Estimate of ${}^{12}C \times (sd)^4$ impurity in ${}^{16}C(g.s.)$

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (Received 24 March 2013; revised manuscript received 21 May 2013; published 12 June 2013)

Recent results for the β decay of ¹⁷B, together with a simple model, allow an estimate of the $(sd)^4$ component in ¹⁶C(g.s.). The result is about 0.02, a small number.

DOI: 10.1103/PhysRevC.87.064307

PACS number(s): 21.10.Jx, 21.60.Cs, 23.40.Hc, 27.20.+n

I. INTRODUCTION

The ground state (g.s.) of ¹²Be is well known to have a predominant component whose structure is two sd-shell neutrons coupled to a *p*-shell ¹⁰Be(g.s.). This ¹⁰Be_{1p}(g.s.) \times (sd)² component is about 68% of the total g.s. wave function with most of the remainder being the normal p-shell ¹²Be(g.s.). A recent summary [1] contains the relevant references. In ¹⁴Be, the two dominant components are ${}^{12}\text{Be}_{1p}(g.s.) \times (sd)^2$ and ${}^{10}\text{Be}_{1p}(g.s.) \times (sd)^4$ with little firm information that concerns the two percentages [2]. In ¹⁴C, the g.s. and a 0⁺ state at 6.59 MeV are well described [3] in a two-state model, which consists of the normal *p*-shell $^{14}C(g.s.)$ and the structure ${}^{12}C_{1n}(g.s.) \times (sd)^2$. One estimate [3] has about 12% of the latter configuration in the physical g.s. I return to the case of ¹⁴C below. The fact that the core excitation is so much larger in ¹²Be than in ¹⁴C is well understood as a consequence of the disappearance of the N = 8 gap in ¹²Be [4–6]. For the same reason, one might expect more core excitation in ¹⁴Be than in ¹⁶C, but neither is currently known.

In ¹⁶C, properties of many positive-parity states agree well [7] with those of states expected from the structure ¹⁴C(g.s.) × $(sd)^2$, which contains two 0⁺, two 2⁺, one 3⁺, and one 4⁺ state. Yet, various shell-model calculations [8,9] predict appreciable amounts of the configuration ¹²C_{1p}(g.s.) × $(sd)^4$ in ¹⁶C(g.s.). No experiment has yet been able to measure the magnitude of this component. Recent research, which concerns ¹⁷C [10], has provided a possible means to estimate the amount of this component in ¹⁶C, and that is the subject of the present paper.

II. ANALYSIS AND RESULTS

In β decay of ¹⁷B, a 1/2⁻ state was observed [10] at an excitation energy of 2.71(2) MeV, 1.98 MeV above the ¹⁶C + *n* threshold. The total width of this state was reported as 40(10) keV. In ¹⁷C, the lowest negative-parity states are predominantly of the form ¹³C × (*sd*)⁴. The most direct route for such a 1/2⁻ state to decay to ¹⁶C(g.s.) is for the decay to proceed to a ¹²C × (*sd*)⁴ component in ¹⁶C(g.s.). If we write

16
C (g.s.) = a^{14} C (g.s.) × $(sd)^2 + b^{12}$ C(g.s.) × $(sd)^4$,
with $a^2 + b^2 = 1$,

then the spectroscopic factor S_{17} for the decay ${}^{17}C(1/2^-) \rightarrow {}^{16}C(g.s.)$ is just b^2 times $S[{}^{13}C(g.s.) \rightarrow {}^{12}C(g.s.)]$. Cohen-Kurath [11] have $S_{13} = 0.61$ for the latter factor. We also have $S_{17} = \Gamma_{exp}/\Gamma_{sp}$. The relevant decay has $E_n = 1.98$ MeV for which the single-particle (sp) width is large enough to be difficult to calculate—but certainly in the range of 2–5 MeV. For the present purpose, I use $\Gamma_{sp} = 3.6$ MeV. Then, $S_{17} = \Gamma_{exp}/\Gamma_{sp} = 0.04/3.6 = 0.011$. Equating this value to S_{13} b^2 gives $b^2 = 0.011/0.61 = 0.018$ for the amount of $(sd)^4$ in ${}^{16}C(g.s.)$. This rough estimate for ${}^{17}C$ could probably be uncertain by as much as 50%–100% because of the difficulty of estimating the sp width. But, even so, the result is that this component in ${}^{16}C$ is quite small. With the estimated uncertainty, the final result is $b^2 = 0.018(14)$.

A similar analysis previously gave approximate agreement [12] with the measured neutron width of the first $1/2^-$ state in ¹⁵C. In that case, the newest measurement of the $1/2^-$ width gave 29(3) keV, which resulted in a spectroscopic factor of $S_{15} = 0.023$ [12]. Then, applying the same analysis to ¹⁴C as used above for ¹⁶C leads to $b^2({}^{14}C) = 0.038(19)$ where I have assigned a 50% uncertainty. The estimate of this quantity from an analysis of the ¹²C(*t*,*p*) reaction was 0.12(3) [3]. The ratio of the two is 3.2(18), about 1.2 σ from unity. One shell-model calculation [13] gave $b^2 \sim 0.08$. Analysis of results of the ¹⁴O(*p*,*t*) reaction [14] (in reverse kinematics) led to a limit of $b^2 > 0.06$ [15] in the mirror nucleus ¹⁴O. I recently suggested another experiment to measure this quantity in ¹⁴C [15].

III. SUMMARY

Using a newly reported width for the lowest $1/2^-$ state of ${}^{17}C$ and a calculated single-particle width, I computed the relevant spectroscopic factor. Then, in a simple two-state model of ${}^{16}C(g.s.)$, the $(sd)^4$ component is estimated to be about 0.02 with a large uncertainty. It remains a challenge for open-core shell-model calculations to reproduce this small value.

- [1] H. T. Fortune and R. Sherr, Phys. Rev. C 85, 051303 (2012).
- [2] M. Labiche, F. M. Marqués, O. Sorlin, and N. Vinh Mau, Phys. Rev. C 60, 027303 (1999).
- [3] H. T. Fortune and G. S. Stephans, Phys. Rev. C 25, 1 (1982).
- [4] H. T. Fortune, G.-B. Liu, and D. E. Alburger, Phys. Rev. C 50, 1355 (1994).
- [5] R. Sherr and H. T. Fortune, Phys. Rev. C 60, 064323 (1999).
- [6] T. Suzuki and T. Otsuka, Phys. Rev. C 56, 847 (1997).

- [7] H. T. Fortune, M. E. Cobern, S. Mordechai, G. E. Moore, S. Lafrance, and R. Middleton, Phys. Rev. Lett. 40, 1236 (1978).
- [8] D. J. Millener (private communication).
- [9] W. D. M. Rae, L. C. Bland, and H. T. Fortune (unpublished).
- [10] H. Ueno et al., Phys. Rev. C 87, 034316 (2013).
- [11] S. Cohen and D. Kurath, Nucl. Phys. A 101, 1 (1967).
- [12] H. T. Fortune, Phys. Rev. C 83, 024311 (2011).
- [13] A. C. Hayes, S. Chakravarti, D. Dehnhard, P. J. Ellis, D. B. Holtkamp, L.-P. Lung, S. J. Seestrom-Morris, Helmut Baer, C. L. Morris, S. J. Greene, and C. J. Harvey, Phys. Rev. C 37, 1554 (1988).
- [14] D. Suzuki et al., Phys. Rev. Lett. 103, 152503 (2009).
- [15] H. T. Fortune, Phys. Rev. C 86, 067303 (2012).