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The low-lying states of the 9Li nucleus are investigated with a unified framework of microscopic structure
and reaction models. In the structure model, the wave function is fully antisymmetrized and the 9Li nucleus is
described as an α + t + n + n four-body system, and low-lying 1/2−, 3/2−, 5/2−, and 7/2− states are obtained
by the stochastic multiconfiguration mixing method. Using these wave functions, the quasielastic cross section at
E/A = 60 MeV and the elastic and inelastic cross sections at E/A = 50 MeV on the 12C target are calculated in the
framework of the microscopic coupled channel (MCC) method. The characteristic inelastic angular distribution
is seen in the 3/2−

2 state, whose α + t cluster structure and valence neutron configurations are discussed in detail.
We find the possibility of triaxial deformation and mixing of dineutron components in the 9Li nucleus.
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I. INTRODUCTION

The study of the unstable nuclei has been extensively
carried out, since the light unstable nuclei are considered to
play a key role in determining the abundance ratio of elements
heavier than Fe. Much efforts have been devoted because of
the interests not only to the nucleosynthesis but also to the
structure of nuclei itself. The unstable nuclei have been known
to have exotic properties, which have never been seen in stable
nuclei. For instance, the discovery of the halo structure and the
change of the magic number(s) have been reported [1,2]. The
halo nucleus consists of a core nucleus and valence nucleon(s),
and the valence nucleon(s) is bound with tiny binding energy,
which makes the spatial extension of the valence nucleon(s)
very large. As a result, the halo nucleus has a large radius,
which can be observed as a large total reaction cross section
in the reaction experiments [1].

For the study of the halo nucleus, the importance of the
core excitation effect has been recently reported in the 8B
elastic scattering on the 12C target [3]. In addition, Moro
and his collaborators have shown such important role of the
core excitation effect of the 11Be nucleus in the inelastic and
breakup cross sections [4–6]. Both of the 8B and 11Be nuclei
have “a valence nucleon + core nucleus” structure (p + 7Be
and n+ 10Be structure for 8B and 11Be, respectively). Here the
separation energy of the valence nucleon is only the order of
several hundred keV. To understand the reaction mechanism
of such weakly bound systems, we have to focus on the effect
of not only the breakup of the system into a valence nucleon
and a core nucleus but also the core excitation. Especially
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in the elastic scattering cross section, it has been studied
that the core excitation effect, rather than the breakup effect,
plays a dominant role [3]. It is indispensable to investigate the
properties of the core nucleus and take the excited states into
account in the reaction calculation. Here, the 11Li nucleus is
well known to have two-neutron halo structure. The excitation
effect of the core part of the 11Li nucleus, 9Li, may play an
important role to describe the nuclear reactions; however 9Li is
also an unstable nucleus and its properties are not necessarily
known well. Therefore, in this paper we aim to investigate the
properties of low-lying states of the 9Li nucleus itself from the
view point of the both of the nuclear structure and reaction.

So far there have been many challenges for the description
of the structures of the 9Li nucleus. From the shell model
side, the so-called ab initio approach, such as the no-core shell
model calculation, is feasible for the low-lying states [7]. Also
the contribution of the tensor force is investigated with the
tensor optimized shell model calculation [8]. In addition, the
9Li nucleus is described with the α + t + n + n cluster model
[9], which also well reproduces the properties of the low-
lying states in the comparison with the experimental data. The
exotic excited state with three triton clusters has been predicted
by the stochastic multiconfiguration mixing method with the
α + t + n + n and t + t + t configurations [10]. The 6He + t
cluster structure has been also predicted with the generator
coordinate method (GCM) calculation [11].

In this paper, the low-lying states of the 9Li nucleus
is investigated using a unified framework of microscopic
structure and reaction models. Here, the “unified” framework
means that we investigate the structure and reaction of the
9Li nucleus with the same wave function, though the effective
nucleon-nucleon (NN ) interactions used in the structure and
reaction parts are different. The structure of the 9Li nucleus is
described with the microscopic α + t + n + n cluster model,
where the wave function is fully antisymmetrized. The total
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wave function is a superposition of Brink-type basis states,
and the configuration of each basis state, the positions of
two clusters and two valence neutrons, is randomly generated
based on the so-called stochastic multiconfiguration mixing
method [10,12]. This cluster components are analogous to the
α + α + n + n model for 10Be, though t cluster has a spin
1/2 in the 9Li case. Using the wave function, the inelastic
cross sections are calculated to investigate the excited and
resonance states of the 9Li nucleus in the framework of the
microscopic coupled channel (MCC) method with complex
G-matrix interaction CEG07 [13,14]. In this study, special
attention is paid to the calculated inelastic cross sections of the
3/2− states, where the competition between the monopole and
quadrupole transitions in the excitation from the ground 3/2−
state is discussed. We also investigate the multi-step coupling
effect on the inelastic cross section for the 3/2−

2 state. Finally,
we discuss the possibility of triaxial deformation and mixing
of dineutron components in the 9Li nucleus.

II. FORMALISM

A. Microscopic cluster model

First, we start with the nuclear structure calculation part. We
introduce basis states with various α + t + n + n configura-
tions, {�Jπ MK

i }, to describe the 9Li structure in the microscopic
cluster model. It is known that the ground state of the 9Li
nucleus is well described by the α + t + n + n model [9],
thus we apply this cluster model space to the low-lying excited
states of 9Li in the first-order approximation. The total wave
function �Jπ M is, therefore,

�Jπ M =
∑
K

∑
i

ci,K�Jπ MK
i . (1)

The eigenstates of Hamiltonian are obtained by diagonalizing
the Hamiltonian matrix, and the coefficients {ci,K} for the
linear combination of Slater determinants are obtained.

The ith basis state of {�Jπ MK
i } with the α + t + n + n

configuration has the following form:

�Jπ MK
i = P πP JMKA[φα(r1r2r3r4, R1)φt (r5r6r7, R2)

×φn(1) (r8, R3)φn(2) (r9, R4)]i , (2)

where A is the antisymmetrizer, and φα(r1r2r3r4, R1),
φt (r5r6r7, R2), φn(1) (r8, R3), φn(2) (r9, R4) are wave functions
of α, triton, the first valence neutron, and the second valence
neutron, respectively. Here, {r i} represents spatial coordinates
of nucleons, and each nucleon is described as locally shifted
Gaussian centered at R (exp[−ν(r i − R)2]) with the size
parameter of ν = 1/2b2, b = 1.46 fm. The α cluster consists
of four nucleons (spin-up proton, spin-down proton, spin-up
neutron, and spin-down neutron), which share a common
Gaussian center parameter R1, though the spin and isospin
of each nucleon are not explicitly described in this formula
for simplicity. The triton consists of three nucleons (proton,
spin-up neutron, and spin-down neutron), which are centered at
R2. The Gaussian center parameters of two valence neutrons
are R3 and R4. The z components of the spins of the two
valence neutrons are introduced to be parallel or antiparallel
dependent on the basis state. The index i in Eq. (2) specifies

a set of Gaussian center parameters for R1, R2, R3, and R4,
and spin directions of valence neutrons. The projection onto
an eigenstate of parity and angular momentum operators (pro-
jection operators P π and P JMK ) is performed numerically.
The number of mesh points for the Euler angle integral is
163 = 4096. The value of M specifies the z component of the
angular momentum in the laboratory frame, and the energy
does not depend on M; however, the energy depends on K ,
which is a z component of the angular momentum in the
body-fixed frame.

The Hamiltonian operator (H ) has the following form:

H =
A∑

i=1

ti − Tc.m. +
A∑

i>j

vij , (3)

where the two-body interaction (vij ) includes the central,
spin-orbit, and Coulomb parts. As the NN interaction, for the
central part, we use the Volkov No. 2 effective potential [15]:

V (r) = (W − MP σP τ + BP σ − HP τ )

× (
V1 exp

(−r2/c2
1

) + V2 exp
(−r2/c2

2

))
, (4)

where c1 = 1.01 fm, c2 = 1.8 fm, V1 = 61.14 MeV, V2 =
−60.65 MeV, W = 1 − M , and M = 0.60. The singlet-even
channel of the original Volkov interaction without the Bartlet
(B) and Heisenberg (H ) parameters has been known to be too
strong, thus B = H = 0.08 is introduced to remove the bound
state of two neutrons. For the spin-orbit term, we introduce the
G3RS potential [16,17]:

Vls = V0
(
e−d1r

2 − e−d2r
2)

P (3O)L · S, (5)

where d1 = 5.0 fm−2, d2 = 2.778 fm−2, V0 = 2000 MeV, and
P (3O) is a projection operator onto a triplet odd state. The
operator L stands for the relative angular momentum and S
is the spin (S1 + S2). All of the parameters of this interaction
were determined from the α + n and α + α scattering phase
shifts [18].

For the MCC calculation, we prepare the diagonal and
transition densities. The diagonal and transition densities are
defined as

ρIm,I ′m′(r) = 〈
�Jπ M

∣∣∑
i=1

δ(r i − Rc.m. − r)
∣∣�(Jπ )′M ′ 〉

(6)

=
√

4π
∑
λ,μ

(I ′m′λμ|Im)ρ(λ)
II ′(r)Y ∗

λμ(r̂), (7)

where YLM (r̂) = iLYLM (r̂). Here, (I ′m′λμ|Im) denotes the
Clebsch-Gordan coefficient. Here, Rc.m. is the barycentric
coordinate, and I ′ and I mean the angular momentum of the
nucleus for the initial and final states, respectively. Then, m and
m′ are the z components of I and I ′, respectively. The proton
and neutron parts of the densities are separately obtained. The
wave function of the microscopic cluster model, �Jπ M , is
described as a linear combination of basis states as in Eq. (1),
where coefficients for its linear combination are obtained by
diagonalizing the Hamiltonian matrix.
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B. Microscopic coupled channel model

Next, we explain the nuclear reaction calculation part. We
apply the calculated transition densities of the 9Li nucleus to
the MCC calculations with the complex G-matrix interaction
CEG07. The coupled-channel (CC) equations for the radial
component of the wave functions between colliding two nuclei,
χ

(J ′)
αL (R), for a given total angular momentum of the projectile-

target scattering system J ′ are written as

[TR − Eα]χ (J ′)
αL (R) = −

∑
α′,L′

F
(J ′)
αL,α′L′(R)χ (J ′)

α′L′(R), (8)

where TR denotes the kinetic-energy operator. The suffix α
denotes the channel number designated by the intrinsic spins
of colliding two nuclei I1 and I2, the channel spin S defined by
the vector coupling of I1 and I2, and the sum of the excitation
energies of the two nuclei εα = ε1 + ε2. Namely, χ

(J ′)
αL (R) is

χ
(J ′)
αS(I1I2)L(R) if we write the indexes explicitly. Here, we assign

α = 0 to the entrance (elastic) channel. Eα = Ec.m. − εα is the
center-of-mass (c.m.) energy of the projectile-target relative
motion in the channel α, where Ec.m. is the c.m. energy in the
elastic channel. The value L is the orbital angular momentum
for the relative motion between the two nuclei, which takes the
values of |J ′ − S| � L � J ′ + S for given S and J ′. Thus, the
scattering channel is defined by a set of α and L for a given

J ′. F
(J ′)
αL,α′L′(R) represents the diagonal (α = α′ and L = L′)

or coupling (α �= α′ and/or L �= L′) potential that is defined
more explicitly [19,20] as

F
(J ′)
αL,α′L′(R)

≡ F
(J ′)
αS(I1I2)L,α′S ′(I ′

1I
′
2)L′(R)

=
∑

λ

iL+L′−λ(−1)S+L′−J ′−λL̂L̂′ W (SLS ′L′ : J ′λ)

× (L0L′0|λ0)U (λ)
αS(I1I2),α′S ′(I ′

1I
′
2)(R), (9)

where L̂ = (2L + 1)
1
2 , and W (SLS ′L : J ′λ) denotes the

Racah coefficient.
In Eq. (9), U

(λ)
αS(I1I2),α′S ′(I ′

1I
′
2)(R) is the intrinsic component

of the diagonal or coupling potential with the multipolarity
of rank λ, that only contains nuclear structure information in
channels α and α′ and is irrelevant to the angular momenta L
and J ′ associated with the projectile-target relative motion. It
consists of the Coulomb and nuclear parts,

U
(λ)
αS(I1I2),α′S ′(I ′

1I
′
2)(R)

= V
(λ,Coul.)
αS(I1I2),α′S ′(I ′

1I
′
2)(R) + U

(λ,Nucl.)
αS(I1I2),α′S ′(I ′

1I
′
2)(R), (10)

and they are obtained by the double folding of the Coulomb
and nuclear parts of the NN interaction, respectively, such as

V
(λ,Coul.)
αS(I1I2),α′S ′(I ′

1I
′
2)(R) =

√
4πŜŜ ′Î1Î2

∑
λ1λ2

,

⎧⎪⎨
⎪⎩

I1 I2 S

I ′
1 I ′

2 S ′

λ1 λ2 λ

⎫⎪⎬
⎪⎭

×
∫

ρ
(λ1,p)
I1I

′
1

(r1)ρ(λ2,p)
I2I

′
2

(r2)v(Coul.)
NN (s)

[[
Yλ1 (r̂1) ⊗ Yλ2 (r̂2)

]
λ
⊗ Yλ(R̂)

]
00d R̂d r1r2, (11)

U
(λ,Nucl.)
αS(I1I2),α′S ′(I ′

1I
′
2)(R) =

√
4πŜŜ ′Î1Î2

∑
λ1λ2

⎧⎪⎨
⎪⎩

I1 I2 S

I ′
1 I ′

2 S ′

λ1 λ2 λ

⎫⎪⎬
⎪⎭

×
{ ∫

ρ
(λ1)
I1I

′
1
(r1)ρ(λ2)

I2I
′
2
(r2)v(D)

NN (s, ρ, ε)
[[

Yλ1 (r̂1) ⊗ Yλ2 (r̂2)
]
λ
⊗ Yλ(R̂)

]
00d R̂d r1d r2

+
∫

ĵ1
(
keff
F (p)s

)
ρ

(λ1)
I1I

′
1
(p)ĵ1

(
keff
F (t)s

)
ρ

(λ2)
I2I

′
2
(t)v(EX)

NN (s, ρ, ε)

× exp

{
ik(R) · s

μ

}[[
Yλ1 ( p̂) ⊗ Yλ2 ( t̂)

]
λ
⊗ Yλ(R̂)

]
00d R̂d pds

}
, (12)

where s = R − r1 + r2, p = r1 + 1
2 s, and t = r2 − 1

2 s. In
this expression, the Wigner 9-j symbol is introduced, and
E/A is the incident energy per nucleon. Here, μ = A1A2

A1+A2
, and

A1 and A2 are the mass numbers of the projectile and target
nuclei, respectively. Note that ρ

(λ,p)
II ′ (r) with the superscript

(p) in Eq. (11) represents the proton part of the density, which
is used in the Coulomb part of the folding potential. On the
other hand, v

(D)
NN and v

(EX)
NN are the direct and exchange parts

of the nuclear interaction, respectively, for which we adopt the
complex G-matrix interaction CEG07b [13,14] and they are

written as

vD,EX = ± 1
16v00 + 3

16v01 + 3
16v10 ± 9

16v11, (13)

in terms of the spin-isospin components vST (S = 0 or 1 and
T = 0 or 1) of the CEG07 interaction.

In the exchange part of Eq. (12), k(R) is the local
momentum of the nucleus-nucleus relative motion defined by

k2(R) = 2μ

h̄2

[
Ec.m. − ReU (0,Nucl.)

0,0 (R) − V
(0,Coul.)

0,0 (R)
]
, (14)
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and the exchange part of the diagonal and coupling potentials
is calculated self-consistently on the basis of the local energy
approximation through Eq. (14). In Eq. (12), ĵ1(keff

F (x)s) ≡
3

keff
F (x)s

j1(keff
F (x)s), where keff

F is the effective Fermi momentum

[21] defined by

keff
F =

(
(3π2ρ)2/3 + 5Cs[∇ρ]2

3ρ2
+ 5∇2ρ

36ρ

)1/2

, (15)

and we adopt Cs = 1/4 following Ref. [22]. The exponential
function in Eq. (12) is approximated by the spherical Bessel
function of rank 0, j0(Mk(R)s

μ
), following the standard prescrip-

tion [13,23–27].
We employ the so-called frozen-density approximation

(FDA) [14] for evaluating the local density ρ in Eq. (12).
In the FDA, the density-dependent NN interaction is assumed
to feel the local density defined as the sum of the densities of
the projectile and target nuclei:

ρ = ρ(P) + ρ(T). (16)

In calculating the potentials, we use the average of the nucleon
densities in the initial and final states for each nucleus [20,28]:

ρ(P) = 1
2

{
ρ

(0)
I1I1

+ ρ
(0)
I ′

1I
′
1

}
, (17)

ρ(T) = 1
2

{
ρ

(0)
I2I2

+ ρ
(0)
I ′

2I
′
2

}
. (18)

The local densities are evaluated at the position of each
nucleon for the direct part and at the middle point of the
interacting nucleon pair for the exchange part following the
preceding works [20,29]. The FDA has widely been used
also in the standard double folding model (DFM) calculations
[14,20,30–32] and it was proved that the FDA was the
most appropriate prescription for evaluating the local density
in the DFM calculations with realistic complex G-matrix
interactions [14].

Although the spin-orbit interaction between the nucleon-
nucleon system is taken into account in the structure calcu-
lation of the 9Li nucleus, the spin-orbit potential between
the 9Li and 12C nuclei is ignored in the present reaction
calculation, which is shown to be negligible for the elastic
and inelastic cross sections in Refs. [33,34]. In addition, the
magnetic-multipole (M1 and M3) transitions are also ignored
in this paper, whose contributions will be discussed in the near
future.

III. RESULTS

A. Energies, rms radii, and transition strengths

We first calculate the total energies of the negative parity
states for the 9Li nucleus using the wave function of the
microscopic cluster model shown in Eq. (1). The energy
convergence of the ground and low-lying excited states is
shown in Figs. 1 to 4. Here we take 400 basis states to confirm
the energy convergence behavior. The calculated binding
energy of the ground state, the 3/2−

1 state, is 41.04 MeV.
This value is somewhat smaller than the experimental value,
45.34 MeV; however reasonable if we measure from the four-
body threshold energy. In experiments the neutron threshold
opens at Ex = 4.0639 MeV, and this value is almost the

100 200 300 400

−40

−30

−20

−10 9Li (1/2−)

Number of basis states

E
ne

rg
y 

(M
eV

)

FIG. 1. Calculated total energy with the stochastic multiconfigu-
ration mixing method for the 1

2

−
states.

same in the present calculation. Above this threshold, in
principle we have to impose the resonance condition for the
obtained states when we distinguish resonance states and
continuum states. However this is rather difficult and the
present calculation adopts the bound state approximation.
Nevertheless, the obtained states give standard radii and
transition strengths; it can be considered that the obtained
states are not continuum states but good candidates for the
resonance states.

Next, we compare the calculated excitation energies with
experimental data and other calculated results in Fig. 5. All
theoretical calculations give the ground and first excited states
as 3/2− and 1/2−, respectively; however in slightly higher
excited region the predictions are different with each other. In
this work, the fist 5/2− state appears near the first 1/2− state,
and the first 7/2− state is obtained under the second 3/2−
state. For the experimental data, the spin assignment is not
completed even for the first excitation state as in Ref. [35].

Table I shows the calculated root-mean-square (rms) radius
of the ground 3/2− state in this work compared with the

100 200 300 400

−40

−30

−20

−10 9Li (3/2−)

Number of basis states

E
ne

rg
y 

(M
eV

)

FIG. 2. Same as Fig. 1 but for the 3
2

−
states.
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100 200 300 400

−40

−30

−20

−10 9Li (5/2−)

Number of basis states

E
ne

rg
y 

(M
eV

)

FIG. 3. Same as Fig. 1 but for the 5
2

−
states.

other calculations and experimental data. The present results
give slightly large proton, neutron, matter radii in comparison
with Ref. [36]; however the difference is rather small. On the
other hand, the neutron and matter radii well agree with the
experimental data of Ref. [37].

In the most recent report [38], the electric quadrupole
transition strength is observed as B(E2; 1/2−

1 → 3/2−
1 ) =

6.8(3) e2fm4. In this work, the transition strength is obtained
as B(E2) = 8.778 e2fm4. The theoretical value is slightly
larger than the experimental one; however it can be considered
that the obtained value reproduces the data fairly well.

B. Elastic and inelastic cross sections

Next, we introduce the MCC method and calculate the
scattering cross sections for the 9Li + 12C system using
the wave functions obtained above. Here, we note that the
imaginary part of the potential obtained by the folding is
multiplied by a renormalization factor NW as

U = V + iNWW. (19)

100 200 300 400

−40

−30

−20

−10 9Li (7/2−)

Number of basis states

E
ne

rg
y 

(M
eV

)

FIG. 4. Same as Fig. 1 but for the 7
2

−
states.
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(1/2−)

exp.
Ref. [7]

Ref. [8]
Ref. [11]

This work

1/2−

5/2−

3/2−

7/2−

1/2−

1/2−

5/2−

3/2−

7/2−

3/2−
5/2−
7/2−

5/2−
7/2−

3/2−
1/2−

3/2−

3/2−

3/2−

1/2−

1/2−

5/2−

5/2−

7/2−

7/2−

5/2−

(> 7/2)

FIG. 5. Comparison of the calculated energies with experimental
data and other calculation results. The experimental data is taken from
Ref. [35].

Here the V and W are the real and imaginary parts of the
folding model potentials, respectively, and NW is the only free
parameter in the present CEG07 folding model.

In this paper, we fix this NW value to reproduce the
quasielastic scattering data for the 9Li + 12C system at E/A =
60 MeV. In the quasielastic cross section, the excited states of
the target 12C nucleus, 2+

1 (4.44 MeV), 0+
2 (7.65 MeV), and

3−
1 (9.64 MeV) states, are taken into account, and the diagonal

and transition densities of the 12C nucleus are taken from the
3α-RGM (resonance group method) calculation result [39].

In addition, we take into account the excitation of the 9Li
nucleus. Table II shows the energies of the low-lying negative
parity states of the 9Li nucleus, which are included in the
MCC calculation. This is called the “full-CC calculation” in
this paper.

Figure 6 shows the quasielastic scattering cross section
for the 9Li + 12C system at E/A = 60 MeV. The bold curve
shows the calculated quasielastic cross section obtained by
the incoherent sum of the elastic and inelastic cross sections.

TABLE I. Comparison of the calculated proton, neutron, and
matter radii of the ground 3/2− state of the 9Li nucleus together
with the experimental data.

proton (fm) neutron (fm) matter (fm)

Exp.
Ref. [36] 2.18(2) 2.39(2) 2.32(2)
Ref. [37] 2.11(4) 2.59(9) 2.44(6)

Calc.
This work 2.237 2.562 2.459
Ref. [8] 2.46
Ref. [9] 2.10 2.52 2.39
Ref. [7] 1.946
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TABLE II. Total energies and states for the 9Li nucleus applied
to the MCC calculation.

1/2− 3/2− 5/2− 7/2−

4 − 30.68
3 − 27.84 − 32.85 − 30.85 − 26.18
2 − 32.01 − 35.64 − 31.95 − 29.44
1 − 37.74 − 41.04 − 37.70 − 36.27

The solid and dotted curves show the calculated elastic and
inelastic scattering cross sections, respectively. The calculated
quasi-elastic cross section with NW = 0.6 reproduce the data,
except for the most backward angles. Then, we fix to NW = 0.6
and discuss the 9Li structure in the inelastic scattering angular
distribution only up to 15 degrees.

Next, we calculate the elastic and inelastic cross sections
for the 9Li + 12C system at E/A = 50 MeV. The calculated
elastic cross sections well reproduce the data as shown in
Fig. 7. In the transition from a 3/2− state to another 3/2− state,
the quadrupole and monopole transitions compete with each
other. Here, it can be seen that the angular distribution of the
inelastic cross section to the 3/2−

2 final state is clearly different
from those of the other 3/2− states; the angular distribution
of the 3/2−

2 final state clearly shows the pattern of quadrupole
transition, and those of the 3/2−

3 and 3/2−
4 final states show

the patterns of monopole transition.
In order to confirm the situations, we decompose the

calculated inelastic cross sections into the monopole and
quadrupole components, which are shown in Fig. 8. The solid
curves are the calculated inelastic cross sections, and the dotted
and dashed curves are the calculated inelastic cross sections
without the quadrupole and monopole transitions, respectively.
For the 3/2−

2 state, the quadrupole component plays a dominant
role in the calculated inelastic cross section. Here, we note
that the dashed curve well agrees with the solid curve and it
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σ R
ut
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quasi elastic
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12C (21
+)

E/A = 60 MeV

FIG. 6. Comparison of the experimental data [34] with the
calculated quasielastic cross section with the NW value of 0.6. The
bold curves means the calculated quasielastic cross section. The thin
solid and dotted curves are the results of the elastic and inelastic cross
sections, respectively.
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FIG. 7. Calculated elastic and inelastic (to 3/2−
2 , 3/2−

3 , and 3/2−
4

states) cross sections for the 9Li + 12C at E/A = 50 MeV. The
experimental data is taken from Ref. [40].

is difficult to distinguish the curves in the upper panel. On
the other hand, the calculated inelastic cross section is mainly
determined by the monopole component in the results of other
3/2− final states. When the monopole transition plays a domi-
nant role in the inelastic cross section, the quadrupole transition
strength also becomes large passably. Here the large monopole
transition implies the increase of the size of the nucleus,
namely, the development of the α + t cluster structure [41].
The large quadrupole transition strength can be interpreted as
the result of this development of this cluster structure.

In addition, we investigate the mutual-excitation and mul-
tistep effects caused by the projectile and target excitations. In
Fig. 9, the solid curves show the full-CC calculation results,
and the dotted and dashed curves are the results without
the target and projectile excitation effects, respectively. The
dot-dashed curve without both excitations includes no channel
coupling effect for the elastic cross section. For the inelastic
cross section, the dot-dashed curves is obtained by the two-
channel calculation. The calculated results suggest that the
target excitation has a minor role for the elastic and inelastic
scatterings of the 9Li + 12C system at E/A = 50 MeV in this
angular distribution. Here, we can see a drastic change after
considering the couplings in the inelastic scattering cross sec-
tion to the 3/2−

2 final state; the change of the absolute value can
be explained only by taking into account the multi-step reac-
tion effect corresponding to the projectile excitation (9Li∗). We
discuss this exotic 3/2−

2 state in detail in the next subsection.
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FIG. 8. Decomposition of the calculated inelastic cross sections
into monopole and quadrupole components. The solid curves are the
same to Fig. 7. The dotted and dashed curves are the results without
the quadrupole and monopole transitions, respectively.

C. Discussion for the 3/2−
2 state

In order to investigate the 3/2−
2 state in detail, we first

return back to the nuclear structure calculation introduced in
Sec. III A. Here we compare the calculated binding energies
by fixing each K quantum number. In principle the K quantum
number cannot be determined uniquely for nonaxial symmetric
nuclei as discussed in Ref. [42]; however fixing the K quantum
numbers and comparing the results is a good prescription to
investigate the character of the state from the theoretical side.
Figure 10 shows the calculated 3/2− states of the 9Li nucleus.
The solid curves are the same as Fig. 2, the full K-mixing
calculation, and the dotted and dashed curves are the results
obtained by fixing to K = 1/2 and K = 3/2, respectively.
The ground state is well described with the result of K = 1/2,
whereas the 3/2−

2 state is with K = 3/2.
The QJ moments for the ground and second 3/2− states

are calculated and shown in Table III. The obtained value
for the proton part of the ground state well reproduces the
experimental value, −2.53(9) efm2 [43]. In addition, the value
is in good agreement with the other theoretical calculations,
−2.74 efm2 [9] and −2.7 efm2 [44]. If we consider the ideal
case and each state has a good K quantum number (K = 1/2
for the ground 3/2−

1 state and K = 3/2 for the 3/2−
2 state), the

intrinsic quadrupole moment, Q0, can be obtained from the
QJ moment as follows:

QJ = 3K2 − J (J + 1)

2J (J + 1)
Q0. (20)
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FIG. 9. Mutual-excitation and multistep effects on the elastic and
inelastic cross sections. The solid curves are the same as Fig. 7. The
dotted, dashed, and dot-dashed curves are the results without the
target, projectile, both excitation effects, respectively.

Using this equation, both Q0 values for the ground and 3/2−
2

states are obtained to be positive. It means that the proton and
neutron in the ground and 3/2−

2 states prefer a prolate like
deformation.

Next we discuss the configurations of two valence neutrons
rotating around the α + t core. We calculate the expectation
values of L · S and S2 operators for the neutron part. Here
L · S is a sum of one-body spin-orbit operators,

∑
i l i · si (here

l i and si are orbital angular momentum and spin operators
for the ith neutron, respectively), and S2 is a sum of two-
body spin operators,

∑
i,j si · sj , where summations are for

the neutrons in both cases. The contribution from the neutrons
in the α + t core is zero due to the symmetry of the clusters,
and we can discuss the contribution only from the two valence
neutrons. For instance, when two neutrons occupy the p3/2 and
p1/2 orbits, the value of 〈L · S〉 is −0.5, which is simply the
sum of the eigenvalues of l · s for those orbits, 0.5 and −1.0,
respectively. The calculated values are shown in Table IV.
For the ground state, the 〈L · S〉 value is almost 1, and two
valence neutrons are considered to dominantly occupy the p3/2

orbits. For the second 3/2− state, the 〈L · S〉 value is almost
0, which suggests the mixing of dineutron configuration, since
dineutron is a spin-zero state and has an eigenvalue of zero
for the one-body spin-orbit operator L · S. We can confirm
this situation from the calculated 〈S2〉 value, which is 0.5 for
the ground state but almost zero for the second 3/2− state. In
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FIG. 10. Decomposition of the calculated 3/2− states into the
K = 1/2 and 3/2 components. The solid curves are the same as Fig. 2.
The dotted and dashed curves are the results only with K = 1/2 and
K = 3/2, respectively.

the 3/2−
2 state, two neutrons are considered to have spin-zero,

which also implies the mixing of dineutron components in this
state. The excitation energy of the 3/2−

2 state is about 6 MeV,
which is near to the two-neutron threshold energy of 9Li. The
energy position of the 3/2−

2 state also supports the mixing of
the dineutron components.

Here, we briefly mention about the similarity to the 10Be
case. The 10Be nucleus is well described by an α + α + n+ n
model, and there appear two rotational bands originating
from the K = 0 and K = 2 configurations of the two valence
neutrons around the α + α core [45]. The first 2+ state belongs
to the ground band and dominantly has K = 0, whereas the
second 2+ state belongs to the side band of the ground band
and has dominantly K = 2. In the second 2+ state, di-neutron
configuration mixes, since the state is close to the two-neutron
threshold energy [46]. As a result, K mixing effect is large
for the second 2+ state, which means a mixing of the triaxial
(α + α + dineutron) components. The similarity between the
9Li and 10Be nuclei was discussed in Ref. [47] by comparing
the energy surfaces and structures on the β-γ plane of both
nuclei. They found that the cluster features in the 9Li nucleus
are analogous to those in the 10Be nucleus by replacing one
α cluster in the 10Be nucleus to a t cluster in the 9Li nucleus.
Here we also find the similarity; in Table IV, the 〈L · S〉 and
〈S2〉 values are almost the same for 9Li(3/2−

1 ) and 10Be(2+
1 )

(〈L · S〉 and 〈S2〉 values are 1.0 and 0.5 for both states,
respectively). The values are almost similar to the ground 0+
state of the 10Be nucleus, thus the two neutron configurations

TABLE III. QJ moments [(e)fm2] of the ground and 3/2−
2 states

for the proton and neutron parts.

proton (efm2) neutron (fm2)

g.s. − 2.651 − 3.333
3/2−

2 3.221 4.343

TABLE IV. Expectation values of 〈L · S〉 and 〈S2〉 for the neutron
part of the 9Li and 10Be nuclei.

〈L · S〉 〈S2〉
9Li
g.s. 1.064 0.5076
3/2−

2 0.08630 0.08054
10Be
2+

1 0.8901 0.5386
2+

2 0.1303 0.1056

are almost the same in the ground states of both nuclei. In
addition, both of the 10Be(2+

2 ) and 9Li(3/2−
2 ) states have very

small expectation values of 〈L · S〉 and 〈S2〉, and mixing of
di-neutron components is considered to be important.

Finally, we investigate the angular distribution of the
inelastic scattering to the 3/2−

2 state. The calculated result
is shown in Fig. 11, where the solid curve shows the full-CC
calculation result and the dotted curve shows the result without
the quadrupole transition between the ground state and the
3/2−

2 state. The dashed curve shows the result removing all
the monopole transition from the dotted curve. The inelastic
cross section of the 3/2−

2 state is determined not only by
the quadrupole transition between the ground state and the
3/2−

2 state but also by the quadrupole transitions between the
3/2−

2 state and other states as shown in Figs. 9 and 11. In
particular, the quadrupole transitions through the 1/2−

1 and
5/2−

1 states play a major role to increase the inelastic cross
section. The transition strengths are summarized in Table V.
In addition, we note that the dashed curve looks similar to
the pattern of the monopole angular distribution, although
all the monopole transitions are removed. This result implies
that the two-step quadrupole transition has similar effect to
the monopole transition in the angular distribution. However,
it is difficult to confirm such situation directly, because direct
transition reaction from the entrance channel is considered to
have a dominant role for all states.
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Ω
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FIG. 11. Calculated inelastic cross section of the 3/2−
2 state. The

curves are explained in the text.
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TABLE V. Monopole and quadrupole transition strengths
[(e2)fm4] between the low-lying states for the 9Li nucleus.

B(Eλ) (e2 fm4) neutron (fm4) B(ISλ) (fm4)

λ = 2
g.s. → 1/2−

1 4.389 5.258 19.26
1/2−

1 → 3/2−
2 0.1583 14.52 17.71

g.s. → 3/2−
2 0.3490 2.130 0.7547

g.s. → 5/2−
1 0.08766 16.68 19.19

5/2−
1 → 3/2−

2 2.566 3.210 11.52
λ = 0
g.s. → 3/2−

2 0.0004118 0.001180 0.0001976

IV. SUMMARY

We have investigated low-lying negative parity states of
the 9Li nucleus using a unified framework of microscopic
structure and reaction models, where we have used the same
9Li wave function for the structure and reaction calculation
parts. The 9Li wave function is fully antisymmetrized and
consists of α + t + n+ n four bodies, and the low-lying 1/2−,
3/2−, 5/2−, and 7/2− states are obtained by the stochastic
multi-configuration mixing method. The configuration of each
basis state is randomly generated, and the total wave function
is described by the superposition of the Brink-type wave
functions. The eigenstates of the Hamiltonian were obtained by
diagonalizing the Hamiltonian, and bound state approximation
is used for the unbound states. Using these wave functions,
the elastic and inelastic cross sections were calculated in the
framework of the microscopic coupled channel method with
the complex G-matrix interaction CEG07. The calculated
inelastic cross sections to the excited 3/2− states show
the different angular distribution patterns, arising from the
competition between the monopole and quadrupole transitions
in the excitation. It is found that the quadrupole excitation,
rather than the monopole excitation, is dominant for the
3/2−

2 state, contrary to the cases of other low-lying 3/2−
states. In addition, we investigated the mutual-excitation and
multistep effects on the elastic and inelastic cross sections.
For the 3/2−

2 state, the sizable multistep effect has been seen,

but the multistep effect is not important for the other cross
sections.

In order to investigate the properties of the 3/2−
2 state

in detail, we performed a structure calculation restricted to
K = 1/2 and K = 3/2; the ground and 3/2−

2 states are well
descried by K = 1/2 and K = 3/2, respectively. From the
calculated Q0 moments, the first and second 3/2− states have
been shown to prefer a prolate like deformation. In addition,
the expectation values of L · S and S2 were calculated
and compared with those of the 10Be nucleus. From these
values, we can find that the valence neutrons have almost
the same (p3/2)2 configuration in the both ground states of
the 9Li and 10Be nuclei. For the excited states, dineutron
components are considered to be mixed in the second 3/2−
state of the 9Li nucleus as well as the second 2+ state of the
10Be nucleus, which implies the contribution of the triaxial
(α + t + dineutron) components. Finally, we have investigated
the calculated inelastic cross section of second 3/2− state in
detail. Not only the transition from the ground state to the
3/2−

2 state but also other quadrupole transitions contribute to
the cross section. Especially, the multi-step transitions through
the 1/2−

1 and 5/2−
1 states have an important role to determine

the second 3/2− cross section.
In the present paper, detail discussion has been made

only for the second 3/2− state. However other low-lying
excited states of the 9Li nucleus are simultaneously obtained,
and their properties will be investigated in the near future.
Furthermore, these excited states of the 9Li nucleus are
expected to contribute to the reaction dynamics of the 11Li
nucleus, which will be also investigated. The study of the core
nucleus (9Li) itself, as in this paper, is crucial for such study on
the coexistence nature of weak (valence neutrons) and strong
(core nucleus) bindings of unstable nuclei.
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[7] P. Navrátil and B. R. Barrett, Phys. Rev. C 57, 3119 (1998).
[8] T. Myo, A. Umeya, H. Toki, and K. Ikeda, Phys. Rev. C 86,

024318 (2012).
[9] K. Arai, Y. Ogawa, Y. Suzuki, and K. Varga, Prog. Theor. Phys.

Suppl. 142, 97 (2001).

[10] K. Muta, T. Furumoto, T. Ichikawa, and N. Itagaki, Phys. Rev.
C 84, 034305 (2011).

[11] Y. Kanada-En’yo and T. Suhara, Phys. Rev. C 85, 024303
(2012).

[12] T. Ichikawa, N. Itagaki, T. Kawabata, T. Kokalova, and W. von
Oertzen, Phys. Rev. C 83, 061301(R) (2011).

[13] T. Furumoto, Y. Sakuragi, and Y. Yamamoto, Phys. Rev. C 78,
044610 (2008).

[14] T. Furumoto, Y. Sakuragi, and Y. Yamamoto, Phys. Rev. C 80,
044614 (2009).

[15] A. B. Volkov, Nucl. Phys 74, 33 (1965).
[16] R. Tamagaki, Prog. Theor. Phys. 39, 91 (1968).
[17] N. Yamaguchi, T. Kasahara, S. Nagata, and Y. Akaishi, Prog.

Theor. Phys. 62, 1018 (1979).
[18] S. Okabe and Y. Abe, Prog. Theor. Phys 61, 1049 (1979).
[19] Y. Sakuragi, M. Yahiro, M. Kamimura, and M. Tanifuji, Nucl.

Phys. A 480, 361 (1988).

064320-9

http://dx.doi.org/10.1103/PhysRevLett.55.2676
http://dx.doi.org/10.1103/PhysRevLett.84.5493
http://dx.doi.org/10.1103/PhysRevC.81.061602
http://dx.doi.org/10.1103/PhysRevC.83.044622
http://dx.doi.org/10.1103/PhysRevC.83.044622
http://dx.doi.org/10.1103/PhysRevC.85.054613
http://dx.doi.org/10.1103/PhysRevLett.109.232502
http://dx.doi.org/10.1103/PhysRevLett.109.232502
http://dx.doi.org/10.1103/PhysRevC.57.3119
http://dx.doi.org/10.1103/PhysRevC.86.024318
http://dx.doi.org/10.1103/PhysRevC.86.024318
http://dx.doi.org/10.1143/PTPS.142.97
http://dx.doi.org/10.1143/PTPS.142.97
http://dx.doi.org/10.1103/PhysRevC.84.034305
http://dx.doi.org/10.1103/PhysRevC.84.034305
http://dx.doi.org/10.1103/PhysRevC.85.024303
http://dx.doi.org/10.1103/PhysRevC.85.024303
http://dx.doi.org/10.1103/PhysRevC.83.061301
http://dx.doi.org/10.1103/PhysRevC.78.044610
http://dx.doi.org/10.1103/PhysRevC.78.044610
http://dx.doi.org/10.1103/PhysRevC.80.044614
http://dx.doi.org/10.1103/PhysRevC.80.044614
http://dx.doi.org/10.1016/0029-5582(65)90244-0
http://dx.doi.org/10.1143/PTP.39.91
http://dx.doi.org/10.1143/PTP.62.1018
http://dx.doi.org/10.1143/PTP.62.1018
http://dx.doi.org/10.1143/PTP.61.1049
http://dx.doi.org/10.1016/0375-9474(88)90402-2
http://dx.doi.org/10.1016/0375-9474(88)90402-2


T. FURUMOTO, T. SUHARA, AND N. ITAGAKI PHYSICAL REVIEW C 87, 064320 (2013)

[20] M. Katsuma, Y. Sakuragi, S. Okabe, and Y. Kondō, Prog. Theor.
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