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We examine Cr isotopes at the drip line, where surface effects related to the existence of a weakly bound sy,
state are known to be important and tightly connected with the pairing phenomenon (antihalo effect). For these
weakly bound isotopes, we evaluate the ground state to ground state two-neutron transfer probabilities within a
mean-field-based approach. An important part of the discussion is devoted to the analysis of several procedures
that can be employed to constrain the parameters of a phenomenological pairing interaction. The parameters are
first adjusted to reproduce the experimental gaps evaluated with the five-point formula. This choice has, however,
some consequences on the evolution of the pairing correlations along the isotopic chains and, in particular, at
shell closures. Other procedures are then followed (adjustment on a theoretical pairing gap at mid-shell and
on the two-neutron separation energies). For the transfer probabilities, we discuss the effects associated with
different choices of the spatial localization of the pairing interaction. We indicate that the analysis of pair-transfer
reactions for such cases (where the last bound state is a low-/ state in a weakly bound nucleus) may improve our
understanding of two aspects: the spatial distribution of pairing correlations in nuclei and the general problem of

the persistence of pairing at the drip lines.
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I. INTRODUCTION

Pairing correlations and pair-transfer reactions are inti-
mately related as indicated by several theoretical studies [1-3].
Multinucleon transfer experiments are currently performed in
several facilities around the world [4-6]. The forthcoming
extensions of this type of measurements to more exotic and
weakly bound isotopes will open new opportunities for a
deeper understanding of the pairing phenomenon in nuclei
where surface effects are important (diffuseness of the surface,
neutron skins, etc.). These future experiments may indeed
provide a better insight into the spatial localization of the
pairing correlations and of the Cooper pairs in nuclei. Recently,
it has been shown by several authors that the analysis of
the addition or removal modes associated with the transfer
from a nucleus A to a nucleus A &+ 2 may give indications
on the nature of the pairing interaction in terms of its spatial
localization [7-11]. In particular, (p, t) transfer reactions for
very neutron-rich Sn isotopes have been suggested in Ref. [10]
as possible candidates to investigate the volume and/or surface
spatial properties of the pairing interaction. This indication
remains, however, qualitative: in spite of the fact that the
structure calculation for the evaluation of the form factors
were fully microscopic and self-consistent in Ref. [10], the
zero-range distorted-wave Born approximation employed for
the reaction calculations did not allow the authors to draw
quantitative conclusions on the obtained cross sections.

In Ref. [11] this issue has been discussed again by focusing
only on transitions from the ground state of the nucleus A to the
ground state of the nucleus A + 2. Several formula to calculate
the associated addition and removal transition probabilities
have been considered and the corresponding results compared.
Enhancement effects in the transition probabilities observed
for some Sn isotopes (related to the use of a surface-peaked
pairing interaction, and also found in Ref. [8]) have been
analyzed. In Ref. [8] these effects are described in terms of
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radial integrals (used to evaluate the transition probabilities)
where low-/ wave functions contribute for some very neutron-
rich isotopes. These effects are amplified when surface-peaked
interactions are employed because low-/ wave functions have
a strong localization at the surface. In Ref. [11] the same
enhancement effects in the transition probabilities have been
interpreted in a complementary way within the canonical-basis
picture. In this scheme, the transition probabilities are not
calculated as radial integrals, but as sums of occupation
probabilities. The enhancement effects related to surface-
peaked interactions are due in this representation to a more
pronounced fragmentation of the canonical states around the
Fermi energy.

A crucial aspect to consider in this type of analysis
is related to the criteria that are chosen to constrain the
pairing interaction. In Refs. [9-11] the parameters of the
different pairing interactions are adjusted to reproduce the
two-neutron separation energies for those even Sn isotopes in
the nuclear chart where masses are known experimentally. In
other calculations (for instance, in Ref. [12]) the parameters
have been fitted to reproduce the experimental gaps (evaluated
with the three-point or the five-point formula [13]) with a
theoretical gap calculated as

[ dr pg(r)Ag(r)
Ay =+——F— * ° 1
1 [ dr py(r) M
or
A [dr py(r)Ag(r) @

T [drp oy

where A, (r) is the pairing potential for neutrons (¢ = v) or
protons (g = 7); pg(r) and g, (r) are the nucleonic particle and
anomalous densities, respectively, defined within the Hartree-
Fock-Bogoliubov (HFB) framework. In both the previous
procedures, that of Refs. [9-11] and that of Ref. [12], the
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adjustment of the parameters is done only on even nuclei. As
far as the second procedure is concerned, two aspects should be
emphasized. First, there is an ambiguity related to the choice
of the two possible quantities, Eq. (1) or Eq. (2), to evaluate
the gap in the theoretical calculations. The two quantities
may be quite different from one another for some nuclei
and for some specific choices of the pairing interaction, as
shown, for example, in Ref. [11]. Second, A, and Aq are both
calculated in a different way with respect to the experimental
values obtained with the three- or the five-point formula. The
comparison between such experimental and theoretical values
is thus questionable.

A third example is given in Ref. [14] where the parameters
are adjusted for stable Ca isotopes to reproduce the experimen-
tal gaps by using the five-point formula [13]. The five-point
formula is also used in the theoretical calculations, and odd
nuclei are included by using the blocking approximation.
The comparison between the theorerical and the experimental
values is now meaningful because the same quantities are
evaluated in both cases. By using this prescription, negligible
discrepancies are found in the transfer transition probabilities
for Ca isotopes for differently localized pairing interactions
(surface-peaked, surface/volume mixed, and volume). How-
ever, the calculations are done only for stable nuclei and
the exotic regions are not explored. Furthermore, it could be
interesting to check what this type of fitting procedure implies
in the theoretical predictions for the pairing correlations along
the isotopic chains and, in particular, at shell closures.

In this article we address two main issues. (i) The first is
analyzing how much the predictions (and the surface effects)
related to pair-transfer reactions are affected by the procedure
followed to adjust the parameters of the pairing interaction.
For a surface-peaked, a mixed, and a pure volume interaction,
we adjust first the parameters to reproduce the experimental
pairing gaps calculated with the five-point formula. Odd nuclei
are included in the adjustment procedure and they are treated
with the blocking approximation in the HFB calculations. To
fit the parameters of the neutron pairing interaction, we choose
Ca isotopes, from 2>Ca to 2°Ca. We analyze in detail what this
procedure implies for the anomalous densities and calculate the
corresponding trends of the two-neutron separation energies
to check whether they are in a reasonable agreement with
the experimental values (this was the fitting criterion used in
Refs. [9-11]). We then generate two other sets of parameters:
one obtained to have the same value of A,, Eq. (1), for the
mid-shell nucleus **Ca; the other obtained to reproduce the
two-neutron separation energies from “’Ca to *8Ca. (ii) By
using the different procedures to adjust the pairing interaction,
we consider a case where surface effects are expected to be
particularly amplified. In recent studies [15,16] large odd-even
staggering effects have been found in reaction cross sections
of unstable Ne and Cr nuclei close to the neutron drip
line. Such strong staggering effect has been related to the
existence of low-/ weakly bound states in drip-line nuclei
and to the associated antihalo effect generated by the pairing
interaction [17-19]. In Ref. [16] the previous predictions found
by Hamamoto et al. [20,21] (the pairing gap is expected to
disappear for weakly bound states) are shown to be an artificial
result related to the employed approximations. This result was
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actually found in Refs. [20,21] because the calculations were
not self-consistent in the determination of the Fermi energy
A. This issue is associated with the more general problem of
the persistence of the pairing gap in weakly bound superfluid
systems, such as nuclei at the drip lines as well as nuclear
clusters in the crust of neutron stars [22,23].

The special cases discussed in Refs. [15,16] may be
important to unambigously disentangle the different possible
spatial localizations of the pairing interaction. In this work
we analyze one of these cases, in the Cr isotopic chain, and
we compute the ground state to ground state pair-transfer
transition probabilities at the neutron drip line to check the
sensitivity of the results on the choice of the interaction. The
problem of the persistence of pairing correlations at the drip
lines is shown to be connected with the transfer-probability
trends.

The article is organized as follows. In Sec. II the choice
of the procedure employed to adjust the parameters of the
pairing interaction is discussed. Different spatially localized
neutron pairing interactions are generated for stable open-shell
Ca isotopes. In Sec. III these different pairing interactions are
used to calculate the ground state to ground state two-neutron
transfer probabilities in Cr isotopes at the drip line, where the
3512 neutron orbital is the last (and weakly bound) state. In
Sec. IV conclusions are reported.

II. ADJUSTMENT OF THE PAIRING INTERACTIONS

We perform HFB calculations with the Skyrme
parametrization SkM* [24] in the mean-field channel. Odd
nuclei are treated with the blocking approximation. A zero-
range density-dependent pairing interaction Vj,;, is employed
in the pairing channel, with

R)\*
Vpair(r1, 12) = Vo [1 -1 (%) ] d(ri—r), 3

where R = (r; +12)/2, a =1, and py = 0.16 fm—3. With
a cutoff equal to 60 MeV in quasiparticle energies and a
maximum value of j equal to 15/2, the parameter V, was
adjusted in Refs. [9-11] to reproduce the known two-neutron
separation energies of Sn isotopes. By using this prescription, it
was checked that the proton pairing correlations were equal to
zero for all the considered isotopes and that the neutron pairing
correlations were equal to zero for the doubly magic nuclei
along the isotopic chain, as should be expected for calculations
done within the mean-field-based HFB framework.

First, we change the prescription and adjust the intensity of
the pairing interaction Vj on the experimental neutron pairing
gaps A® evaluated with the five-point formula:

5 (_l)N
A®(Z,N) = — 2 [E(Z,N +2)—4E(Z,N +1)

+6E(Z,N)—4E(Z,N — )+E(Z,N —2)],
“4)

where E(Z, N) is the binding energy of the nucleus. We
choose the five-point formula instead of the three-point one
to have more regular trends to be fitted and to avoid the
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FIG. 1. (Color online) (a) Neutron gaps A® obtained with the
five-point formula for Ca isotopes. (b) Two-neutron separation
energies for Ca isotopes. The calculations are performed with the
parameters of Table I.

odd-even staggering effect. In Sec. III we will analyze Cr
isotopes and calculate two-neutron transfer probabilities at
their (theoretically predicted) neutron drip line. To perform
these calculations, we need a suitable neutron pairing in-
teraction. In principle, we should do the adjustment of the
parameters for the Cr isotopic chain by using the known
experimental masses, that is, from 46Cr to 92Cr. However, the
experimental A® values have a very irregular trend for such
Cr isotopes. These irregularities may be related to the fact
that some isotopes are deformed and also to the presence of a
proton pairing for these nuclei.

To simplify the fitting procedure for the neutron pairing, we
take a more regular case by choosing isotopes with a similar
number of Z and where the proton pairing is negligible. We
choose Ca isotopes where the trend of A® is indeed quite
regular, as can be seen in Fig. 1. We adjust the different
pairing interactions to reproduce the trend of A® for both
odd and even nuclei, from “*Ca to **Ca. We keep out from
the fit the nuclei close to the magic isotopes *°Ca and **Ca.
It is known that for these nuclei the value of the gap A®
increases owing to spurious effects that are not related to the
pairing correlations but to the shell structure. Our objective
is to reproduce at best the trend of the gap A®), with a
special care for the mid-shell nucleus “*Ca. To be sure that the
proton pairing is negligible for all the isotopes under study,
we settle the intensity V{ of the proton pairing interaction at
the value —150 MeV fm~! for all the examined cases. We
plot in Fig. 1(a) the corresponding values of A® and, in
panel (b), the trends of the two-neutron separation energies
So.(Z,N)=E(Z,N)— E(Z, N — 2), for three interactions:
surface-peaked (n = 1), mixed (n = 0.5), and volume (n = 0).
For the separation energies, we consider the isotopes from **Ca
to “8Ca. We observe that we have succeeded in having almost
the same value of A® for the nucleus **Ca, with the three
pairing interactions. This value is in good agreement with
the experimental data. Globally, the two-neutron separation
energies are not in very good agreement with the experimen-
tal trends, especially for the mixed interaction, where the
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TABLEI Second column: values of the strength V}, of the neutron
pairing interaction adjusted to reproduce the experimental trends of
A® calculated with the five-point formula, for three different pairing
interactions, volume, mixed, and surface-peaked (different values of
1). In the third and fourth columns the corresponding values of the
neutron A, and A®, calculated with Eq. (1) and with the five-point
formula, respectively, are reported for the nucleus *Ca.

n Vo MeV fm™) A, (MeV) A® (MeV)
44Ca 44Ca

0 (volume) —185 1.52 1.74

0.5 (mixed) —376 3.34 1.64

1 (surface) —295 0.55 1.74

discrepancies are more pronounced and even the slope is
strongly different.

In Table I, we list the corresponding values of V; for the
surface-peaked (n = 1), the mixed (n = 0.5), and the volume
(n = 0) pairing interactions and the corresponding values of
the neutron A,, evaluated by using Eq. (1), for the nucleus
4(Ca. This is done to check whether the adopted criterion to
reproduce the experimental value of A® also leads to similar
values of A,. We clearly see that this is not true: the values
of A, for #Ca are extremely different for the three pairing
interactions. We have checked then that, if we want to have,
for example, a value of of A, of ~1.5 MeV for **Ca, we may
keep the same volume interaction as in Table I, but we have
to change the values of Vj for the other pairing interactions
by reducing the strength for the mixed case and by increasing
the strength for the surface-peaked case. The corresponding
values are reported in Table II. If we use now these strengths,
we obtain for the nucleus **Ca values of A® equal to 1.74 and
0.38 MeV for the volume and mixed interactions, respectively
(third column of Table II). The calculations for the odd and
even isotopes close to the nucleus **Ca do not converge
numerically for the surface-peaked interaction of Table II,
and the corresponding values of A® and of S, cannot thus
be calculated. By comparing the volume and mixed cases in
Table II, we conclude that, if we adopt the criterion of having
similar values of A, at mid-shell, then the strength of the
mixed interaction has to be strongly reduced and this provides
a too low value of A® that is far from the experimental
value.

The separation energies corresponding to the interactions
of Table II are plotted in Fig. 2 (with the exception of the

TABLE II. Second column: values of the strength V, of the
neutron pairing interaction adjusted to have in all cases A, ~
1.5 MeV for the nucleus “*Ca. In the third and fourth columns the
corresponding values of the gap calculated with Eq. (1) and with the
five-point formula are reported for the nucleus “*Ca.

n Vo MeV fm™) A, (MeV) A® (MeV)
44Ca 44Ca

0 (volume) —185 1.52 1.74

0.5 (mixed) —280 1.56 0.38

1 (surface) —510 1.56
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FIG. 2. (Color online) Two-neutron separation energies for Ca
isotopes corresponding to the interactions listed in Table II.

surface-peaked interaction). We observe that the slope of the
S, values corresponding to the mixed interaction has been
corrected with respect to that of Fig. 1: the agreement with the
experimental trend has been globally improved.

The anomalous densities corresponding to all the inter-
actions of Tables I and II are plotted for the nucleus **Ca
in Fig. 3. The three upper panels refer to the interactions of
Table I, whereas the three lower panels refer to the interactions
of Table II. We observe that the criterion of constraining the
pairing by using the experimental values A® leads to very
different profiles for the anomalous densities for the nucleus
#(a for the three different choices of the pairing interaction.
This does not occur when the prescription of having a similar
value of A, for #*Ca is adopted.

There is an additional aspect that should be addressed.
When the prescription of reproducing the experimental values
of A® for open-shell nuclei is used, it is not garanteed that the
pairing correlations are quenched at shell closures. In Fig. 4
we plot the neutron anomalous densities for the magic nucleus
40Ca, where pairing correlations are expected to disappear
in HFB calculations. The profiles are shown for the three
pairing interactions of Table I. We observe that the anomalous
density is negligible for the volume interaction (a) and for
the surface-peaked interaction (c). For the mixed interaction
(b), however, the anomalous density is very large. We have
checked that in this case the value of A, is ~3 MeV. The
pairing interaction is too intense to provide a closed-shell *’Ca.
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FIG. 3. Anomalous densities (in units of fm~3) for the nucleus
4Ca. In panels (a), (b), and (c) the densities correspond to the
interactions of Table I. In panels (d), (e), and (f) the densities
correspond to the interactions of Table II.
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FIG. 4. Anomalous densities (in units of fm~3) for the nucleus
40Ca. The densities correspond to the interactions of Table 1.

On the other hand, if we reduce the strength of the pairing
interaction to predict a magic nucleus at N = 20, the value of
A® becomes too weak for the open-shell nuclei (see Table II).
This particular behavior found for the mixed interaction can
be seen also in Figs. 5 and 6, where the occupation numbers
of the neutron sy,, d3;2, and f7,, quasiparticle states are
reported for the nucleus *°Ca, up to a quasiparticle energy
of 10 MeV. Figure 5 refers to the mixed interaction and
Fig. 6 to the surface-peaked interaction of Table I. We see
that the occupation numbers are equal to 1 for the occupied
states only for n = 1. For the mixed interaction, the occupied
states have an occupation number smaller than 1 and the f7,,
orbital starts being occupied. The ground state of “°Ca is thus
far from being uncorrelated, as should be expected in HFB
calculations.

Several aspects shown in this work seem to indicate that the
fitting criteria employed to provide the parameters of Table I
may lead to questionable results: (i) the anomalous densities
obtained with different (in the spatial localization) pairing
interactions may be very different for a superfluid nucleus
(in our case *“*Ca) [panels (a), (b), and (c) of Fig. 3]; (ii)
pairing correlations may be active even for those nuclei that
are expected to be closed shell (in our case *°Ca), especially
for some choices of the pairing interaction (here, for mixed
pairing interactions); (iii) last but not least, we observe that
the trend of the parameters is not the same as that of Tables II

1 I \

Q
8. Pca 1 sip n= (.)'5 ]
= 0.5+ B dy, (Mixed int.);
o r 12 ]
z 0 ! ! . ‘ !

0 2 4 6 8 10

Quasiparticle energy (MeV)

FIG. 5. (Color online) Occupation numbers of the neutron states
1,2, d3j2, and f7/, as a function of the quasiparticle energy, up to
10 MeV, for the nucleus “°Ca. The two states with a larger occupation
probability correspond to the orbitals 25/, and 1ds,. The orbital
1 f7/2 has an occupation different from zero. The mixed interaction of
Table I is used.
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FIG. 6. (Color online) Same as in Fig. 6 but for the surface-peaked
interaction of Table I. In this case, the 2s,,, and 1d3/2 orbitals have
occupation numbers equal to 1 and the 1 f;,, orbital is empty.

and III. What is physically expected is that the strength of the
interaction should increase when going from a volume to a
surface-peaked interaction. This behavior is not observed in
Table I.

Let us now change the procedure and adjust the parameters
to reproduce at best the trend of the separation energies. The
obtained parameters are reported in Table III and the separation
energies are shown in Fig. 7. We have checked that the nucleus
40Ca is now predicted to be almost closed-shell in all cases.
The values of A, and A® are also included in the table for
the nucleus **Ca. The numerical calculations for the surface-
peaked interaction do not converge for the odd nuclei close to
#Ca in this case and the corresponding value of A® cannot
be computed. The three values of A, are very similar. The two
values of A® for n = 0 and 0.5 are very different.

There are then two possible attitudes that can be adopted
to adjust the parameters of the pairing interaction (i) We
can reproduce the experimental trends of the two-neutron
separation energies S,,. This allows us, at the same time, to
predict reasonable closure shells at magic nuclei. With this
procedure, the resulting values of A, practically do not differ.
The resulting values of A® are strongly different. (ii) We
can reproduce the A® values, being aware, however, that the
shell closures and the two-neutron separation energies may be
poorly reproduced, owing to too strong pairing intensities in
some cases.

InRef. [14] procedure (ii) has been employed and negligible
differences have been found in transfer probabilities for stable
nuclei and for three different localizations of the pairing
interaction. In next section we use the same procedure by
exploring more exotic cases, at the drip line of Cr isotopes.

TABLE III. Second column: values of the strength V, of the
neutron pairing interaction adjusted to reproduce at best the trend
of the separation energies. In the third and fourth columns, the
corresponding values of the gap calculated with Eq. (1) (third column)
and with the five-point formula (fourth column) are reported for the
nucleus #Ca.

n Vo MeV fm™") A, (MeV) A® (MeV)
44Ca 44Ca

0 (volume) —170 1.26 1.49

0.5 (mixed) —250 1.23 0.48

1 (surface) —460 1.24
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FIG. 7. (Color online) Two-neutron separation energies for Ca
isotopes, from “*Ca to **Ca, obtained with the parameters of Table III.

III. PAIR-TRANSFER PROBABILITIES FOR CR ISOTOPES
AT THE DRIP LINE

We employ the parameters adjusted in the previous section.
The same parameters are kept also for the pairing interaction
(even if the present isotopes are not closed-shell in protons) to
better isolate the effects coming only from the neutron pairing.
In Ref. [16] the Cr drip-line nucleus is 7°Cr (N = 52) where
the last bound state is the 35/, neutron orbital. Calculations
are done there with a Woods-Saxon potential in the mean-field
channel. We use here the Skyrme parametrization SkM*. The
Hartree-Fock drip-line Cr isotope is in our case the nucleus
82Cr (N = 58). The last bound occupied state is also the 3s; /2
neutron orbital, but the orbital 2d3,, is found here between the
states 1g9,, and 3y 2. This explains why the drip line is shifted
by six isotopes.

The removal and addition ground state (GS) — GS pair-
transfer amplitudes are written as

TR = (GSa 2| Wy (r1, —01)W,(r2, 02)|GS4)  (5)
and
TAY = (GS 42| W) (r2, o)W (1, —01)[GSA),  (6)

respectively, where o and g represent spin and isospin, respec-
tively. The matrices are assumed to be diagonal in isospin; that
is, ¢’ = q. The states |GS,) and |GS44,) correspond to the
ground states of the initial and of the final nucleus of the
transfer reaction.

In the approximation of Ref. [8] the pair-transfer probabil-
ities are calculated with the amplitudes

1 <
ren s LS .
nlj

They are thus written as
2

pRem — pAdd _ /dr > ubvnil (8)

nlj
The improved formula introduced in Ref. [11] leads to
PRM(A +2) = PAY(A), ©)

and

PAYA) = ‘/dr Z”rfljvr?l# . (10)

nlj
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FIG. 8. Addition transition probabilities for Cr isotopes, from
4Cr to #2Cr, for the volume (a), the mixed (b) and the surface-peaked
(c) interactions of Table I.

We calculate the addition probabilities associated with the
transfers ACr — A*2Cr, starting from the nucleus "*Cr where
the orbital 1go 5 is fully occupied, up to the nucleus 82Cr where
the neutron state 351/, contributes. We have checked that, for
all the employed interactions, |E(Z, N)| > |E(Z, N — 2)|, to
be sure that the HFB two-neutron drip line is not predicted
between "Cr and 32Cr. The 3sy/» neutron orbital contributes
only for the nucleus Cr.

In Figs. 8 and 9 the transfer probabilities are plotted for the
volume (a), mixed (b), and surface-peaked (c) interactions,
for the parameters of Tables I (Fig. 8) and II (Fig. 9).
The two equations (8) and (10) (improved form) are used.
Let us consider first Fig. 8 (parameters of Table I). The
strengths are strongly different, according to the used pairing
interaction. In particular, the strong pairing interaction for n =
0.5 provides very large strengths for the transfer probabilities.
The differences found in the profiles of PA%(A) are due to the
following findings: The nucleus 7#Cr is predicted to be almost
closed-shell for n = 0 and 1. This leads to negligible values of
PAY if Eq. (8) is used. The values obtained with Eq. (10) are
obviously larger. For n = 0, the nucleus ¥2Cr is also predicted

200
g 150
=" 100
<
50

200

2150

~

oo Eq. (8)
== Eq. (10)

(@) 7

dd
—_
o
S
LI B B

(b)

©

B

(==}
£
N

82

FIG. 9. Same as in Fig. 8, but with the interactions of Table II.

PHYSICAL REVIEW C 87, 064308 (2013)

to be closed-shell (pairing is very weak) and this explains why
the value of PA% for A = 80 obtained with Eq. (8) is larger
than that obtained with Eq. (10). For = 1, both nuclei 8Cr
and 82Cr are predicted to be closed-shell, so that the two values
of PAd at A = 80, corresponding to Eqs. (8) and (10), are
both very close to zero. The case n = 0.5 is different. Pairing
correlations are much stronger and pairing is active for all the
isotopes. At A = 80 and 82 pairing is not quenched. Between
the results corresponding to Eq. (8) and those corresponding to
Eq. (10) there is a shift, which means that the improved formula
globally provides an enhancement of pairing correlations.

Let us now describe Fig. 9. For n = 0 (a) and 0.5 (b), the
same remarks as for panel (a) of Fig. 8 may be done. The case
n = 1 (c) is different. As in Fig. 8 (b), we observe that pairing
is still active at the drip line (it is not suppressed). There is,
however, a very important difference with respect to Fig. 8(b).
A change of slope is found at A = 78 when Eq. (10) is used.
This change of slope is related to a particularly pronounced
enhancement of the probability at A = 80, where the spatial
extended s wave function contributes if Eq. (10) is employed.
This explains why this change of slope is not found when
Eq. (8) is used. The enhancement of the probability for n = 1
is due to the interplay of the spatial extension of the s wave
function and the strong surface localization of the pairing
interaction.

By looking at the two figures, one can conclude that results
are very strongly case dependent in the specific values of
P24 However, there are two general indications that are
independent of the intensity of P24 and depend only on the
trends. Let us consider only the full lines in the figures, because
they correspond to the improved formula for the transfer proba-
bility. First, if pairing correlations are quenched at the drip lines
(suppression of pairing for weakly bound systems at the drip
lines), it is expected that the probability describing the transfer
from the nucleus A to the nucleus A + 2 (where A + 2 is the
drip line nucleus) is smaller than the probability associated
with the transfer A — 2 — A [panels (a) and (c) of Fig. 8 and
(a) and (b) of Fig. 9]. Second, the opportunity to analyze the
surface properties of the pairing interaction obviously exists
only if pairing survives at the drip line. In this case, a strongly
surface-peaked interaction leads to a change of slope in the

gl M=0 A e eEq.(8) | |
2 - S .. l—lEq. (10)
3 40 Y |
<« 07 (@)
(b)
_Z 200} ‘ -
E;
100~ —
B L \. | | | (C) ]
072 74 76 78 80 82

FIG. 10. Same as in Fig. 8, but with the interactions of Table III.
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trends of the transition probabilities [panel (c) of Fig. 9]. This
special case (s state contributing at the drip line and pairing not
suppressed) may thus provide a chance to better understand if
the pairing interaction is strongly localized at the surface of
nuclei or not, by simply looking at the trend of the transfer
probabilities. If the change of slope is not found in measure-
ments, one can exclude strongly surface-peaked pairing inter-
actions. As mentioned above, the problem of the persistence
of pairing at the drip lines is tightly connected with this.

Let us now use the parameters of Table III to calculate
the transfer probabilities with the pairing interactions that
reproduce at best the Sy, trends.

Figure 10 shows the resulting strengths. The same com-
ments as for Fig. 9 can be made. If pairing persists at the
drip line, then PAd4(A) increases from A =78 to A = 80.
Furthermore, a change of slope is predicted in this case for
a surface-peaked interaction that amplifies the contribution of
the weakly bound s state.

IV. CONCLUSIONS

We have computed two-neutron transfer probabilities at
the (theoretically predicted) neutron drip lines of Cr isotopes,
where the last occupied state is the weakly bound neutron
351, orbital. We have examined different procedures to adjust

PHYSICAL REVIEW C 87, 064308 (2013)

a phenomenological pairing interaction in the framework of
the HFB model and check the implications of each chosen
procedure. Three differently spatially located (volume, mixed,
and surface-peaked) pairing interactions have been generated
for each adjustment procedure. The values of the resulting
probabilities are very strongly case dependent. However, a gen-
eral conclusion can be drawn: if pairing correlations persist at
the drip line, a pure surface-peaked interaction would provide
not only increasing transfer probabilities from A = 78 ("8Cr
—80Cr) to A = 80 (3°Cr —®Cr), but also a change of slope
in the trend at A = 78. The change of slope originates from an
interplay between the spatial extension of the s wave function
and the surface localization of the pairing interaction. An
interaction that is not surface-peaked leads only to increasing
transfer probabilities if pairing is not suppressed. If, contrarily,
pairing is suppressed at the drip line, the transfer probability
is expected to decrease going from A = 78 to A = 80.

To conclude, the analysis of Cr isotopes at the drip line can
thus offer the opportunity to clarify two aspects: the persistence
or suppression of pairing correlations at nuclear drip lines
and the surface properties of the pairing interaction. We are
of course aware that these isotopes cannot be produced with
the present facilities and that, so far, only theoretical studies
may be carried out in such a region of the nuclear chart, as
in Refs. [16] for the odd-even staggering of reaction cross
sections.
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