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Structure of the phonon vacuum state
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The action of the long-range residual force on the expectation value of observables in the nuclear ground
states is evaluated by finding optimal values for the coefficients of the canonical transformation which connects
the phonon vacuum state with the (quasi)particle ground state. After estimating the improvements over the
predictions of the independent-particle approximation we compare the ground-state wave functions, obtained
using the presented approach, with those obtained using the conventional random phase approximation (RPA) and
its extended version. The problem with overbinding of the nuclear ground state calculated using the RPA is shown
to be removed if one sticks to the prescriptions of the present approach. The reason being that the latter conforms
to the original variational formulation. Calculations are performed within the two-level Lipkin-Meshkov-Glick
model in which we present results for the ground and first excited state energies as well as for the ground-state
particle occupation numbers.
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I. INTRODUCTION

Approximating the correlated ground state of a many-body
quantum system has been receiving considerable attention
since the early days of nuclear structure physics [1] and
degenerate electron gas theory [2] and still represents a
formidable challenge. This is an arduous task within the
“beyond the mean-field” theories because of the action of the
residual interaction which brings particle-hole admixtures into
the ground states. In the present paper we focus on the effects of
long-range part of this interaction. Unambiguously attributable
to the latter is the quadrupole correlation energy, which, as
shown by the findings in Ref. [3], is considerable and varies
between 100 keV and 5.5 MeV in different nuclei which makes
the perturbative treatment unsuitable. The short-range residual
forces, on the other hand, compete with the long-range ones in
dominating the ground-state shapes formation [4,5]. As a result
of this competition, in the beginning and the end of major shells
the nucleons are paired, giving rise to spherical shape, while in
the middle of the shell the nucleons are paired off and they align
to the field generating forces thus contributing to deformation.
We conjecture that the present study can serve as a foundation
to investigate the mechanism of the transition between these
two regimes and in particular on the pairs decoupling process.
The process that we surmise was concocted in Ref. [6]
and essentially implies that the long-range force breaks
nucleon pairs which may further recouple due to the pairing
force.

We approximate the nuclear ground-state wave function
with the phonon operators [7] vacuum state. A general form
of the phonon vacuum was proposed by Sorensen [8] and later
Goswami and Pal [10] estimated explicitly the correlation
coefficients of the 2p-2h admixtures into the BCS wave
function [11] relating them to the forward and backward
phonon amplitudes. The relation they obtained turned out to
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be also valid for higher order correlations [12] in the random
phase approximation (RPA) [1]. Being a small amplitude
limit of the time-dependent Hartree-Fock approximation,
however, RPA is known to be able to account only for small
correlation effects. Since in open-shell nuclei the backward
phonon amplitudes are by no means small, RPA is becoming
questionable in describing the low-energy states of such nuclei.
On a quest to construct a microscopic global theory for the
nuclear binding energies it was shown in Refs. [19,20] that the
RPA is a useful method around spherical and well-deformed
nuclei but falls short in describing nuclei from the transitional
region. This problem was addressed by Hara [6] and later on
by Jolos and Rybarska [14], who proposed an improvement
over the RPA, referred to as extended RPA(ERPA), based
on the Pauli blocking principle which plays a progressively
important role with the increasing number of the valence
nucleons. This extension has proven to be in better accord with
the experimental data as demonstrated in a number of papers
as for example in Refs. [15,16]. Although its superiority over
the standard RPA is undeniable, the variational character of the
theory is violated as the ground state is found to be overbound.
The strong argument that the variational property of a theory
insures a converging succession of approximations to the exact
solution fostered the formulation of a elaborate formalism,
called self-consistent RPA [17], which as in the conventional
particle-hole theory, allowed to take into account the nucleon
correlations without explicitly constructing the ground-state
wave function. In Ref. [18] within the schematic two-level
Lipkin-Meshkov-Glick (LMG) model [29] it is found that the
self-consistent theory allows one to go beyond the point of
RPA collapse, but near this point the wave function of the first
excited state within this approximation is found to be almost
orthogonal to the exact one. This behavior is due to the higher
order particle-hole admixtures contributing to the structure of
the first excited state.

We note that beside the aforementioned amendments to
the standard RPA, there exist a number of other important
developments on this subject as, for example, those in
Refs. [21–27].
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In the present paper we keep using the explicit form
of the fermionic many-body vacuum [8] but depart from
varying the excited-state wave function. On the contrary we
use the correlation coefficients as parameters which we fix
by optimizing the ground-state trial wave function using a
variational procedure. The excited states corresponding to
such vacuum state are of 1p-1h type. This approach also
benefits from the findings in Ref. [28] where it was shown
that this class of wave functions is a vacuum for a generalized
phonon operator, adding to the standard one specific two-
body operators correcting for the Pauli principle. By way of
example, using the two-level LMG model, they showed that the
additional terms improve the convergence substantially. In this
way the phonon vacuum state absorbs additional correlations
effects than the ones obtained using the equations-of-motion
method [4] for the standard phonon operator.

The paper proceeds as follows. In Sec. II we outline the
problem and summarize the main obstacles towards the exact
solution. Basic equations of several approximate methods
including the RPA, ERPA, and the explicit variation of the
phonon vacuum state along with the exact solution within the
LMG model are derived in Sec. III. A comparison between
them is established on the basis of the ground and the first
excited state energies as well as the on ground-state particle
occupation numbers in Sec. IV. Summary and outlook is given
in Sec. V.

II. FORMULATION

Formally a wave function which contains admixtures into
the independent-quasiparticle wave function and is a vacuum
for the phonon operators [7]

Qλμi = 1

2

∑
11′

[
ψλi

11′A(11′|λμ) − (−1)λ−μϕλi
11′A

†(11′|λ − μ)
]

(1)

can be expressed as [8]

|〉 = N0e
Ŝ〉 (2)

with

Ŝ = −1

2

∑
12;λμ

Sλ(11′; 22′)(−)λ−μA†(11′|λμ)A†(22′|λ − μ).

(3)

Here and below an independent shell-model state
{N1, l1, j1,m1} is abbreviated as 1.

The coefficients Sλ(11′; 22′) are referred to as correlation
coefficients and denote the amplitudes for the presence of
zero, four, eight,... quasiparticles in the ground state due
to the virtual vibrations. These present a primary source of
structure information for the ground states and make up a major
part of our present research. The correlated and uncorrelated
ground states are denoted as |〉 and 〉, correspondingly. The
two-quasiparticle creation operator A†(12; λμ) reads

A†(12; λμ) =
∑
m1m2

〈j1m1j2m2|λμ〉α†
j1m1

α
†
j2m2

, (4)

where α
†
jm denotes the quasiparticle creation operator.

In the following we shall also need the quasiparticle
scattering operator

B(12; λμ) =
∑
m1m2

(−)j2+m2〈j1m1j2m2|λμ〉α†
j1m1

αj2−m2 . (5)

Details on the quasiparticle-phonon nomenclature, which we
follow in this paper, can be found in Ref. [7].

Using the ERPA, the correlation coefficients are found to
satisfy the equations [6,8]

ϕλi
11′ =

∑
22′

(1 − ρ22′ )Sλ(11′|22′)ψλi
22′ , (6)

where ρ1 is the quasiparticle occupation density on the level 1.
In Eq. (2) N0 is a normalization factor which in physical

terms is the overlap between the independent-particle and the
correlated wave functions. It is found to be

N2
0 = 1

〈e(S†+S)〉 . (7)

In RPA, suggesting small correlations so that higher order
terms contribute relatively little, this constant is approximated
as [12,13]

N2
0 ≈ 1

e
1
2

∑
11′22′ ;λ π2

λS2
λ(11′ |22′)

. (8)

Here and below we use the shortcut notation πλ = √
2λ + 1,

with πλλ′ = πλπλ′ . An explicit solution to the system (6) was
obtained by Hara [6].

Changing the frame of mind we shall try to obtain the
correlation coefficients by explicitly varying the wave function
|〉 in the functional

δ〈|H |〉 = 0 (9)

with Sλ(11′; 22′) being variational parameters, i.e., we shall try
to solve the equation

δ
(
N2

0 〈eS†
HeS〉) ≡ 〈eS†

HeS〉(δN2
0

) + N2
0 (δ〈eS†

HeS〉) = 0,

(10)

with respect to Sλ(11′; 22′). Assuming that states with more
than four quasiparticles are less probable to be excited due
to the pairing gap [1], i.e., the configuration space for the
ground state is restricted to four quasiparticle admixtures only,
the quantities that need to be evaluated are presented in the
following expression:

N2
0 〈eS†

HeS〉 ≈ 〈H 〉 + 2〈HS〉 + 〈S†HS〉
1 + 1

2 〈S†S〉 . (11)

The validity of this assumption is examined in Sec. IV, using
a simplified setup provided by the LMG model, where it is
shown that it holds true at strengths weaker than or in the
vicinity of the RPA point of collapse and is incorrect in the
strong interaction regime where higher order correlations start
to play an important role.

A realistic Hamiltonian in quasiparticle representation
which accounts for the mean-field, monopole pairing and the
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isoscalar, multipole-multipole long-range part of the residual interaction has the following form:

H = Hqp + Hres, (12)

where

Hqp =
∑
jm

εjα
†
jmαjm, (13)

Hres = −1

2

∑
λμ121′2′ρτ

κλ
0

(−1)λ−μ

π2
λ

f λ
12(τ )f λ

1′2′ (ρτ )

{
1

2
u+

12(τ )[Aτ+(12; λμ) + (−1)λ−μAτ (12; λ − μ)] + v−
12(τ )Bτ (12; λμ)

}

×
{

1

2
u+

1′2′(ρτ )[Aρτ+(1′2′; λ − μ) + (−1)λ−μAρτ (1′2′; λμ)] + v−
1′2′ (ρτ )Bρτ (1′2′; λ−μ)

}
. (14)

Expressions for the quantities in Eqs. (7) and (11) using the
above Hamiltonian, in the case of one-nucleon species, are
given in Appendix A. There it is shown that under the limiting
conditions listed in Sec. III A these expressions coincide
with the ones obtained within the LMG model with 2p-2h
admixtures into the ground state. The numerical solution of
Eq. (10) is left out as a subject for a future study.

A common technique, which allows to mimic the dynamics
govern by the Hamiltonian (15), from one side, and provides a
tractable way of evaluating these quantities, from the other, is
to have recourse to exactly solvable models which, in our case,
would ideally incorporate pairing and quadrupole terms. This
however proves impossible due to the fact that these two inter-
actions are associated with incompatible symmetry groups [9].
In this paper we used the simplistic and widely used LMG
model as a test bed for proving the correctness of our idea.

III. SOLUTION WITHIN THE LIPKIN-MESHKOV-GLICK
MODEL

A. LMG model basics

In order to access the utility of different approaches and
to prove the usefulness of the proposed scheme we limit the
configuration space and simplify the internucleon interaction
to monopole-monopole one as suggested by Lipkin, Meshkov,
and Glick [29,30]. This setting permits comparisons between
the rates of convergence of different approximation methods,
including the hereby described, to the exact solution.

In this model the interaction of N particles on two quantum
levels is presented by the following Hamiltonian:

H = H0 + V ; H0 = εJ0; V = G

2
(J+ + J−)2, (15)

where

J+ =
∑

i

a
†
1ia−1i , J− =

∑
i

a
†
−1ia1i ,

(16)

J0 = 1

2

∑
i

(a†
1ia1i − a

†
−1ia−1i)

are analogous to the raising, lowering, and angular momentum
z-component of the quasispin algebra, respectively. a† repre-
sents the particle creation operator, the suffix ±1 denotes the

upper or lower level, ε is the energy gap between the two
levels, and G is the interaction strength.

We shall also make use of the operators

s+
n = a

†
1na−1n; s−

n = a
†
−1na1n;

(17)
s0
n = 1

2 (a†
1na1n − a

†
−1na−1n).

The Hamiltonian (15) can be considered as a specialization
(up to a constant term) of the more general one (14) under the
following simplifications:

(i) pairing is switched off;
(ii) the number of levels is reduced to only two {−1, 1},

each with a particle capacity of N ;
(iii) the monopole-monopole part of the interaction is only

considered;
(iv) the terms in the Hamiltonian (14), quadratic with

respect to operator B [Eq. (5)], are neglected.

The operators (16) can be expressed by the ones defined in
Eqs. (4) and (5) in the following way:

J+ = −
√

NA†, J− = −
√

NA, (18)

J0 = 1
2

√
N (B+1 + B−1 − √

N ), (19)

where

A† = A†((−1)(+1); 00), (20)

B+1 = B((+1)(+1); 00), (21)

B−1 = B((−1)(−1); 00). (22)

The interaction strengths in Eqs. (15) and (14) are related as

G = −κ0
0

N
. (23)

B. Exact solution

The exact solution of the many-body problem is ob-
tained as a superposition of the (normalized) states |n〉 with
0, 1, 2 . . . , N particles on the upper level (|0〉 ≡〉):

|�〉 =
∑

n

cn|n〉. (24)
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The weights cn are readily obtained by solving the eigenvalue
problem ∑

n′
〈n|H |n′〉cn′ = Ecn. (25)

The nonzero elements of the matrix on the left-hand side of
the above equation evaluate to

〈n|H |n〉 (26)

=
(

−N

2
+ n

)
ε + G

(
−N

2
+ n + (n + 1)(N − n)

)
,

(27)

〈n|H |n + 2〉 = G

2

√
n(n − 1)(N + 2 − n)(N + 1 − n).

(28)

For the ground-state total energy we then obtain

E =
∑

n

(
c(0)
n

)2〈n|H |n〉 + 2
∑

n

c(0)
n c

(0)
n+2〈n|H |n + 2〉. (29)

We shall further present the solutions for excited states,
containing only one particle on the upper level and one hole
on the lower one, i.e.,

|1p1h〉m =
(∑

i

(
ψ

(m)
i s+

i − ϕ
(m)
i s−

i

)) 〉
. (30)

C. RPA

Employing the RPA, i.e.,

〈|s−
i , s+

i ′ |〉 = δii ′ (31)

one obtains the well-known equation for the excitation energies
and the forward and backward amplitudes:(

δii ′ (ε − G) + G −G(1 − δii ′)

−G(1 − δii ′ ) δii ′(ε − G) + G

) (
ψ

(m)
i ′

ϕ
(m)
i ′

)

= ω

(
δii ′ 0

0 −δii ′

) (
ψ

(m)
i ′

ϕ
(m)
i ′

)
, (32)

which together with the normalization of the wave functions
(30) yields a collective solution

ψ = 1√
N

1 + χ/2 + ω0/ε√(
1 + ω0

ε

)(
1 + χ + ω0

ε

) , (33)

ϕ = 1√
N

χ/2√(
1 + ω0

ε

)(
1 + χ + ω0

ε

) , (34)

where

χ = 2G(N − 1)

ε
, ω0 = ε

√
1 + χ. (35)

Since the phonon amplitudes are independent of the
particle-hole pair i which they refer to due to the symmetry of
the model and we are interested in the collective solution only,
the wave function (30) can be rewritten in the more compact
form which we shall further use

|1p1h〉 = (ψJ+ − ϕJ−)〉. (36)

The particle occupation of the lower LMG level is easily
obtained as

ρ = 1 − ϕ2. (37)

D. ERPA

The condition (31) disregards some aspects of the nature of
the excited states (30), in particular the fact that the number of
particle-hole states in the ground state may be non-negligible if
sufficiently strong interaction is applied. In a broader context,
than the hereby considered, Hara [6] suggested to include
explicitly the number of quasiparticles on each level, which
turned out to have a dramatic effect on the collective properties
of the low-lying states in open-shell even-even nuclei [15,16].
Adapting this approach to the LMG model we can write

〈|n+1|〉 = Nρ, 〈|n−1|〉 = N (1 − ρ). (38)

Equation (31) then transforms to

〈|s−
n , s+

n′ |〉 = δnn′ (1 − 2ρ). (39)

Analogous to Eq. (32) in the current context is the following
one:(

Aii ′ Bii ′

B∗
ii ′ A∗

ii ′

)(
ψ

(m)
i ′

ϕ
(m)
i ′

)
= ω

(
Uii ′ 0

0 −U ∗
ii ′

) (
ψ

(m)
i ′

ϕ
(m)
i ′

)
, (40)

where

Ann′ = G(1 − 2ρ)2 − δnn′(1 − 2ρ)(G − ε), (41)

Bnn′ = G(1 − 2ρ)(δnn′ + 2ρ − 1), (42)

and

Unn′ = δnn′ (1 − 2ρ). (43)

The solution of these equations is obtained to be

ψ = 1√
N (1 − 2ρ)

1 + χ/2 + ω0/ε√(
1 + ω0

ε

)(
1 + χ + ω0

ε

) , (44)

ϕ = 1√
N (1 − 2ρ)

χ/2√(
1 + ω0

ε

)(
1 + χ + ω0

ε

) , (45)

where

ω2
0 = ε2(1 + χ ), χ = 2G

ε
[(1 − 2ρ)N − 1]. (46)

The system of equations’ closure is insured by the addi-
tional relation:

ρ = (ϕ)2

1 + 2(ϕ)2
. (47)

In order to obtain the correct ERPA solution one needs to solve
the system of coupled equations (45), (46), and (47).

E. Phonon vacuum solution

Finally, the featured method that we examine (Sec. II)
translates in the language of the LMG model in the following
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way. The wave function (2) assumes the form

|〉 = N0e
1
2 S

∑
ii′ s+

i s+
i′
〉 = N0e

1
2 SJ 2

+
〉
. (48)

Up to arbitrary order n � N/2 the ground-state energy is
obtained to be

〈|H |〉 = N2
0

∑
n

1

(n!)2

(
S

2

)2n

〈J 2n
− HJ 2n

+ 〉

+ 2N2
0

∑
n

n

(n!)2

(
S

2

)2n−1

〈J 2n−2
− HJ 2n

+ 〉 (49)

with

N2
0 =

[∑
n

1

(n!)2

(
S

2

)2n

〈J 2n
− J 2n

+ 〉
]−1

. (50)

The variational equation ∂S〈|H |〉 = 0 then yields the following
problem:

N2
0

∑
n

n

(n!)2

(
S

2

)2n−2 [
S

2
〈J 2n

− HJ 2n
+ 〉

+ (2n − 1)〈J 2n−2
− HJ 2n

+ 〉
]

+ ∂SN
2
0

∑
n

1

(n!)2

(
S

2

)2n−1

×
[
S

2
〈J 2n

− HJ 2n
+ 〉 + 2n〈J 2n−2

− HJ 2n
+ 〉

]
= 0. (51)

Respectively, the energy of the 1p-1h excited state is
evaluated as

ω = ψ2〈|J−HJ+|〉 − 2ψϕ〈|J−HJ−|〉 + ϕ2〈|J+HJ−|〉.
(52)

The expressions for the Hamiltonian average values in
Eqs. (51) and (52) are given in Appendix B. The forward
and backward phonon amplitudes in Eq. (52) are obtained by
applying the normalization condition for the one-phonon state

N2
0 (ψ2 − ϕ2)

∑
n

(
1

n!

)2 (
S

2

)2n

(N − 4n)〈J 2n
− J 2n

+ 〉 = 1,

(53)

along with the definitive equation

Q|〉 = 0, (54)

resulting in the relation

[ϕ − (N − 1)ψS]2 + 6ψ2S4(N − 1)(N − 2) = 0. (55)

Note that the latter relation is independent of the expansion
order n.

If we truncate the exponent expansion (48) to first order,
i.e., allow for 2p-2h admixtures only in the ground-state wave
function, we obtain

N2
0 = 1

1 + 1
2N (N − 1)S2

. (56)

The variational problem then is rewritten as

δ
(
N2

0

〈(
1 + 1

2SJ 2
−
)
H

(
1 + 1

2SJ 2
+
)〉) = 0. (57)

The expressions for the relevant quantities in this equation
are given in Appendix A. The structure coefficient S in Eq. (48)
is related to those in Eq. (3) in the following way:

S = − 4

N
S0(+1 − 1; +1 − 1). (58)

Performing the variation (57) we get the following simple
quadratic equation for S:

1 +
(

2
ε

G
+ 2N − 4

)
S − 1

2
(N2 − N )S2 = 0. (59)

The ground-state energy in this case evaluates to

E = N2
0

[〈H 〉 + N (N − 1)GS

+ 1
4 (ε − G)(−N + 4)N (N − 1)S2 + GN (N − 1)2S2

]
.

(60)

The transition between the quantities obtained using the
realistic Hamiltonian (14) and the LMG ones with 2p-2h
correlations only is performed in Appendix A.

IV. NUMERICAL RESULTS

The three approximations, presented in the previous sec-
tion, are compared with the exact solution based on the ground
and first excited state energies (Fig. 1) as well as based on the
occupation particle density (Fig. 2) on the lower LMG model
level in the ground state. We assigned N � 16 particles to
the system for a simple reason—if we consider the two levels
of the LMG model representing the valence subshells in the
nucleus then these would be the source of the major effects for
the low-lying states and N = 16 would mimic the neutron or
proton subsystem of a nucleus from the middle of sdgh major
shell.

The first observation in Fig. 1 is the clearly designated
critical RPA strength

Gcrit = − ε

2(N − 1)
, (61)

which separates the region where a real RPA solution can
be found from the one, in which only a complex solution is
obtained. It is also worthwhile to notice that the RPA point of
collapse stands at the onset of the transition between the two
nearly linear sections of the exact solution for the ground-state
energy, which are more distinguished in systems with a larger
number of particles.

On the other hand, the explicit variation of the phonon
vacuum with 2p-2h admixtures only in the ground state
yields a solution at any G. However, as seen from Figs. 1
and 2, increasing the interaction strength beyond the RPA
critical point causes progressive divergence of this solution
from the exact one for both the ground-state energy and the
occupation number. This divergence exacerbates incrementing
the number of particles in the system. Adding higher order
terms to the energy functional in Eq. (49), which account
for further correlations effects, greatly improves the results
bringing the energy of the phonon vacuum and the occupation
number closer to the exact value. The importance of the
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FIG. 1. Ground-state energy (MeV) in a two-level LMG model systems with N = 8 (left panel) and N = 16 (right panel) particles as
function of the interaction strength G(MeV). Solutions obtained using the phonon vacuum explicit variation with 2p-2h and up to 16p-16h
admixtures into the ground-state wave function are compared to the exact one. The vertical dash-dotted line indicates the strength at which the
RPA experiences a collapse. The energy gap ε between the two LMG levels is set to 1 MeV.

multi-particle-hole admixtures to the ground state in the strong
interaction regime is illustrated in Fig. 3 where the weight of
the ground state’s 0p-0h component is plotted as function of the
interaction strength G. Despite the reasonable agreement for
the ground-state energies in this regime the wave function of
the phonon vacuum yields a substantially less correlated state
than the true ground state. The prescription of the variational
principle for monotonic convergence is easily seen in Figs. 1–4
as the higher order correlations bring the result closer to the
exact solution but never overbinding the ground state.

The behavior of the first excited state’s energy within the
phonon vacuum variational approach exhibits a collapse at
interaction strengths far weaker than those at which the first

FIG. 2. Same as Fig. 1 but for the occupation number on the lower
LMG model level for a system of N = 16 particles. RPA and ERPA
curves are also plotted.

excited state energy starts to diminish (see Fig. 4). The position
of this point is very much independent of the order of multi-
particle-hole correlations included in the phonon vacuum state
in cases when this point is near Gcrit [Eq. (61)] as in the
weak interaction regime admixtures beyond the 2p-2h ones
contribute relatively little (see Fig. 3). The obvious reason for
this collapse, as noted in [18], can be attributed to the higher
order particle-hole admixtures contributing in the structure of
the first excited state which start to be an important factor as
the interaction becomes stronger.

As opposed to the RPA, a real ERPA solution, is found
everywhere in the range of G values considered. In the interval
(Gcrit, 0] it performs just as well as the RPA does except for
strengths close to Gcrit. In the strong interaction regime the
ERPA gives rather good results both for the particle occupation
and the first excited state energy (see Figs. 2 and 4). Near and
beyond Gcrit it predicts higher depletion of the lower LMG
level (see Fig. 2) and, correspondingly, as seen in Fig. 4, it
gives lower value for the energy of the first excited state. At
interactions twice as strong as the RPA point of collapse the
first excited state’s energy is found to be a bit higher compared
to the exact solution. This result is to be expected given that the
particle occupation number at such strengths within the ERPA
is overestimated. It is worth noting that in the strong interaction
regime a solution of the system of coupled equations (45), (46),
and (47) is found for an occupation number whose value ρ is
in very close proximity to the critical occupation number

ρcrit = 1

2
− 1

2N

(
1 − ε

2G

)
. (62)

V. CONCLUSION AND OUTLOOK

In this work we initiated the development of a variational
approach for approximating the ground state of nuclei using a
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FIG. 3. The 0p-0h contribution to the exact ground-state wave function from Eq. (24) (light gray), the phonon vacuum solution from
Eq. (48) with 2p-2h admixtures (dark gray), and with correlations of order N/2 (black) as function of the interaction strength G for LMG
model systems with N = 8 (left panel) and N = 16 (right panel) particles.

wave function in the form of the phonon vacuum state, tailored
to take into account the action of the long-range residual forces.
Essentially it is an attempt to provide a controlled succession of
approximations for estimating the contributions from different
multi-particle-hole admixtures. Applying our idea to the very
schematic LMG model, we showed the superiority of our
approach over the RPA, based on comparison with the exact
solution for the ground and first-excited state energies as well
as based on the particle occupation numbers. Alongside that
we adapted the ERPA [6] to the LMG model to show its high
utility within a wide range of interaction strengths. As far as
the LMG model is able to simulate real nuclei, we conclude
the following:

(i) The RPA point of collapse separates two types of
system’s behavior—the weak and strong interaction
regimes.

(ii) The RPA provides an accurate and computationally
efficient method to treat nuclei until the point of
collapse inherent to this approximation.

(iii) The ERPA improves over the standard RPA as it yields
solution for any interaction strength. The calculated
value for the first excited state’s energy is the closest to
the exact one amongst all considered approximations.
The ground state occupation numbers within this
approximation are also reproduced with reasonable
accuracy.

(iv) Explicitly varying the phonon vacuum state one obtains
a very good accuracy to the ground-state energy as
the result improves monotonically adding higher order
correlations into the ground state. In the region beyond
the RPA point of collapse, multiple particle-hole admix-
tures higher than 2p-2h ones start to play very important
role and at such strengths, as seen from Fig. 3, the
phonon vacuum solution significantly underestimates
the degree of correlation. This effect is amplified with
the increase of the number of particles in the system.

(v) The energy of the first excited state can be treated as
a 1p-1h excitation over the ground state only in the
weak interaction regime until the RPA point of collapse.

FIG. 4. Same as Fig. 1 but for the energy of the first excited state. RPA and ERPA curves are also plotted.
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Beyond that point it vanishes rapidly especially for
systems with a larger number of particles and its proper
description requires consideration within and extended
configuration space for the excited states.

Applying the presented approach to real nuclei one can
expect to obtain improved results than previously published
for isotopes from the transitional regions. Being a many-body
wave function this approach may be a good choice for
describing phenomena involving many-particle correlations
as, for example, cluster configurations. The influence of the
long-range residual forces on the mean field and the pairing
correlations in real nuclei is another perspective which the
presented development makes possible to realize and it is
currently progressing.
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APPENDIX A

Here we give expressions for the quantities in Eq. (11)
for single species of nucleons. A transition between these
expressions and the ones obtained within the LMG model
with 2p-2h correlations into the ground-state wave function is
performed:

〈H 〉 =
∑
12λ

κλ
0 (hλ

12)2, (A1)

〈S†S〉 = 2
∑

1234λ

π2
λS2

λ(1234) + 4
∑

1234λλ1

π2
λ1

π2
λSλ(1234)Sλ1 (2431)

{
3 4 λ

2 1 λ1

}
, (A2)

〈HS〉 = 2
∑

1234λ

π2
λκλ

0 Hλ(1234)Sλ(1234) + 4
∑

1234λλ1

π2
λ1

π2
λκλ

0 Hλ(1234)Sλ1 (2431)

{
3 4 λ

2 1 λ1

}
, (A3)

〈S†HS〉 = 〈S†H1S〉 + 〈S†H2S〉 (A4)

with

〈S†H1S〉 = 2
∑

1234λ

π2
λε1234S

2
λ(1234) + 4

∑
1234λλ1

π2
λ1

π2
λε1234Sλ(1234)Sλ1 (2431)

{
3 4 λ

2 1 λ1

}
, (A5)

〈S†H2S〉 = −8
∑

1234λ

π2
λκλ

0 Fλ(1234)Sλ1 (1234) − 16
∑

1234λλ1

π2
λπ2

λ1
κλ

0 Fλ(1234)Sλ1 (2431)

{
3 4 λ

2 1 λ1

}

+ 16
∑

1234λ

π2
λRλ(1234)Sλ(1234) + 32

∑
1234λλ1

π2
λπ2

λ1
Rλ(1234)Sλ1 (2431)

{
3 4 λ

2 1 λ1

}

−
(∑

aa′J

(hJ
aa′)2κJ

0

) [
2

∑
1234λ

π2
λS2

λ(1234) + 4
∑

1234λλ1

π2
λπ2

λ1
Sλ(1234)Sλ1 (2431)

{
3 4 λ

2 1 λ1

}]
, (A6)

where

Fλ(1234) = hλ
34

π2
λ

∑
56

hλ
56

[
Sλ(1256) + 2

∑
J

π2
J

{
5 6 λ

1 2 J

}
SJ (5216)

]
(A7)

and

Rλ(1234) =
(∑

5J

κJ
0 (hJ

15)2

)
Sλ(1234)

π33
. (A8)

Here we used the shortcut notation

Hλ(1234) = hλ
12h

λ
34, (A9)

where

hλ
12 = f λ

12u
+
12

2
. (A10)

In Eq. (A5) ε1234 stands for the energy of a four-quasiparticle state, i.e., ε1234 = ε1 + ε2 + ε3 + ε4. In Eq. (A4) the term in the
Hamiltonian (14), quadratic with respect to the operator B, defined in Eq. (5), is omitted.
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Applying the considerations from Sec. III A and using the relation{
j j 0

j j 0

}
= − 1

2j + 1
= − 1

N
, (A11)

one obtains the corresponding LMG model expressions with 2p-2h correlations in the ground-state wave
function:

〈H 〉 = (G − ε)
N

2
, (A12)

〈S†S〉 = 1

2
N (N − 1)S2, (A13)

〈HS〉 = 1

2
GN (N − 1)S, (A14)

〈S†HS〉 =
[

(ε − G)(4 − N )N (N − 1)

4
+ GN (N − 1)2

]
S2. (A15)

APPENDIX B

In this Appendix we give the expressions for the Hamiltonian average values in the uncorrelated 〉 and correlated |〉 ground
states needed to solve Eqs. (51), (53), and (55) from Sec. III E:

〈J n
−J n

+〉 = n!N !

(N − n)!
, (B1)

〈J n
−HJn+2

+ 〉 = G

2

(n + 2)!N !

(N − (n + 2))!
, (B2)

〈J n
−HJn

+〉 =
[

(ε + G)

(
n − N

2

)
+ G(n + 1)(N − n)

]
n!N !

(N − n)!
, (B3)

〈|J−HJ+|〉 = N2
0

∑
n

1

(n!)2

(
S

2

)2n

〈J 2n+1
− HJ 2n+1

+ 〉 + 2N2
0

∑
n

n

(n!)2

(
S

2

)2n−1

〈J 2n−1
− HJ 2n+1

+ 〉, (B4)

〈|J−HJ−|〉 = N2
0

∑
n

1

(n!)2
2n(N − 2n + 1)

(
S

2

)2n

〈J 2n+1
− HJ 2n−1

+ 〉 + N2
0

∑
n

n

(n!)2

(
S

2

)2n−1

2n(N − 2n + 1)〈J 2n−1
− HJ 2n−1

+ 〉,

(B5)

〈|J+HJ−|〉 = N2
0

∑
n

1

(n!)2
4n2(N − 2n + 1)2

(
S

2

)2n

〈J 2n−1
− HJ 2n−1

+ 〉 (B6)

+N2
0

∑
n

n

(n!)2

(
S

2

)2n−1

(2n − 2)2n(N − 2n + 3)(N − 2n + 1)〈J 2n−3
− HJ 2n−1

+ 〉. (B7)
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