High-resolution study of excited 0⁺ states in 200Hg and 202Hg

C. Bernards,^{1,*} R. F. Casten,¹ V. Werner,¹ P. von Brentano,² D. Bucurescu,³ G. Graw,⁴ S. Heinze,² R. Hertenberger,⁴ J. Jolie,²

S. Lalkovski,⁵ D. A. Meyer,¹ D. Mücher,^{2,†} P. Pejovic,² C. Scholl,² and H.-F. Wirth⁶

¹*Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA*

³*National Institute for Physics and Nuclear Engineering, Bucharest R-76900, Romania*

⁴*Fakultat f ¨ ur Physik, Ludwig-Maximilians-Universit ¨ at M¨ unchen, D-85748 Garching, Germany ¨*

⁵*Faculty of Physics, University of Sophia, 1164 Sofia, Bulgaria*

⁶*Physik Department, Technische Universitat M¨ unchen, D-85748 Garching, Germany ¨*

(Received 6 May 2013; published 28 June 2013)

We used the high-resolution Q3D magnetic spectrograph at the Maier-Leibnitz Laboratory (MLL) Tandem accelerator in Munich to study ²⁰⁰Hg and ²⁰²Hg after two-neutron transfer. The results confirm the sharp drop in the number of low-lying 0^+ states towards the ²⁰⁸Pb shell closure. In total, we assigned six 0^+ states in ²⁰⁰Hg and four 0^+ states in ²⁰²Hg. The 0^+ excitation energies and the measured (p, t) transfer cross sections indicate a structural change throughout the Hg isotopes, with the most notable result being the peaking in the cross section of the 0_2^+ state in ²⁰⁰Hg.

DOI: [10.1103/PhysRevC.87.064321](http://dx.doi.org/10.1103/PhysRevC.87.064321) PACS number(s): 21.10.Re, 21.60.Ev, 25.40.Hs, 27.80.+^w

I. INTRODUCTION

Within the last decade, much work has been done to investigate 0^+ excitations in nuclei using the high-resolution Q3D magnetic spectrograph [\[1\]](#page-5-0) at the Maier-Leibnitz Laboratory (MLL) Tandem accelerator in Munich. The Q3D spectrograph with its focal plane detector $[2]$ has turned out to be a very powerful tool for the identification of 0^+ states by measuring the characteristic forward peaking of $L = 0$ transfers (Ref. [\[3\]](#page-5-0) gives an overview of two-nucleon stripping or pickup transfer reactions).

The (p, t) pickup transfer reaction has been studied in an extensive campaign in the rare earth region [\[4–9\]](#page-5-0) from Gd to Hg. This research has allowed a better understanding of the changes the nuclei undergo from the transitional Gd region—over the well-deformed Yb region—to the γ -soft Pt region and further towards the ²⁰⁸Pb proton-neutron shell closure. The striking high number of low-lying 0^+ excitations in the Gd region $[4,5]$ was interpreted $[10]$ as a new signature for shape-phase transitions [\[11\]](#page-6-0) and large numbers of 0^+ states throughout the rare earth region triggered many calculations reproducing the surprisingly high 0^+ density $[12-15]$. The latest experiments on 192 Pt, 194 Pt [\[8\]](#page-5-0), and 198 Hg [\[9\]](#page-5-0) showed a rather smooth decline in 0^+ state density towards the proton-neutron shell closure. This decline was found to be in qualitative agreement with sd IBM-1 calculations [\[9\]](#page-5-0), and in line with expectations based on the reduced shell model valence spaces as the magic region is approached.

By investigating excited 0^+ states in ²⁰⁰Hg and ²⁰²Hg, we move further towards the shell closure. The new highresolution data allows us to compare excited 0^+ states throughout the mercury isotope chain from 198 Hg to 202 Hg

and enables us to inspect their evolution. The present paper completes the publication of all the existing data from the (p, t) campaign from Gd to Hg that was carried out using the ultra-high resolution instrument in Munich.

II. EXPERIMENT

The (p, t) transfer experiments investigating ²⁰⁰Hg and 202Hg were performed at the Munich MLL (Maier-Leibnitz Laboratory of LMU Munich and TU Munich) Tandem accelerator facility. We used highly enriched mercury-sulfide targets consisting of $50-\mu g/cm^2$ 202HgS on a $10-\mu g/cm^2$ carbon backing, and $70-\mu$ g/cm² 204 HgS on a $12-\mu$ g/cm² carbon backing, respectively. The isotopic composition of the ²⁰²Hg target was ²⁰²Hg (97.58%), ²⁰¹Hg (1.38%), ²⁰⁰Hg (0.53%), 204 Hg (0.28%), 199 Hg (0.17%), 198 Hg (0.06%), and 196 Hg (<0.02%), whereas the ²⁰⁴Hg target consisted of ²⁰⁴Hg (92.64%), 202 Hg (4.85%), 200 Hg (0.90%), 201 Hg (0.76%), ¹⁹⁹Hg (0.56%), ¹⁹⁸Hg (0.28%), and ¹⁹⁶Hg (<0.05%).

These experiments on 200 Hg and 202 Hg were part of the same Q3D (p, t) transfer campaign as the ¹⁹⁸Hg measurement [\[9\]](#page-5-0) using an ultrahigh resolution setup consisting of the Q3D magnetic spectrograph [\[1\]](#page-5-0) and the high-resolution focal-plane detector described in Ref. [\[2\]](#page-5-0), with typical triton energy resolution at 3–5 keV. The beam energy of the unpolarized protons was 25 MeV and the outgoing triton distribution was measured at 5° , 17.5 $^\circ$, and 30 $^\circ$ laboratory angle with respect to the beam axis. Each angle was measured with two different magnetic settings in order to resolve the tritons with an acceptable energy resolution up to 3-MeV excitation energy. For the analysis, the six different runs (three angles, each with two magnetic settings) were normalized to the integrated beam current measured in a Faraday cup behind the target.

III. ANALYSIS

Since the characteristic (p, t) angular distribution strongly peaks in the forward direction solely for $L = 0$ transfers [\[5\]](#page-5-0), we

²Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany

^{*}christian.bernards@yale.edu

[†]Present address: Physik Department, Technische Universität München, D-85748 Garching, Germany.

FIG. 1. (Color online) Complete triton spectrum from 0 to ∼3-MeV excitation energy, measured at 5◦ laboratory angle. The intensity of the high-energy (HE) part of the spectrum is normalized to the low-energy (LE) part. The arrows mark the 0^+ state assignments in ²⁰⁰Hg based on the $R(5/17.5)$ ratio.

use the ratio $R(5/17.5) \equiv \sigma(5^{\circ})/\sigma(17.5^{\circ})$ to identify $L = 0$ transfers from the 0^+ ground state in ²⁰²Hg to 0^+ states in ²⁰⁰Hg, or the 0⁺ ground state ²⁰⁴Hg to 0⁺ states in ²⁰²Hg. We use a ratio $R(5/17.5) > 3$ as a safe lower limit for 0^+ states assignments $[7,9]$. The 30 \degree data are used for the peak identification, but is not necessary for a clean separation of 0^+ states from 2^+ or 4^+ states [\[5\]](#page-5-0).

For each nucleus, the experimental runs were normalized to the integrated beam current measured in a Faraday cup behind the target. The measured triton spectra were calibrated using well-known level energies of 200 Hg and 202 Hg compiled in the Nuclear Data Sheets [\[16,17\]](#page-6-0). Contaminants stemming from target impurities were identified by using the known Q values of the corresponding (p, t) transfer reaction [\[18\]](#page-6-0). In total, about 80 individual excited states were analyzed up to the ∼3-MeV excitation-energy for 200 Hg and 202 Hg.

IV. RESULTS FOR 200Hg

Figure 1 shows the 5◦ laboratory angle spectrum measured with two different magnetic settings covering the low-energy (LE) and high-energy (HE) part of the spectrum. All runs were normalized to the 5◦ LE run. Some intense peaks are cut off and labeled with a multiplying factor representing their real maximum height.

Based on the $R(5/17.5) = 3$ limit, six states are assigned as 0^+ states in 200 Hg and listed in Table I. The respective

TABLE I. $R(5/17.5)$ ratios and cross sections of firmly assigned 0^+ and tentatively assigned (0^+) states in ²⁰⁰Hg. All states are discussed in detail in the text. New 0^+ state assignments are marked with an asterisk, tentative (0^+) state assignments are denoted in *italic*.

Energy (keV)	R(5/17.5)	$\sigma(5^\circ)$ (mb/sr)	$\sigma(17.5^\circ)$ (mb/sr)
0.0(0)	13.44 (37)	0.9819(987)	0.0731(75)
1029.3(1)	4.78(23)	0.1221(125)	0.0256(28)
1515.5(3)	10.51 (123)	0.0202(22)	0.0019(3)
1856.6(2)	7.95(210)	0.0218(24)	0.0027(8)
$2246.1(2)$ [*]	4.97(68)	0.0082(10)	0.0016(3)
2331.8(3)	3.19(87)	0.0020(4)	0.0006(2)
$2475.2(1)$ *	4.36(46)	0.0163(19)	0.0037(5)

FIG. 2. (Color online) Ratio $R(5/17.5)$ used to assign 0^+ states in ²⁰⁰Hg. The green line marks the $R(5/17.5) = 3$ threshold that is used as a lower limit for 0^+ assignments.

 $R(5/17.5)$ ratios are plotted in Fig. 2. A complete list of all states analyzed in the 200 Hg runs and their cross sections at 5° , 17.5 \degree , and 30 \degree laboratory angles is given in Table [II.](#page-2-0)

The first four 0^+ states in Table I up to 1857-keV excitation energy were already known as 0^+ states [\[16\]](#page-6-0) and we confirm their spin assignment. We observe two more states clearly exceeding the $R(5/17.5) = 3$ limit: One state at 2246-keV excitation energy is observed with $R(5/17.5) = 4.97(68)$. In Nuclear Data Sheets [\[16\]](#page-6-0), the spin of this state is given as $J^{\pi} = (1, 2)^{+}$, based on the measured mixed $M1 + E2$ multipolarity of its γ -ray transition to a 1⁺ state [\[19\]](#page-6-0). The observed mixed multipolarity in Ref. [\[19\]](#page-6-0) conflicts with our 0^+ state assignment. We checked potential 0^+ states using $\gamma\gamma$ coincidence data on 200Hg which was taken in a recent cold neutron capture experiment at Institut Laue-Langevin (ILL) [\[20\]](#page-6-0)—and which has also been used in a recent paper [\[21\]](#page-6-0). Due to statistics, we were not able to determine the multipole mixing ratio of the transition connecting the 2246-keV and the 1570-keV 1^+ state using the ILL data and did not find a reason for this particular discrepancy. Another new 0^+ state is observed at 2475 keV.

At 2332-keV excitation energy, a state exceeds the $R(5/17.5) = 3$ limit with relatively large uncertainties. In the data sheets [\[16\]](#page-6-0), the level spin is listed as $J = 2^+$ and an observed γ -ray transition to a 4⁺ state rules out a possible spin $J = 0^+$ assignment. However, according to the $\gamma\gamma$ coincidence data from ILL [\[20,21\]](#page-6-0), the 1385.0-keV transition to the $4⁺$ state is incorrectly placed in the level scheme. Gating on the feeding primary γ -ray transition of the 2332-keV level does not show a depopulating 1385-keV $γ$ ray. A gate on the feeding primary $γ$ ray to the level at 2978-keV excitation energy, however, does reveal a new 1385-keV transition to the 1593-keV 2^+ state. This state decays by a 646-keV transition to the 947-keV 4^+_1 state, thus making the 1385-keV γ -ray transition coincident with the 4_1^+ \rightarrow 2_1^+ transition. This might have caused the incorrect placement of the 1385-keV γ ray in the level scheme between the level at 2332 keV and the $4₁⁺$ state at 947-keV excitation energy [\[16\]](#page-6-0), although this placement is questioned in Fig. 6 of Ref. $[19]$ as well. Given the large uncertainties of the $R(5/17.5)$ ratio, we tentatively assign spin (0^+) for the state at 2332 keV.

We cannot confirm the 0^+ assignment for the state at 2116.5 keV [\[16\]](#page-6-0). Although the assignment is based on the observed E0 transition to the 0^+ ground state [\[22\]](#page-6-0), our measured ratio

TABLE II. Summary of the observed peaks in the ²⁰⁰Hg measurement and their cross sections. The measured cross sections have a 10% systematic uncertainty due to the beam-current normalization. The uncertainties on the relative $R(5/17.5)$ ratios are often smaller. Cross sections that were not observed because they were below the energy-dependent sensitivity limit of that particular run, which was around a few 10−⁴ mb, are listed as 0 mb/sr. Each listed state was carefully checked for the relevant $R(5/17.5)$ ratio by testing reasonable upper and lower limits for peaks with low statistics.

Energy (keV)	Cross section (mb/sr)			
	$\sigma(5^\circ)$	$\sigma(17.5^\circ)$	$\sigma(30^\circ)$	
$-56.5(11)^{b}$	$\boldsymbol{0}$	0.0007(3)	$\boldsymbol{0}$	
0.0(0) ^a	0.9819(987)	0.0731(75)	0.4843(486)	
367.9 $(0)^a$	0.0713(74)	0.2079(210)	0.1035(105)	
483.1 $(2)^{b}$	0.0044(7)	0.0007(3)	0.0019(3)	
$678.2(4)$ ^b	0.0023(5)	0.0006(2)	0.0016(3)	
706.9(3) ^b	0.0056(8)	0.0005(2)	0.0030(4)	
$815.8(7)$ ^b	0.0005(2)	0.0002(2)	0.0004(2)	
947.7 $(1)^a$	0.0123(15)	0.0079(10)	0.0043(6)	
1029.3 $(1)^a$	0.1221(125)	0.0256(28)	0.0711(73)	
$1118.3(8)^{b}$	0	0.0007(3)	0	
1158.3(7) ^b	0.0006(2)	0.0001(1)	0.0003(2)	
$1253.9(1)^{a}$	0.0137(16)	0.0485(51)	0.0261(28)	
1283.0(7) ^b	$\mathbf{0}$	$\mathbf{0}$	0.0006(2)	
1353.4 (7)	0.0005(2)	0.0001(1)	0.0001(1)	
1503.5(5)	0	0.0012(2)	0.0008(2)	
$1515.5(3)^{a}$	0.0202(22)	0.0019(3)	0.0062(8)	
1573.9(1)	0.0483(50)	0.1424(143)	0.0695(71)	
1593.3(5)	0.0012(3)	0.0011(2)	0	
1619.7 (10)	0.0004(2)	0.0001(1)	$\boldsymbol{0}$	
1641.5(4)	0.0022(4)	0.0014(2)	0.0010(2)	
$1658.9(0)^a$	0.0972(99)	0.0863(87)	0.0995(101)	
1706.3(1)	0.0019(4)	0.0060(7)	0.0082(10)	
1730.8 (3)	0.0069(9)	0.0035(4)	0.0017(3)	
1775.5(5)	0.0005(2)	0.0011(2)	$\overline{0}$	
1794.6 $(4)^{b}$	$\overline{0}$	0.0009(2)	0.0005(2)	
1851.0(1)	0.0166(19)	0.0352(37)	0.0364(39)	
1856.6 (2)	0.0218(24)	0.0027(8)	0.0050(10)	
1882.9(2) ^a	0.0018(5)	0.0068(8)	0.0026(4)	
1919.4 (12)	0	0.0002(1)	0	
1961.9(2)	0.0010(3)	0.0014(2)	0.0016(3)	
1971.6(3)	0.0012(3)	0.0017(3)	0.0012(3)	
1978.4(1)	0.0162(18)	0.0165(17)	0.0194(21)	
2000.9(6)	$\boldsymbol{0}$	0.0007(2)	0.0005(2)	
2048.0 (7)	0	0	0.0007(2)	
2060.9 (3)	0.0011(3)	0.0011(2)	0.0007(2)	
2074.6(2) ^a	0.0098(12)	0.0085(9)	0.0103(12)	
2099.0(1)	0.0099(12)	0.0147(16)	0.0194(21)	
2116.7 (2)	0.0011(3)	0.0019(3)	0.0009(2)	
2127.3 (3)	0.0010(3)	0.0013(2)	0.0008(2)	
2143.3(1)	0.0026(5)	0.0047(6)	0.0072(9)	
2151.0(1)	0.0091(11)	0.0094(10)	0.0068(9)	
2180.1 (3)	0	0.0010(2)	0.0011(3)	
2190.8 (9)	0.0016(3)	0.0020(3)	0.0006(2)	
2222.7 (2)	0.0011(3)	0.0015(2)	0.0030(5)	
2228.6(5)	0.0008(3)	0.0006(2)	$\boldsymbol{0}$	
2246.1(2)	0.0082(10)	0.0016(3)	0.0024(4)	
2258.1(5)	0	0	0.0010(2)	
2274.2 $(1)^a$	0.0077(10)	0.0048(6)	0.0045(6)	

TABLE II. (*Continued.*)

Energy (keV)	Cross section (mb/sr)		
	$\sigma(5^\circ)$	$\sigma(17.5^\circ)$	$\sigma(30^\circ)$
2289.1(1)	0.0108(13)	0.0180(19)	0.0101(12)
2298.6(1)	0.0036(6)	0.0045(6)	0.0066(8)
2307.8 (2)	0.0009(3)	0.0026(4)	0.0038(5)
2321.6(2)	0.0030(5)	0.0034(4)	0.0038(5)
2331.8(3)	0.0020(4)	0.0006(2)	$\overline{0}$
2343.7(2)	0.0038(6)	0.0107(12)	0.0048(6)
2377.2(1)	0.0112(13)	0.0134(14)	0.0187(20)
$2388.7(1)^{a}$	0.0218(24)	0.0633(64)	0.0274(29)
2414.1 (9)	0.0020(4)	0.0047(6)	0.0096(11)
2463.7(4)	0.0005(2)	0.0008(2)	0.0009(3)
2475.2(1)	0.0163(19)	0.0037(5)	0.0072(9)
2480.3 (1)	0.0051(9)	0.0055(7)	0.0076(10)
2485.7(2)	0.0017(4)	0.0036(5)	0.0040(7)
2490.9 (4)	0.0014(3)	0.0007(2)	0.0003(3)
2514.0 (4)	0	0.0003(1)	0.0008(3)
2524.6 (7)	$\overline{0}$	$\overline{0}$	0.0007(2)
2548.1(2)	0.0034(5)	0.0024(4)	0.0022(4)
2565.6(1)	0.0074(9)	0.0078(9)	0.0094(12)
2610.4(1)	0.0070(9)	0.0076(9)	0.0060(8)
2621.1 (6)	$\overline{0}$	$\overline{0}$	0.0009(3)
2643.7(2)	0.0021(4)	0.0009(2)	0.0014(3)
2661.9(1)	0.0109(13)	0.0119(13)	0.0158(18)
2679.8 (2)	0.0011(3)	0.0027(4)	0.0030(5)
2691.7(4)	0.0036(6)	0.0094(11)	$\boldsymbol{0}$
2697.5(1)	0.0070(9)	0.0092(11)	0.0088(11)
2715.4(5)	$\overline{0}$	0.0009(2)	0.0010(3)
2729.9 (4)	0.0034(5)	0.0063(8)	0.0113(13)
2736.8 (2)	0.0042(6)	0.0132(15)	0.0061(9)
2762.8(3) ^a	0.0016(3)	0.0018(3)	0.0020(3)
2773.5 (4)	0.0033(5)	0.0030(4)	0.0022(4)
2786.7 (23)	0.0011(3)	0.0007(4)	0.0011(3)
2793.5 (8)	0.0026(4)	0.0022(4)	0.0009(2)
2828.2(3)	0.0012(3)	0.0014(2)	0.0015(3)
2841.9(2)	0.0019(4)	0.0030(4)	0.0028(4)
2862.9 (2)	0.0068(9)	0.0089(10)	0.0068(9)
2880.6 (2)	0.0137(16)	0.0115(13)	0.0091(11)
2907.6 (21)	0	0.0015(3)	0.0007(2)

^aThis state was used for energy calibration using the published ²⁰⁰Hg excitation energy from the Nuclear Data Sheets [\[16\]](#page-6-0). ^bIdentified contaminant from target impurity.

 $R(5/17.5) = 0.58(16)$ does not allow a 0⁺ assignment since this state does not show the typical forward-peaking expected for a $L = 0$ transfer.

V. RESULTS FOR 202Hg

We were able to assign four 0^+ states based on the $R(5/17.5)$ ratio in ²⁰²Hg. They are marked in the 5 \degree spectra shown in Fig. [3](#page-3-0) and listed in Table [III.](#page-3-0) Similar to the 200Hg measurement, data were taken in six different runs and normalized to the 202 Hg 5 $^{\circ}$ low-energy (LE) run. A detailed list of all states investigated and their respective cross sections is given in Table [IV.](#page-3-0)

FIG. 3. (Color online) Complete triton spectrum from 0 to ∼3-MeV excitation energy, measured at 5◦ laboratory angle. The intensity of the high-energy (HE) part of the spectrum is normalized to the low-energy (LE) part. The arrows mark the 0^+ state assignments in ²⁰²Hg based on the $R(5/17.5)$ ratio.

Three of these 0^+ states were known as 0^+ states previously [\[17\]](#page-6-0). The state at 2599 keV has not been reported before and shows the typical $L = 0$ transfer signature with $R(5/17.5) =$ 4.25(39). There are five more states shown in Fig. [4](#page-4-0) at or above the $R(5/17.5) = 3$ limit, but within that limit given their 1σ error bars, at 1656, 1779, 2127, 2571, and 2685-keV excitation energy. They all have small cross sections $(\leq 0.006 \text{ mb/sr})$ at $17.5°$) and their uncertainties prevent us from firm spin assignments. Out of the five states, only the state at 2127-keV excitation energy was observed before and was assigned spin $J = (2^+)$ [\[17\]](#page-6-0). For firm assignments, more statistics is needed so we can only assign tentative spin $J = (0^+)$ for these states, being well aware that these tentative assignments might simply be caused by the low statistics for these states. Our data do not confirm a tentative (0^+) assignment of a state at 1565 keV in Ref. $[23]$ and a 0^+ assignment for a state at 1901-keV excitation energy in Ref. [\[24\]](#page-6-0). In both cases, we do not observe the typical forward-peaking signature for the expected $L = 0$ transfer and measured $R(5/17.5) = 1.10(8)$ for the 1565-keV and $R(5/17.5) = 1.54(28)$ for the 1901-keV state.

VI. DISCUSSION

The new high-resolution data on 0^+ excitations in ²⁰⁰Hg and ²⁰²Hg completes the data from the present Q3D (p, t) transfer

TABLE III. $R(5/17.5)$ ratios and cross sections of firmly assigned 0^+ and tentatively assigned (0^+) states in ²⁰²Hg. All states are discussed in detail in the text. New 0^+ state assignments are marked with an asterisk, tentative (0^+) state assignments are denoted in *italic*.

Energy (keV)	R(5/17.5)	$\sigma(5^\circ)$ (mb/sr)	$\sigma(17.5^\circ)$ (mb/sr)
0.1(1)	15.67(42)	0.8949(897)	0.0571(59)
1411.0(3)	12.26 (181)	0.0280(30)	0.0023(4)
1643.0(3)	7.34(45)	0.0615(63)	0.0084(10)
1655.8(13)	3.08(126)	0.0019(5)	0.0006(2)
1778.9(6)	4.53(154)	0.0021(4)	0.0005(2)
2126.7(7)	3.17(168)	0.0015(3)	0.0005(2)
2570.7(10)	2.32(247)	0.0006(2)	0.0002(2)
$2598.5(2)$ *	4.25(39)	0.0200(22)	0.0047(6)
2685.7(5)	4.70(322)	0.0017(3)	0.0004(2)

TABLE IV. Summary of the observed peaks in the ²⁰²Hg measurement and their cross sections. The determined cross sections have a 10% systematic uncertainty due to the beam-current normalization. The uncertainties on the relative $R(5/17.5)$ ratios are often smaller. Cross sections that were not observed because they were below the energy-dependent sensitivity limit of that particular run, which was around a few 10−⁴ mb, are listed as 0 mb/sr. Each listed state was carefully checked for the relevant $R(5/17.5)$ ratio by testing reasonable upper and lower limits for peaks with low statistics.

Energy (keV)	Cross section (mb/sr)			
	$\sigma(5^\circ)$	$\sigma(17.5^\circ)$	$\sigma(30^\circ)$	
$0.1(1)^{a}$	0.8949(897)	0.0571(59)	0.4043(405)	
439.4 $(1)^a$	0.1116(114)	0.3439 (346)	0.1558(157)	
496.3 $(4)^{b}$	0.0538(56)	0.0036(5)	0.0238(25)	
864.6 $(1)^{b}$	0.0035(5)	0.0107(13)	0.0051(6)	
960.2 $(1)^a$	0.0173(19)	0.0380(40)	0.0216(23)	
979.8 $(4)^b$	0.0027(5)	0.0007(2)	0.0009(2)	
1120.0(1)	0.0151(17)	0.0188(21)	0.0189(20)	
$1174.6(6)$ ^b	0.0017(3)	0	0.0011(2)	
1182.5 (4)	0	0.0015(3)	0.0011(2)	
1202.6(2) ^b	0.0079(10)	0.0004(2)	0.0044(5)	
1311.5(0) ^a	0.2361(238)	0.1793(181)	0.1298(131)	
1347.5(3)	0.0012(3)	0.0011(3)	0.0007(2)	
1389.3 (2)	0.0018(3)	0.0065(8)	0.0010(2)	
1411.0(3) ^a	0.0280(30)	0.0023(4)	0.0154(16)	
$1443.5(5)^{b}$	0.0008(2)	0	0.0003(1)	
1525.5(2) ^b	0.0069(8)	0.0014(3)	0.0042(5)	
1564.6(2)	0.0113(13)	0.0102(12)	0.0120(13)	
1575.7(1) ^a	0.0096(11)	0.0253(27)	0.0114(12)	
1624.0(1)	0.0031(5)	0.0043(5)	0.0076(9)	
1643.0(3) ^a	0.0615(63)	0.0084(10)	0.0244(25)	
1655.8 (13)	0.0019(5)	0.0006(2)	0.0014(3)	
1678.3 (2) ^a	0.0012(3)	0.0032(4)	0.0023(3)	
1724.0 (6)	0	0.0004(1)	0.0007(2)	
1748.2 (9)	0.0023(4)	0.0029(4)	0.0017(3)	
1778.9(6)	0.0021(4)	0.0005(2)	0.0013(2)	
1794.1(1) ^a	0.0457(47)	0.1645(166)	0.0821(83)	
1823.2 $(1)^a$	0.0166(18)	0.0256(27)	0.0109(12)	
1861.5(3)	0	0.0027(4)	0.0007(2)	
1903.1(4)	0.0025(4)	0.0016(3)	0.0022(3)	
1965.4(1)	0.0220(24)	0.0380(39)	0.0463(47)	
1988.4 (1)	0.0011(2)	0.0033(5)	0.0058(7)	
$2011.5(4)$ ^b	0.0014(3)	0	0.0005(1)	
2060.1(2)	0.0013(3)	0.0021(4)	0.0028(4)	
2071.4(1) ^a	0.0476(49)	0.1206(122)	0.0629(64)	
2111.8(1)	0.0063(8)	0.0271(28)	0.0378(39)	
2126.7(7)	0.0015(3)	0.0005(2)	0.0017(3)	
2134.1(1)	0.0137(15)	0.0103(11)	0.0098(11)	
2155.6 (2)	0.0054(7)	0.0045(6)	0.0054(6)	
2196.3 (4)	0.0013(3)	0.0007(2)	0	
2205.5(3)	0.0125(14)	0.0056(7)	0.0015(3)	
2223.5(1)	0.0053(7)	0.0085(10)	0.0132(14)	
2250.5(4)	0	0.0005(2)	0.0014(2)	
2280.5(2)	0.0049(6)	0.0131(14)	0.0052(6)	
2294.7 (2)	0.0049(6)	0.0113(13)	0.0056(7)	
2309.9(3) ^a	0.0015(3)	0.0008(2)	0.0014(3)	
2322.9(6)	0	0.0005(2)	0.0004(1)	
2342.1 (2)	0.0047(6)	0.0044(6)	0.0041(5)	
2357.9 (2)	0.0120(14)	0.0128(14)	0.0112(12)	

Energy (keV)	Cross section (mb/sr)		
	$\sigma(5^\circ)$	$\sigma(17.5^\circ)$	$\sigma(30^\circ)$
2371.9(2)	0.0019(3)	0.0053(7)	0.0029(4)
2415.4 (8)	$\overline{0}$	0.0005(2)	0
2427.5 (8)	θ	0.0005(2)	0.0004(2)
2441.1(2)	0.0072(9)	0.0094(11)	0.0134(15)
2461.7(2)	0.0037(5)	0.0055(7)	0.0071(8)
2473.4 (4)	0.0013(3)	0.0013(3)	0.0013(3)
$2515.6(2)^{a}$	0.0075(9)	0.0057(7)	0.0031(5)
2550.3 (2)	0.0108(12)	0.0142(15)	0.0095(12)
2560.1 (2)	0.0079(10)	0.0096(11)	0.0119(14)
2570.7 (10)	0.0006(2)	0.0002(2)	θ
2584.6 (5)	0.0012(2)	0.0009(2)	0.0015(3)
2598.5(2)	0.0200(22)	0.0047(6)	0.0070(8)
2605.0(4)	0.0029(5)	0.0037(5)	0.0059(7)
2639.1 (15)	0.0005(2)	$\boldsymbol{0}$	0.0007(2)
2652.9 (3)	0.0058(7)	0.0103(12)	0.0042(6)
2675.7 (3)	0.0067(8)	0.0096(11)	0.0106(13)
2685.7(5)	0.0017(3)	0.0004(2)	$\overline{0}$
2708.5(3)	0.0063(8)	0.0073(9)	0.0044(7)
2731.4(3) ^a	0.0074(9)	0.0146(17)	0.0161(17)
2748.2 (3)	0.0033(6)	0.0162(19)	0.0068(8)
2755.0 (3)	0.0218(24)	0.0265(29)	0.0323(34)
2781.7(3)	0.0019(3)	0.0030(5)	0.0032(5)
2814.7 (6)	$\overline{0}$	0.0016(3)	0.0015(3)
2824.8 (3)	0.0089(10)	0.0156(17)	0.0123(15)
2847.8 (4)	0.0017(3)	0.0025(4)	0.0025(5)
2872.2(4)	0.0009(2)	0.0012(3)	0.0016(4)
2882.4 (5)	0.0017(3)	0.0052(7)	0.0032(5)
2906.2 (18)	0.0026(4)	0.0059(8)	0.0029(5)
2923.8 (4)	0.0179(19)	0.0186(21)	0.0191(22)
2934.0 (8)	0.0070(8)	0.0077(10)	0.0065(10)

TABLE IV. (*Continued.*)

^aThis state was used for energy calibration using the published 202 Hg excitation energy from the data sheets [\[17\]](#page-6-0).

^bIdentified contaminant from target impurity.

experiments and allows us to move closer to the proton-neutron shell closures at 208 Pb. In Ref. [\[9\]](#page-5-0), we inspected the density of low-energy 0^+ states as a function of valence nucleons N_{val} and concluded that the low number of 0^+ states in ¹⁹⁸Hg seem to be due to the approach to the 208Pb shell closure. Here we find, consistently, that the numbers of firm 0^+ assignments in

FIG. 4. (Color online) Ratio $R(5/17.5)$ used to assign 0⁺ states in ²⁰²Hg. The green line marks the $R(5/17.5) = 3$ threshold that is used as a lower limit for 0^+ assignments.

FIG. 5. (Color online) Number of 0^+ states up to 3-MeV excitation energy for the nuclei investigated in this Q3D (p, t) campaign, including ²⁰⁰Hg and ²⁰²Hg, as a function of the number of valence nucleons N_{val} . The error bars include tentative assignments. In addition, the maximum number of sd IBM 0^+ states and the calculated number of 0^+ states below 3 MeV in this model using realistic parameters are plotted. Please refer to Ref. [\[9\]](#page-5-0) for more details on the IBM calculations.

 200 Hg and 202 Hg are comparably low. The new data is added to Fig. 5 (cf. Fig. 5 in Ref. [\[9\]](#page-5-0)). One notes that the new data on ²⁰⁰Hg and ²⁰²Hg, $N_{val} = 8$ and 6, respectively, is still well described by the total number of sd IBM states [\[25\]](#page-6-0). The number of experimentally observed 0^+ states below 3 MeV in the Hg isotopes ranging from $N_{val} = 6$ to 10 shows a rather unsteady behavior though and may show a small peak at 200 Hg.

In Fig. 6 we plot the energies of the firmly assigned 0⁺ excitations for ¹⁹⁸−202Hg. Besides the larger number of observed 0^+ states in ²⁰⁰Hg one notes a considerable rise in the excitation energy of the assigned 0^+_4 state in ²⁰²Hg at $N_{\text{val}} = 6$. The effect vanishes if one considers the tentatively assigned (0+) state at 1779 keV (∼1^σ above ^R(5/17.5) ⁼ 3 limit in Fig. [2\)](#page-1-0) as 0_4^+ . In that case, the 0_3^+ and 0_4^+ energies are about constant throughout the Hg nuclei studied, only the 0^+_2 energy showing a distinct drop in ²⁰⁰Hg at $N_{val} = 8$. In addition to the $0^{\text{+}}_2$ level energies, one also notes an anomalous behavior of the 2^+_2 and 4^+_1 state energies in comparison with neighboring Hg isotopes shown in Fig. [7.](#page-5-0)

FIG. 6. (Color online) Energies of the firmly assigned 0^+ states up to 3 MeV for the isotopes 202 Hg, 200 Hg, and 198 Hg [\[9\]](#page-5-0) investigated in this Q3D (p, t) campaign as a function of the number of valence nucleons N_{val} . Besides the larger number of low-lying 0^+ states and considering a (0^+) assignment in ²⁰²Hg, the evolution of the 0^+_3 and $0₄⁺$ energies is pretty smooth. The comparison with the neighboring even Hg isotopes reveals a significant lowering of the $0₂⁺$ energy in 200 Hg at $N_{val} = 8$.

FIG. 7. (Color online) Systematic plot of low-energy states from 196 Hg to 202 Hg. One clearly notices the difference in the 200 Hg level scheme compared to the neighboring even Hg isotopes. The 0^{+}_{2} energy is significantly lower and the 2^{+}_{2} and 4^{+}_{1} state diverge in ²⁰⁰Hg. Figure adopted from Ref. [\[26\]](#page-6-0).

The distinctive nature of the 0^+_2 state in ²⁰⁰Hg becomes more apparent when comparing the relative observed cross sections of the 0^+ states observed in the Hg isotopes. Figure 8 shows the relative observed cross section $\Sigma_i \sigma_n(i)/\Sigma_i \sigma_1(i)$, with $i = 5^\circ, 17.5^\circ,$ or 30 $^\circ$ and $n > 1$, for the assigned 0_n^+ states in 198 Hg, 200 Hg, and 202 Hg as a function of the number of valence nucleons N_{val} . One immediately notes the large relative cross section for the 0_2^+ state in ²⁰⁰Hg at $N_{\text{val}} = 8$. The cross section of this state is far stronger than of any other excited 0^+ state observed in these isotopes. Historically, 0^+ state two-nucleon transfer cross sections approaching or exceeding 15% of the ground-state cross section have signaled special structural effects such as phase transitional regions (Sm, Gd), shape coexistence, or special pairs modes (actinides) [\[11,27–31\]](#page-6-0). For the Hg isotopes investigated, the strongest relative cross section to an excited 0^+ state in the forward direction is 3% for 198 Hg [9], peaking at 12% for 200 Hg, and 7% ²⁰²Hg (cf. Fig. 8 in Ref. [\[11\]](#page-6-0)). The relative observed 0_3^+ cross section smoothly declines with N_{val} , whereas the 0^+_4 cross section remains constant for the Hg isotopes investigated.

The origin of the enhanced $\sigma(0^+_2)$ value in ²⁰⁰Hg is not clear. It has been associated with an oblate single particle energy gap [\[24\]](#page-6-0) but other explanations such as mixing or coexistence cannot be ruled out. We note that the two-neutron separation energy S_{2n} shows at most a weak anomaly (visible in the differential δS_{2n}) [\[32,33\]](#page-6-0).

- [1] M. Löffler, H. J. Scheerer, and H. Vonach, [Nucl. Instrum.](http://dx.doi.org/10.1016/0029-554X(73)90090-6) Methods **111**[, 1 \(1973\).](http://dx.doi.org/10.1016/0029-554X(73)90090-6)
- [2] H.-F. Wirth, Ph.D. thesis, Technische Universität München, 2001, [http://tumb1.biblio.tu-muenchen.de/publ/diss/ph/2001/](http://tumb1.biblio.tu-muenchen.de/publ/diss/ph/2001/wirth.html) [wirth.html.](http://tumb1.biblio.tu-muenchen.de/publ/diss/ph/2001/wirth.html)
- [3] R. A. Broglia, O. Hansen, and C. Riedel, [Adv. Nucl. Phys.](http://dx.doi.org/10.1007/978-1-4615-9041-5_3) **6**, [287 \(1973\).](http://dx.doi.org/10.1007/978-1-4615-9041-5_3)
- [4] S. R. Lesher, A. Aprahamian, L. Trache, A. Oros-Peusquens, S. Deyliz, A. Gollwitzer, R. Hertenberger, B. D. Valnion, and G. Graw, Phys. Rev. C **66**[, 051305\(R\) \(2002\).](http://dx.doi.org/10.1103/PhysRevC.66.051305)
- [5] D. A. Meyer, V. Wood, R. F. Casten, C. R. Fitzpatrick, G. Graw, D. Bucurescu, J. Jolie, P. von Brentano, R. Hertenberger, H.-F. Wirth, N. Braun, T. Faestermann, S. Heinze, J. L.

FIG. 8. (Color online) Relative observed cross section for $0_n⁺$ state assignments relative to the ground-state cross section $(\Sigma_i \sigma_n(i)/\Sigma_i \sigma_1(i)$, with $i = 5^\circ, 17.5^\circ$, or 30° and $n > 1$) as a function of the number of valence nucleons N_{val} . One notes the sharp rise of the relative cross section of the 0_2^+ state in ²⁰⁰Hg at $N_{\text{val}} = 8$, whereas the other observed relative cross sections are significantly smaller and show a rather constant or smooth behavior with changing N_{val} .

VII. CONCLUSION

The (p, t) transfer experiments on ²⁰⁰Hg and ²⁰²Hg complete the current Q3D (p, t) campaign of 15 nuclei in the rare-earth region with new results in a near-magic region where we confirm the sharp drop of low-lying 0^+ states compared to transitional and deformed regions.

By comparing the even Hg isotopes, we note the strong anomalous behavior of the low-energy states—especially the 0_2^+ state—in ²⁰⁰Hg. The 0_2^+ excitation energy is significantly lower than for the neighboring $0₂⁺$ states, whereas its relative cross section (to the ground state) is higher than the relative cross sections measured for the 0^{+}_{2} states in ¹⁹⁸Hg and ²⁰²Hg. The properties of the low-energy states in 200 Hg should definitely be further investigated, e.g., by measuring transition strengths between the low-lying states, to learn more about their special character.

ACKNOWLEDGMENTS

The authors are thankful to MLL tandem operators for excellent beam conditions. This work has been supported by the US DOE under Grant No. DE-FG02-91ER-40609, MLL, DFG Grant No. C4-Gr894/2-3, and the Romanian UEFISCDI Project No. PN-II-ID-PCE-2011-3-0140.

Jerke, R. Krücken, M. Mahgoub, O. Möller, D. Mücher, and C. Scholl, Phys. Rev. C **74**[, 044309 \(2006\).](http://dx.doi.org/10.1103/PhysRevC.74.044309)

- [6] D. Bucurescu *et al.*, Phys. Rev. C **73**[, 064309 \(2006\).](http://dx.doi.org/10.1103/PhysRevC.73.064309)
- [7] L. Bettermann, S. Heinze, J. Jolie, D. Mücher, O. Möller, C. Scholl, R. F. Casten, D. A. Meyer, G. Graw, R. Hertenberger, H.-F. Wirth, and D. Bucurescu, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.80.044333) **80**, 044333 [\(2009\).](http://dx.doi.org/10.1103/PhysRevC.80.044333)
- [8] G. Ilie, R. F. Casten, P. von Brentano, D. Bucurescu, T. Faestermann, G. Graw, S. Heinze, R. Hertenberger, J. Jolie, R. Krücken, D. A. Meyer, D. Mücher, C. Scholl, V. Werner, R. Winkler, and H.-F. Wirth, Phys. Rev. C **82**[, 024303 \(2010\).](http://dx.doi.org/10.1103/PhysRevC.82.024303)
- [9] C. Bernards, R. F. Casten, V. Werner, P. von Brentano, D. Bucurescu, G. Graw, S. Heinze, R. Hertenberger, J. Jolie,

S. Lalkovski, D. A. Meyer, D. Mücher, P. Pejovic, C. Scholl, and H.-F. Wirth, Phys. Rev. C **87**[, 024318 \(2013\).](http://dx.doi.org/10.1103/PhysRevC.87.024318)

- [10] D. A. Meyer, V. Wood, R. F. Casten, C. R. Fitzpatrick, G. Graw, D. Bucurescu, J. Jolie, P. von Brentano, R. Hertenberger, H.-F. Wirth, N. Braun, T. Faestermann, S. Heinze, J. L. Jerke, R. Krücken, M. Mahgoub, O. Möller, D. Mücher, and C. Scholl, [Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2006.05.007) **638**, 44 (2006).
- [11] P. Cejnar, J. Jolie, and R. F. Casten, [Rev. Mod. Phys.](http://dx.doi.org/10.1103/RevModPhys.82.2155) **82**, 2155 [\(2010\).](http://dx.doi.org/10.1103/RevModPhys.82.2155)
- [12] N. V. Zamfir, Jing-ye Zhang, and R. F. Casten, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.66.057303) **66**, [057303 \(2002\).](http://dx.doi.org/10.1103/PhysRevC.66.057303)
- [13] Yang Sun, Ani Aprahamian, Jing-ye Zhang, and Ching-Tsai Lee, Phys. Rev. C **68**[, 061301\(R\) \(2003\).](http://dx.doi.org/10.1103/PhysRevC.68.061301)
- [14] N. Lo Iudice, A. V. Sushkov, and N. Yu. Shirikova, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevC.70.064316) C **70**[, 064316 \(2004\).](http://dx.doi.org/10.1103/PhysRevC.70.064316)
- [15] N. Lo Iudice, A. V. Sushkov, and N. Yu. Shirikova, *[Phys. Rev.](http://dx.doi.org/10.1103/PhysRevC.72.034303)* C **72**[, 034303 \(2005\).](http://dx.doi.org/10.1103/PhysRevC.72.034303)
- [16] F. G. Kondev and S. Lalkovski, [Nucl. Data Sheets](http://dx.doi.org/10.1016/j.nds.2007.06.002) **108**, 1471 (2007) .
- [17] S. Zhu and F. G. Kondev, [Nucl. Data Sheets](http://dx.doi.org/10.1016/j.nds.2008.02.002) **109**, 699 (2008).
- [18] Q-value calculator (QCalc), [http://www.nndc.bnl.gov/qcalc/.](http://www.nndc.bnl.gov/qcalc/)
- [19] D. Breitig, R. F. Casten, and G. W. Cole, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.9.366) **9**, 366 [\(1974\).](http://dx.doi.org/10.1103/PhysRevC.9.366)
- [20] W. Urban, M. Jentschel, B. Märkisch, T. Materna, Ch. Bernards, C. Drescher, C. Fransen, J. Jolie, U. Köster, P. Mutti, T. Rzaca-Urban, and G. S. Simpson, JINST **8**[, P03014 \(2013\).](http://dx.doi.org/10.1088/1748-0221/8/03/P03014)
- [21] C. Bernards, W. Urban, M. Jentschel, B. Märkisch, J. Jolie, C. Fransen, U. Köster, T. Materna, G. S. Simpson, and T. Thomas, Phys. Rev. C **84**[, 047304 \(2011\).](http://dx.doi.org/10.1103/PhysRevC.84.047304)
- [22] A. R. H. Subber, W. D. Hamilton, and G. Colvin, [J. Phys. G:](http://dx.doi.org/10.1088/0305-4616/13/10/018) Nucl. Phys. **13**[, 1299 \(1987\).](http://dx.doi.org/10.1088/0305-4616/13/10/018)
- [23] D. Breitig, R. F. Casten, W. R. Kane, G. W. Cole, and J. A. Cizewski, Phys. Rev. C **11**[, 546 \(1975\).](http://dx.doi.org/10.1103/PhysRevC.11.546)
- [24] M. Vergnes, G. Berrier-Ronsins, G. Rotbard, J. Skalski, and W. Nazarewicz, [Nucl. Phys. A](http://dx.doi.org/10.1016/0375-9474(90)90149-G) **514**, 381 (1990).
- [25] F. Iachello and A. Arima, *The Interacting Boson Model* (Cambridge University Press, Cambridge, 1987).
- [26] C. Bernards, Ph.D. thesis, Universität zu Köln, 2011, [http://kups.ub.uni-koeln.de/4466/.](http://kups.ub.uni-koeln.de/4466/)
- [27] S. Hinds, J. H. Bjerregaard, O. Hansen, and O. Nathan, [Phys.](http://dx.doi.org/10.1016/0031-9163(65)91047-4) Lett. **14**[, 48 \(1965\).](http://dx.doi.org/10.1016/0031-9163(65)91047-4)
- [28] J. H. Bjerregaard, O. Hansen, O. Nathan, and S. Hinds, [Nucl.](http://dx.doi.org/10.1016/0029-5582(66)90297-5) Phys. **86**[, 145 \(1966\).](http://dx.doi.org/10.1016/0029-5582(66)90297-5)
- [29] D. G. Fleming, C. Günter, G. B. Hagemann, B. Herskind, and P. O. Tjøm, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.27.1235) **27**, 1235 (1971).
- [30] M. A. Oothoudt and N. M. Hintz, [Nucl. Phys. A](http://dx.doi.org/10.1016/0375-9474(73)90148-6) **213**, 221 (1973).
- [31] J. V. Maher, J. R. Erskine, A. M. Friedman, R. H. Siemssen, and J. P. Schiffer, Phys. Rev. C **5**[, 1380 \(1972\).](http://dx.doi.org/10.1103/PhysRevC.5.1380)
- [32] S. Anghel, G. Cata-Danil, and N. V. Zamfir, Rom. J. Phys. **54**, 301 (2009).
- [33] R. B. Cakirli, R. F. Casten, and K. Blaum, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.82.061306) **82**, [061306\(R\) \(2010\).](http://dx.doi.org/10.1103/PhysRevC.82.061306)