Estimate of ¹²C \times $(sd)^4$ **impurity in** ¹⁶C(g.s.)

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (Received 24 March 2013; revised manuscript received 21 May 2013; published 12 June 2013)

Recent results for the β decay of ¹⁷B, together with a simple model, allow an estimate of the $(sd)^4$ component in ${}^{16}C(g.s.)$. The result is about 0.02, a small number.

DOI: [10.1103/PhysRevC.87.064307](http://dx.doi.org/10.1103/PhysRevC.87.064307) PACS number(s): 21.10.Jx, 21.60.Cs, 23.40.Hc, 27.20.+ⁿ

I. INTRODUCTION

The ground state $(g.s.)$ of ^{12}Be is well known to have a predominant component whose structure is two sd-shell neutrons coupled to a p-shell ¹⁰Be(g.s.). This ¹⁰Be_{1p}(g.s.) $\times (sd)^2$ component is about 68% of the total g.s. wave function with most of the remainder being the normal p -shell ¹²Be(g.s.). A recent summary [1] contains the relevant references. In ¹⁴Be, the two dominant components are ¹²Be_{1p}(g.s.) $\times (sd)^2$ and ${}^{10}Be_{1p}(g.s.)\times (sd)^4$ with little firm information that concerns the two percentages $[2]$. In ^{14}C , the g.s. and a 0^+ state at 6.59 MeV are well described [3] in a two-state model, which consists of the normal p-shell ${}^{14}C(g.s.)$ and the structure ¹²C_{1p}(g.s.) × (sd)². One estimate [3] has about 12% of the latter configuration in the physical g.s. I return to the case of 14 C below. The fact that the core excitation is so much larger in 12 Be than in 14 C is well understood as a consequence of the disappearance of the $N = 8$ gap in 12 Be [4–6]. For the same reason, one might expect more core excitation in 14 Be than in 16 C, but neither is currently known.

In 16C, properties of many positive-parity states agree well [\[7\]](#page-1-0) with those of states expected from the structure ${}^{14}C(g.s.) \times$ $(sd)^2$, which contains two 0^+ , two 2^+ , one 3^+ , and one 4^+ state. Yet, various shell-model calculations [\[8,9\]](#page-1-0) predict appreciable amounts of the configuration ${}^{12}C_{1p}(g.s.) \times (sd)^4$ in ${}^{16}C(g.s.)$. No experiment has yet been able to measure the magnitude of this component. Recent research, which concerns ${}^{17}C$ [\[10\]](#page-1-0), has provided a possible means to estimate the amount of this component in ${}^{16}C$, and that is the subject of the present paper.

II. ANALYSIS AND RESULTS

In β decay of ¹⁷B, a 1/2⁻ state was observed [\[10\]](#page-1-0) at an excitation energy of 2.71(2) MeV, 1.98 MeV above the $16C + n$ threshold. The total width of this state was reported as $40(10)$ keV. In ^{17}C , the lowest negative-parity states are predominantly of the form ${}^{13}C \times (sd)^4$. The most direct route for such a $1/2^-$ state to decay to ¹⁶C(g.s.) is for the decay to proceed to a ¹²C \times (sd)⁴ component in ¹⁶C(g.s.). If we

write

¹⁶C (g.s.) =
$$
a^{14}
$$
C (g.s.) × $(sd)^2 + b^{12}$ C(g.s.) × $(sd)^4$,
with $a^2 + b^2 = 1$,

then the spectroscopic factor S_{17} for the decay ¹⁷C(1/2⁻) \rightarrow ¹⁶C(g.s.) is just b² times S[¹³C(g.s.) \rightarrow ¹²C(g.s.)]. Cohen-Kurath [\[11\]](#page-1-0) have $S_{13} = 0.61$ for the latter factor. We also have $S_{17} = \Gamma_{\text{exp}}/\Gamma_{\text{sp}}$. The relevant decay has $E_n = 1.98$ MeV for which the single-particle (sp) width is large enough to be difficult to calculate—but certainly in the range of 2–5 MeV. For the present purpose, I use $\Gamma_{sp} = 3.6$ MeV. Then, $S_{17} =$ $\Gamma_{\rm exp}/\Gamma_{\rm sp} = 0.04/3.6 = 0.011$. Equating this value to S_{13} b^2 gives $b^2 = 0.011/0.61 = 0.018$ for the amount of $(sd)^4$ in ${}^{16}C(g.s.)$. This rough estimate for ${}^{17}C$ could probably be uncertain by as much as 50%–100% because of the difficulty of estimating the sp width. But, even so, the result is that this component in ${}^{16}C$ is quite small. With the estimated uncertainty, the final result is $b^2 = 0.018(14)$.

A similar analysis previously gave approximate agreement [\[12\]](#page-1-0) with the measured neutron width of the first 1/2[−] state in ¹⁵C. In that case, the newest measurement of the $1/2^-$ width gave 29(3) keV, which resulted in a spectroscopic factor of $S_{15} = 0.023$ [\[12\]](#page-1-0). Then, applying the same analysis to ¹⁴C as used above for ¹⁶C leads to $b^2(^{14}C) = 0.038(19)$ where I have assigned a 50% uncertainty. The estimate of this quantity from an analysis of the ¹²C(t, p) reaction was 0.12(3) [3]. The ratio of the two is 3.2(18), about 1.2σ from unity. One shell-model calculation [\[13\]](#page-1-0) gave $b^2 \sim 0.08$. Analysis of results of the ¹⁴O(*p*,*t*) reaction [\[14\]](#page-1-0) (in reverse kinematics) led to a limit of $b^2 > 0.06$ [\[15\]](#page-1-0) in the mirror nucleus ¹⁴O. I recently suggested another experiment to measure this quantity in ${}^{14}C$ [\[15\]](#page-1-0).

III. SUMMARY

Using a newly reported width for the lowest 1/2[−] state of $17¹⁷C$ and a calculated single-particle width, I computed the relevant spectroscopic factor. Then, in a simple two-state model of ¹⁶C(g.s.), the $(sd)^4$ component is estimated to be about 0.02 with a large uncertainty. It remains a challenge for open-core shell-model calculations to reproduce this small value.

- [1] H. T. Fortune and R. Sherr, Phys. Rev. C **85**[, 051303 \(2012\).](http://dx.doi.org/10.1103/PhysRevC.85.051303)
- [2] M. Labiche, F. M. Marqués, O. Sorlin, and N. Vinh Mau, *[Phys.](http://dx.doi.org/10.1103/PhysRevC.60.027303)* Rev. C **60**[, 027303 \(1999\).](http://dx.doi.org/10.1103/PhysRevC.60.027303)
- [3] H. T. Fortune and G. S. Stephans, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.25.1) **25**, 1 (1982).
- [4] H. T. Fortune, G.-B. Liu, and D. E. Alburger, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.50.1355) **50**, [1355 \(1994\).](http://dx.doi.org/10.1103/PhysRevC.50.1355)
- [5] R. Sherr and H. T. Fortune, Phys. Rev. C **60**[, 064323 \(1999\).](http://dx.doi.org/10.1103/PhysRevC.60.064323)
- [6] T. Suzuki and T. Otsuka, Phys. Rev. C **56**[, 847 \(1997\).](http://dx.doi.org/10.1103/PhysRevC.56.847)
- [7] H. T. Fortune, M. E. Cobern, S. Mordechai, G. E. Moore, S. Lafrance, and R. Middleton, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.40.1236) **40**, 1236 [\(1978\).](http://dx.doi.org/10.1103/PhysRevLett.40.1236)
- [8] D. J. Millener (private communication).
- [9] W. D. M. Rae, L. C. Bland, and H. T. Fortune (unpublished).
- [10] H. Ueno *et al.*, Phys. Rev. C **87**[, 034316 \(2013\).](http://dx.doi.org/10.1103/PhysRevC.87.034316)
- [11] S. Cohen and D. Kurath, [Nucl. Phys. A](http://dx.doi.org/10.1016/0375-9474(67)90285-0) **101**, 1 (1967).
- H. T. FORTUNE PHYSICAL REVIEW C **87**, 064307 (2013)
	- [12] H. T. Fortune, Phys. Rev. C **83**[, 024311 \(2011\).](http://dx.doi.org/10.1103/PhysRevC.83.024311)
	- [13] A. C. Hayes, S. Chakravarti, D. Dehnhard, P. J. Ellis, D. B. Holtkamp, L.-P. Lung, S. J. Seestrom-Morris, Helmut Baer, C. L. Morris, S. J. Greene, and C. J. Harvey, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.37.1554) **37**[, 1554 \(1988\).](http://dx.doi.org/10.1103/PhysRevC.37.1554)
	- [14] D. Suzuki *et al.*, Phys. Rev. Lett. **103**[, 152503 \(2009\).](http://dx.doi.org/10.1103/PhysRevLett.103.152503)
	- [15] H. T. Fortune, Phys. Rev. C **86**[, 067303 \(2012\).](http://dx.doi.org/10.1103/PhysRevC.86.067303)