. Yang and Li
[23] calculated the angular distributions of 16O + 16O elastic
scattering at incident energies that ranged from 75 to 350 MeV
by using the α-folding potential. They concluded that the
reason for the decrease in the renormalization factors with
increasing energy was the effect of the reduction in the strength
of the α-α interaction with an increase in energy.
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In the last decade, Abdullah and his collaborators, in
three successive articles [24–26], proposed a successful SFC
model to describe the differential cross section of the elastic
scattering of α particles on 12C, 16O, and 40,44,48Ca targets
as well as a DFC one for 16O + 12C scattering over a broad
spectrum of incident energies. They [24–26] considered the
point of view that, most of the time, a number of nucleons
in the target nucleus are primarily in α-like clusters and
the rest are in an unclustered nucleonic configuration. They
deduced the α-cluster structure configurations for 12C, 16O,
and 40,44,48Ca, respectively, as 2.35α + 2.6N , 3.5α + 2N ,
8.5α + 6N , 8.5α + 10N , and 8.5α + 14N , where N is an
integer. Consequently, this leads us to consider the folding
potential as a sum of two parts, one convoluted over the
α-cluster density distribution and the other over the nucleonic
density distribution. In this formalism, no renormalization was
required to fit the data.

Recently, Hassanain et al. [27] used the same representation
as Refs. [24–26], two different versions of the 12C + 12C real
DFC optical potential (DFC1 and DFC2), which have been
generated based upon effective α-α, α-N , and NN interactions.
The elastic-scattering data at the energy range of 70–360 MeV
were successfully reproduced by using the derived potentials.
No renormalization of the real DFC1and DFC2 potentials
was required to fit the data. In addition, in two very recent
articles [28,29], Hassanain analyzed the elastic and inelastic
12C + 12C scattering and elastic 24Mg + 28Si scattering,
respectively, by using the DFC potential and coupled-channels
mechanism. A successful description of the data is obtained
over the full measured angular range without the need to
normalize the DFC potential. He also investigated the anomaly
in large-angle-scattering and rainbow-scattering features.

In the present paper, we extend the α-cluster folding formal-
ism, presented in our previous studies [27–29], to investigate
the 16O + 16O elastic scattering in the framework of the two
potential models, the DFC1 [19,22] and DFC2 [27–29]. Seven
sets of the 16O + 16O elastic-scattering data over the energy
range of 124–1120 MeV are analyzed by using the generated
DFC potentials. In the following section, we introduce the
optical potential model, whereas, the calculations procedure
is described in Sec. III. Section IV is devoted to results and
discussion, and finally, conclusions are summarized in Sec. V.

II. THE OPTICAL MODEL

Four different forms of the nuclear optical model potential
are used in the present calculations to perform a comparative
study of the 16O + 16O reaction. First, the phenomenological
WS2 form is considered. Then, two forms are calculated
based upon phenomenological α-α, α-N , and NN interactions,
denoted as DFC1 and DFC2 potentials. Finally, the potential
form is microscopically derived by using the realistic effective
M3Y interaction. Details of these potential forms are explained
in the following subsections.

A. Phenomenological potentials

The 16O + 16O scattering data have been phenomeno-
logically analyzed by many authors by using several

representations. In general, for the best fits, this system requires
being represented by an imaginary part composed of volume
plus surface terms, whereas, the real part has been assumed to
have either WS or WS2 form factors. So, in the present paper,
we assume, in accordance with previous phenomenological
analyses of the 16O + 16O system [11–14,22], the WS2 shape
for the real nuclear potential and the sum of the WS2 “volume”
term plus a derivative Woods-Saxon (WSD) “surface” term for
the imaginary part. The phenomenological nucleus-nucleus
potential Uph(R) is then given as

Uph(R) = VC(R) − V0[fV (R)]n − iW0[fI (R)]n

− iWDfD(R), (1)

where the WS form factor is defined as

fx(R) =
[

1 + exp

(
R − rx

(
A

1/3
P + A

1/3
T

)
ax

)]−1

, (2)

where x denotes the real (V ) or imaginary volume (I )
potentials, rx and ax are the radius and diffuseness parameters,
respectively, and AP and AT are the mass numbers of the
projectile and target nuclei, respectively. The WSD term is
formed as

fD(R) = −4n exp

(
R − rD

(
A

1/3
P + A

1/3
T

)
aD

)/

{
1 + exp

[
R − rD

(
A

1/3
P + A

1/3
T

)/
aD

]}(n+1)
. (3)

In Eq. (1), n= 1 and 2 for the WS and WS2 forms, respectively.
The Coulomb potential VC(R), used in our OM analyzes, is
generated by folding two uniform charge distributions of radius
Rc = 3.54 fm, which have a rms charge radius close to that
extracted from the electron-scattering data for the 16O nucleus.
This choice has been shown to be accurate up to very small
internuclear distances where the nuclear interaction becomes
dominant [30]. All OM analyses are carried out by using the
computer codes HIOPTIM-94 [31] and HERMES [32]. The WS
parameters in Eqs. (1)–(3) are adjusted to obtain the least χ2

fit to the measured elastic-scattering data.
In general, for an interaction potential U (R) between two

nuclei that have nucleon numbers AP and AT , the volume
integral per interacting nucleon pair JU is defined as

JU = 4π

AP AT

∫
U (R)R2dR. (4)

This quantity is currently used as a sensitive measure of
the potential strength. In our paper, we apply this definition
to the real and to the imaginary parts of U (R), independently
denoted as JR and JI , respectively.

B. Folding approaches

In parallel to the phenomenological OM analysis, the
DF model analysis of the considered (16O + 16O)-scattering
system has also been performed by using three different
treatments of the folding procedure. In the first, the 4α-cluster
structure of the 16O nucleus (16O ≡ 4α) is considered. Then,
the DF potential is generated by folding an α-α effective
interaction with the α-cluster density distributions in both
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projectile and target nuclei [19,20,27,29]. If one denotes the
density distributions of the α cluster inside the projectile and
the target by ρCP and ρCT , respectively, the DFC1 potential
can be formulated [19,20,27,29] as

UDFC1(R) =
∫ ∫

ρCP (r1)ρCT (r2)Vα-α

×(| �R − �r1 + �r2|)d�r1d�r2, (5)

where R denotes the projectile-target relative position vector
and r1 and r2 are the c.m. coordinates of the α clusters in
the projectile and target nuclei, respectively. The α-α effective
interaction V α-α is parametrized as [24–27,33]

Vα-α(s) = VR exp
(−μ2

Rs2
) − VA exp

(−μ2
As2

)
, (6)

where VA and VR , respectively, are the attractive and repulsive
depths and μA and μR are the corresponding range parameters.
We consider VA = 122.62 MeV, μA = 0.469, and μR =
0.54 fm−1 while the depth VR is kept as a free parameter
in the calculations. The α-cluster distribution inside 16O will
be described in the next subsection.

To deduce the second folded cluster potential, denoted as
DFC2, we consider the cluster structure of the 16O nucleus
defined as 16O ≡ Aαα + ANN ; i.e., the 16O nucleus is
composed of Aα α particles plus AN unclustered nucleons such
that 4Aα + AN = 16. Consequently, if one denotes the density
distributions of the α clusters and unclustered nucleons in the
projectile and target by ραP , ρNP , ραT , and ρNT , respectively,
the DFC2 potential can be constructed as

UDFC2(R) =
∫ ∫

ραP (rαP )ραT (rαT )Vα-α(| �R − �rαP + �rαT |)d�rαP d�rαT

+
∫ ∫

ραP (rαP )ρNT (rNT )Vα-N (| �R − �rαP + �rNT |)d�rαP d�rNT

+
∫ ∫

ραT (rαT )ρNP (rNP )Vα-N (| �R − �rαT + �rNP |)d�rαT d�rNP

+
∫ ∫

ρNT (rNT )ρNP (rNP )VN-N (| �R − �rNT + �rNP |)d�rNT d�rNP , (7)

where rαP (rNP ) and rαT (rNT ) , respectively, are the c.m.
coordinates of the α clusters (unclustered nucleons) in the
projectile and target nuclei, Vα-N and VN-N are the α-N and
NN effective interactions, respectively. The α-N interaction
has the following form [34]:

Vα-N (s) = −V0αN exp(−K2s2), (8)

with Vα-N = 47.3 MeV and K = 0.435 fm−1. The NN potential
is given in a Gaussian form as [35]

VN-N (s) = −V0NN exp

(
− s2

a2

)
, (9)

with V0N-N = 20.97 MeV and a = 1.47 fm.
The last treatment is based upon the well-known M3Y

effective interaction. The DF calculation is carried out by
folding the M3Y interaction over the nuclear matter density
distributions for projectile and target nuclei (see Fig. 1). So,
the M3Y DF potential is defined as

VM3Y(R) =
∫

ρP (rP )ρT (rT )Vnn(s)d�rP d�rT , (10)

whereρP and ρT are the density distributions for projectile and
target nuclei, respectively, and Vnn is the M3Y effective NN
interaction [36], which is given as

Vnn(s) = 7999
exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s
+ J00δ(s).

(11)

The last term in Eq. (11) is the zero range knock-on
exchange contribution since the exchange is possible between
the projectile and the target, J00(E) is linear energy dependent
and can be expressed to account for the knock-out exchange
term as [16]

J00 (E) = −276 [1 − 0.005E/AP ] MeV fm3, (12)

where E is the laboratory energy of the projectile.

FIG. 1. A comparison among the partial α-cluster density (dashed
line), full α-cluster density for 16O (dotted line), and nuclear matter
density distribution (sold line).
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TABLE I. Density parameters used in Eqs. (13), (14), and (16)
and the corresponding rms radii [22].

Nucleus ρ0(m,α,C) w (γ ) β(λ) (ξ ) rms radius
(fm−3) (fm−2) (fm−2) (fm)

ρm(r) 0.1317 0.6457 0.3228 2.64
ρα(r) 0.4229 0 0.7024 1.460
ρC(r) − 0.1286 −1.4249 0.5973 2.199

C. Density distributions

First, we consider the cluster structure 16O ≡ 4α. The matter
density of the 16O nucleus usually is expressed in a modified
form of the Gaussian shape as [17,27]

ρm(r) = ρ0m(1 + wr2) exp(−βr2). (13)

The matter density of the α particle also can be obtained in the
Gaussian form as [17,27]

ρα(r) = ρ0α exp(−λr2). (14)

The parameters ρ0(m,α), ρ0M , w, β, and λ and the corre-
sponding root-mean-square (rms) radii are given in Table I.
Now, if ρC(r ′) is the α-cluster distribution function inside the
16O nucleus, then we can relate the nuclear matter density

distribution functions (13) and (14) as [17,27]

ρm(r) =
∫

ρC(r ′)ρα(|�r − �r ′|)d�r ′. (15)

Then, using Fourier-transform techniques [37] for expres-
sion (15), we can obtain

ρC(r ′) = ρ0C(1 + γ r ′2) exp(−ξr ′2), (16)

where ξ = βλ
η

, η = λ − β, and γ = 2wλ2

[η(2η−3w)] .
The ρ0C , γ , and ξ parameters used in Eq. (16) are also

listed in Table I. From this table, it is evident that the values
for the α-cluster density in the 16O nucleus are negative near
the origin, i.e., at r � 0.8 fm as reported in Refs. [27,38].
The negative density discrepancy was also obtained previously
during the analysis of pion-carbon elastic-scattering data by
using the 3α-cluster model for the structure of the 12C nucleus
[39]. Inopin and Tishchenko [40] suggested that, perhaps, the
size of the α particle is slightly changed inside the nucleus and
that the zero is displaced to just outside the measured region.
This may be cured by involving a correction term that depends
on the rms radius of the α particle inside the nucleus. On the
other hand, in Ref. [41], the α-cluster model that involved
dispersion was proposed for the carbon and oxygen nuclei. In
this approximation, it is assumed that the carbon and oxygen
nuclei consist of three and four α-particle clusters located at
the vertices of an equilateral triangle and a regular tetrahedron,

(a)

(b)

(c) (f)

(e)

(d)

FIG. 2. (Color online) The comparison of the radial shapes of the real microscopic nuclear potentials (WS2, M3Y, DFC1, and DFC2) and
the volume plus the surface (WS2 + WD) imaginary potentials used in our calculation at different energies.
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FIG. 3. (Color online) The predicted elastic differential cross
sections relative to Rutherford scattering of the 16O + 16O reaction
obtained by using the WS2, M3Y, DFC1, and DFC2 potentials at
energies of 124 and 145 MeV in comparison with the data. Data are
taken from Refs. [12,13,22].

respectively. These α-particle clusters can execute vibrations
with respect to their most probable equilibrium positions at
the vertices of the above geometric bodies. Owing to the small
number of α clusters inside the 12C and 16O nuclei, which
are distributed over these vertices, it is not expected to find
α clusters close to the center of the nucleus such that this
problem disappeared for the other nuclei when the number of
α clusters was increased [38].

Now, we assume the cluster structure of 16O as 16O ≡
Aαα + ANN . The density distributions of the α clusters and
unclustered nucleons in 16O are taken to be of the modified
Gaussian form as [26,27]

ρiC(r) = ρ0i(1 + wir
2) exp(−βir

2), (17)

where i = α,N . Since the 16O nucleus is composed of Aα

α particles plus AN unclustered nucleons, we then have the
normalization integral as∫

ραC(r)d�r +
∫

ρNC(r)d�r = 4Aα + AN = 16. (18)

The considered values of the parameters are as follows: ρ0α =
0.1667, ρ0N = 0.082 fm−3, wα = − 0.035, wN = − 0.045,
βα = 0.37, and βN = 0.34 fm−2. These values yield Aα = 3.54
and AN = 1.84, and the corresponding rms radius of the 16O
nucleus equals 1.9 fm.

At the same time, we use the same nuclear matter density
(13) in order to calculate the M3Y DF potential.

FIG. 4. (Color online) As Fig. 3 but at energies from 250 to
480 MeV. Data are taken from Ref. [13].

III. PROCEDURE

The present study is mainly devoted to the generation
of semimicroscopic and microscopic descriptions of the real
part of the 16O + 16O interaction. Therefore, as in previous
analyses [30,42,43], we choose the imaginary part to be treated
phenomenologically by using a conventional WS form. Thus,
the total 16O + 16O potential is expressed as

U (R) = VC(R) − NRUM3Y(DFC1,DFC2)(R)

− iW0[fI (R)]n − iWDfD(R). (19)

All potentials obtained from our calculations, the real and
WS2 + WD imaginary potentials, are shown in Fig. 2 at all
considered energies, except for that at 704 MeV. All real
potentials have the same strength and slope at the surface,
which corresponds to the small overlap or low-density region.
The main difference between different types of the folded
potential is shown at short internuclear distances, which
correspond to the higher overlap density of the colliding nuclei.
In Fig. 2, we also notice that the DFC2 potentials are deeper
than the WS2 ones, especially, at small radii, whereas, the other
DF microscopic potentials reveal quite a resemblance to the
WS2 potentials in the entire radial range at most considered
energies. At the highest considered energy, 1120 MeV, the
situation seems to be reversed where the other potentials
are deeper than the WS2 ones. The corresponding imaginary
potentials are weak and quite close to those found in Ref. [14],
which clearly show the transparency of the optical potential
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FIG. 5. (Color online) As Fig. 3 but at energies from 704 to
1120 MeV. Data are taken from Ref. [13].

for 16O + 16O at these energies. Thus, the discrepancy in the
obtained cross sections at large angles is mainly due to the
difference in the real folded potentials at the small internuclear
distances to which the refractive cross section is particularly
sensitive. In other words, this difference may cause improved
folding model potential fits at forward angles where they give a
correct account of the potential depth around the surface region
to which the cross sections at forward angles are particularly
sensitive as seen in Figs. 3–5.

The obtained potentials are fed into the computer codes
HIOPTIM-94 [31] and HERMES [32] to calculate the angular
distribution of elastic-scattering differential cross sections.
The routine searches are carried out by considering an average

value of 10% for all experimental data errors of the considered
data to minimize the χ2 value, which is defined as

χ2 = 1

ND

ND∑
k=1

[
σth (θk) − σexp (θk)

�σexp (θk)

]2

, (20)

where ND is the number of differential cross-sectional data
points, σth (θk) is the calculated cross section at angle θk in the
c.m. system, and σexp (θk) and �σexp (θk) are the corresponding
experimental cross section and its relative uncertainty, respec-
tively. All potential parameters for M3Y, DFC1, and DFC2 are
held constant during the search, except for the renormalization
factor NR and the depth of the real repulsive part of α-α
interaction VR together with the imaginary WS parameters,
which are freely adjusted to fit the data by minimizing the χ2

parameter.

IV. RESULTS AND DISCUSSION

In the present paper, seven sets of data for the angular
distribution of the 16O + 16O elastic-scattering differential
cross section at bombarding energies, which range from 124 to
1120 MeV are analyzed by using the constructed WS2, M3Y,
DFC1, and DFC2 potentials. Best-fit parameters obtained for
the real and imaginary potentials as well as the corresponding
volume integrals per interacting nucleon pair JR and JI

and reaction cross sections σR are listed in Tables II– IV.
A comparison between the theoretical predictions and the
corresponding experimental data are shown in Figs. 3–5. From
these figures, it is clear that satisfactory descriptions of the
data are obtained by using all considered potentials over all
the angular measured ranges.

In phenomenological calculations, the real part of the
optical potential is chosen in a WS2 form, whereas, a sum of
WS or WS2 plus WSD terms has been used for the imaginary
part for all considered energies. The Coulomb potential radius
RC = 3.54 fm is used for all calculations. The parameters of
the phenomenological optical potential, used in the analysis,
are given in Table II. This table reveals that the obtained
potentials are constructed from deep real parts associated with
rather shallow imaginary ones.

As mentioned above, the present study is mainly devoted
to investigate the elastic 16O + 16O scattering by using two
different real folded cluster potentials (DFC1 and DFC2). The

TABLE II. Best-fit phenomenological optical potential parameters. The real part is in a WS2 form, whereas, the imaginary part is a sum of
WS or WS2 and WSD forms.

E V0 rV aV W0 rI aI WD rD aD σR χ 2

(MeV) (MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm) (mb)

124 599.2 0.650 1.728 14.77 1.108 0.300 5.049 1.286 0.539 1708 9.9
145 448.9 0.790 1.480 8.77 1.365 0.833 16.010 1.076 0.435 1571 9.9
250 311.0 0.872 1.301 34.85 1.032 0.892 9.250 1.063 0.737 1745 8.3
350 367.1 0.801 1.480 28.15 1.266 1.000 8.426 0.921 0.344 1623 5.7
480 282.0 0.853 1.338 40.44 1.167 1.140 3.740 0.975 0.257 1567 5.3
704 294.8 0.836 1.409 41.98 1.197 0.990 2.481 0.921 0.265 1504 167
1120 219.0 0.852 1.503 48.41 1.100 1.346 1487 152
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TABLE III. Microscopic potential. The real part is the folded (cluster folded) potential times NR (VR), and the imaginary part is the sum of
a WS (WS2) and a WSD (WS2D) term used analysis of the elastic 16O + 16O data at energies of 124–1120 MeV.

Potential E VR W0 rI aI WD rD aD σR χ 2

(MeV) (MeV) (MeV) (fm) (fm) (MeV) (fm) (fm) (mb)

M3Ya 0.92 15.01 1.132 0.242 3.840 1.227 0.843 1916 13.9
DFC1c 124 58.0 11.33 1.203 0.278 4.150 1.483 0.725 2181 17.3
DFC2c 92.0 14.86 1.156 0.302 2.756 1.581 0.687 2347 14.3
M3Ya 0.97 12.10 1.258 0.545 10.777 1.099 0.354 1584 11.0
DFC1c 145 53.5 6.73 1.244 0.655 17.986 1.033 0.442 1570 14.2
DFC2c 85.0 16.785 0.974 1.200 16.986 0.976 0.325 2006 16.4
M3Yb 0.77 29.19 1.119 0.916 6.278 1.088 0.751 1723 9.6
DFC1d 250 48.5 30.69 1.111 0.972 6.443 1.085 0.747 1735 14.7
DFC2d 57.0 38.69 1.048 0.856 7.426 1.097 0.765 1782 10.5
M3Yb 0.76 29.70 1.244 1.020 7.630 0.917 0.321 1595 8.3
DFC1d 350 47.5 31.74 1.244 1.020 7.630 0.917 0.321 1618 7.2
DFC2d 58.0 35.70 1.212 1.043 10.70 0.972 0.342 1599 10.5
M3Yb 0.83 45.47 1.169 1.093 17.348 0.950 0.248 1581 8.9
DFC1d 480 50.0 44.47 1.158 1.111 17.219 0.867 0.278 1565 12.0
DFC2d 58.0 48.46 1.180 0.978 15.348 0.957 0.242 1541 9.8
M3Yb 0.81 51.44 1.164 1.031 14.631 0.823 0.222 1517 176.0
DFC1d 704 50.0 45.44 1.203 1.004 10.165 0.911 0.213 1550 176.0
DFC2d 104.0 66.49 1.049 0.823 10.610 1.049 0.823 1603 170.2
M3Yb 0.70 67.96 1.027 1.405 1498 191.2
DFC1c 1120 90.0 47.41 0.861 1.045 1654 152.0
DFC2c 175.0 41.74 0.861 1.045 1585 174.2

aNR for the folding potential and the imaginary potential (WS + WSD).
bNR for the folding potential and the imaginary potential (WS2 + WSD).
cVR = NR for the folding cluster potential and the imaginary potential (WS + WSD).
dVR = NR for the folding cluster potential and the imaginary potential (WS2 + WSD).

considered energy range is divided into two categories. The
first category includes two low energies, 124 and 145 MeV. At
these energies, the standard WS volume term plus the WSD
surface term are used for the imaginary part. The second
one belongs to energies from 250 to 1120 MeV at which
the real DF potentials are supplemented with imaginary parts
formulated from the sum of the WS2 and WSD terms. No
renormalization of the two real cluster folded potentials is
required to fit the data. From Fig. 3, it is observed that,
at all considered energies, the DFC1 and DFC2 potentials
produce almost similar predictions. However, one may notice
that by introducing the treatment of unclustered nucleons in
the structure of 16O through the DFC2 potential relatively

reduces the amplitude of oscillations in the predicted angular
distributions, especially, at 124 and 145 MeV. In other
words, this treatment yields slight improvement in fits with
data, particularly, at forward- and middle-scattering angles.
We recall that, at these low energies (<10 MeV/nucleon),
refractive effects are observed in the structure of scattering
angular distributions (see Fig. 3).

For the sake of comparison, an additional analysis is
performed by using the microscopic M3Y DF potential. The
predictions of the M3Y DF potential are almost identical to
those of the DFC1 and DFC2 ones as displayed in Figs. 3–5.
The average value of the renormalization factorNR , required
for the M3Y DF potential to get fits with low-energy data

TABLE IV. The volume integral of the optical potentials used in the theoretical calculations for the phenomenological and the double
folding analyses of the 16O + 16O reaction at energies between Elab = 124 and 1120 MeV.

E JRPh
JRDF JRDFC1 JRDFC2 JIPh

JIDF JIDFC1 JIDFC2

(MeV) (MeV fm3) (MeV fm3) (MeV fm3) (MeV fm3) (MeV fm3) (MeV fm3) (MeV fm3) (MeV fm3)

124 335.02 376.56 284.8 336.30 59.36 72.16 65.01 73.50
145 362.60 396.47 294.7 344.96 76.70 77.56 73.29 76.50
250 316.28 308.13 305.8 393.40 99.08 92.16 93.90 104.3
350 307.16 299.20 308.0 391.70 100.21 97.94 104.0 114.3
480 270.96 315.50 302.5 391.67 101.32 129.10 122.2 138.7
704 271.79 293.34 302.5 312.10 112.82 133.98 129.7 147.5
1120 217.09 225.69 214.2 190.97 96.48 111.24 99.72 92.10
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equals ∼0.92, which is similar to that found in Ref. [12]
at lower energies. Furthermore, our results, at 124 and
145 MeV, are similar, to some extent, to those obtained
by the phenomenological potential and the DF one built
upon the CDM3Y6 and α-α effective interactions [13,23],
respectively. At the same time, the results obtained by all
considered potentials are more successful to describe the
scattering data than those found by phenomenological and
DFC built upon an effective α-α-cluster interaction [22].
Furthermore, it is clear that the present predictions of 124-MeV
data from all considered potentials are more successful than
those yielded by the DF potential built upon the BDM3Y1
effective NN interaction [12]. Also, our results at 145 MeV
are comparable to those found by El-Azab Farid et al. [19],
which use the DFC potential based upon the pure attrac-
tive α-α-cluster effective interaction and the full α-cluster
structure.

For energies between 250 and 1120 MeV, the data are
successfully reproduced over all the measured angular ranges
by using the two different real DFC1 and DFC2 without
a renormalization factor. The renormalization factor NR ,
required for the M3Y microscopic potentials to get fit to the
data, is ranged as 0.7–0.85, which is similar to the result given
in Ref. [13]. By comparing our results at higher energies with
those obtained by previous studies, we find that the present fits
with data are consistent, to some extent, with those obtained
by the phenomenological potential and DF potential built upon
the CDM3Y6 effective NN interaction [13]. At the same time,
it is evident that the present predictions for the 250-, 350-, and
480-MeV data are more successful than those yielded by the
DF and DFC potentials built upon the BDM3Y1, BDM3Y2,
BDM3Y3, and α-α-cluster effective interactions [8,19,23].

The obtained values of real and imaginary volume integrals,
listed in Table IV, are plotted against energy as shown in
Fig. 6. From Table IV, it is evident that, at some considered
energies, the real volume integrals JRDFC2 of the DFC2 are
significantly larger than those found from the other potentials.
This behavior results from the large values of the repulsive
depth VR used in the calculations at lower energies, whereas,
at the higher energies, this value decreases with increasing
energy. The different behaviors of DFC1 and DFC2 result from
the decrease in the ratio between the strength values where
VR (DFC2) /VR (DFC1) < 2, but at 704 and 1120 MeV, this
factor increases up to 2 and JRDFC2 values are almost similar to
those of the DFC1 potentials.

From Fig. 6(b), we see that JR reveals linear energy
dependence, whereas, JR decreases as energy increases for all
considered potentials. These results agree quit well with that
deduced from earlier OM analyses of the elastic 16O [13,22,23]
scattering. From this discussion, we can conclude that the
energy dependence of the real HI optical potential is predicted
quite well by the two versions of the cluster folding model
given in the present paper.

The energy dependence of the obtained imaginary volume
integrals JI of all considered imaginary potentials as shown in
Fig. 6 are almost similar over all the investigated energy ranges.
This behavior is attributed to the consistent values of the imag-
inary depth W0 used with all considered potentials as shown in
Tables II and III. From Fig. 6(a), we notice that JI reveals linear

FIG. 6. Energy dependence of the real and imaginary volume
integrals of the WS2, M3Y, DFC1, DFC2, and imaginary WS
potentials.

energy dependence, whereas, JI increases as energy increases
for all considered potentials. We find JI = C + DE, where
C = 84±7 MeV and D = 0.04 for all considered potentials,
i.e., the energies dependent in all potentials have slopes ∼=0.04.
On the other hand, the obtained JI values are almost similar to
those found by using the phenomenological and microscopic
DF and DFC optical potentials based upon the CDM3Y6 [11–
13], BDMEY1, DBM3Y2, BDM3Y3 [8], and α-α effective
interactions [23].

The energy dependence of the reaction cross section σR

is shown in Fig. 7. From Table III, it is clearly noticed
that the results from all considered potentials are identical

FIG. 7. Energy dependence of the total reaction cross sections
deduced from the analysis of the 16O + 16O elastic scattering by
using the WS2, M3Y, DFC1, and DFC2 potentials.
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FIG. 8. The energy dependence of the best-fit parameters NR , VR ,
W0, and WD . Panels (a)–(d) show the results of energy dependence
for the normalization coefficient NR of the M3Y potential, the real
repulsive depth of the α-α interaction in the DFC1 and DFC2
potentials, the derivative term of the imaginary potential, and the
volume term of the imaginary potential supplemented with all real
considered potentials, respectively. The solid and dashed lines are
drawn as guides for the eyes.

except at 124 and 145 MeV where the DFC1 and DFC2
have greater values for σR than those of other potentials.
Also, from Fig. 6, we notice that σR reveals a slight linear
energy dependence, whereas, σR slightly decreases as energy
increases for all considered potentials σR = 1808 and slopes
∼0.3. By comparing our values for σR with those obtained by
previous studies, we find that the obtained σR’s are consistent
with those obtained by using the phenomenological [12,13]
and microscopic DF potentials based upon the CDM3Y6 [11–
13], BDMEY1, DBM3Y2, BDM3Y3 [8], and α-α effective
interactions [23].

For completeness, the energy dependence of the best-fit
parameters, NR , VR , W0, and WD are displayed in Fig. 8. From
Fig. 8(a), one can see that the NR factor for M3Y potentials has
a negligible energy dependence and varies around a value of
0.93. From Fig. 8(b), we see that the real repulsive part of the
α-α effective interaction VR , used in both the DFC1 and the
DFC2 potentials, does not show an explicit energy dependence.
From Fig. 8(c), it is also obvious that the surface depth of the
imaginary potential WD is centered near 5–18 MeV to fit the
data above 200 MeV; it decreases afterwards and becomes
negligible beyond 1120 MeV. Also, from Fig. 8(d), it is

obvious that the depth of the volume term W0 is an increasing
function of energy, whereas, its shape varies softly above
1120 MeV.

V. CONCLUSIONS

In the present paper, the angular distribution of the 16O +
16O elastic scattering at the bombarding energies ranging from
124 to 1120 MeV have theoretically been analyzed by using
two types of the real double folding cluster optical potential. In
the first one, the full α-cluster structure 16O ≡ 4α is considered.
Then, the folded potential is calculated with the total contribu-
tion from the α-α attractive and repulsive effective interactions
folded with the α-cluster density distribution inside projectile
and target nuclei. However, in the second type, the cluster
structure 16O ≡ Aαα + ANN is taken into account, and the po-
tential is calculated from contributions of the α-α attractive and
repulsive interactions besides the α-N and NN interactions,
folded with the α-like cluster and unclustered nucleon density
distributions in the colliding nuclei. The nuclear potential
was constructed by a calculated real part supplemented
with a phenomenological representation of the imaginary
part.

Seven sets of 16O + 16O elastic-scattering data in the
energy range of 124–1120 MeV are analyzed by using the de-
rived potentials. The obtained results show that the successful
description of the data over all the measured angular ranges
can be obtained by using the constructed semimicroscopic
potentials. It is shown that no renormalization of the real folded
cluster potentials is required to fit the experimental data for all
the considered energies. On the other hand, it is observed
that, at all the considered energies, predictions produced
by both potentials are almost similar. This may indicate
that these data have very weak sensitivity to many-body
correlations.

For the sake of comparison, two additional optical model
potentials are constructed; one is microscopically designed
based upon the M3Y interaction, and the other is phe-
nomenologically represented. The success of the four derived
potentials to describe the data is equivalent to that previously
gained by using microscopic potentials based upon the
DDM3Y1, BDM3Y1, BDM3Y2, and BDM3Y3 effective NN
interactions.

Most of the obtained volume integrals and the extracted
reaction cross sections are quite comparable to those ob-
tained by previous studies by using phenomenological and
microscopic potentials based upon the different versions
of the density-dependent effective NN interactions. From
these results, one may conclude that the energy dependence
of the real HI optical potential is successfully predicted
by the two considered versions of the cluster folding
model.

Finally, it is worthwhile to point out that the present
analysis shows an additional confirmation of the sub-
stantial ability of the α-cluster model to reproduce
the measured elastic 16O + 16O scattering and reac-
tion cross sections through the broad energy range of
8–70 MeV/nucleon.
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