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3PF2 pairing in high-density neutron matter
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The onset of the superfluid phase in high-density neutron matter is studied within the BCS framework with
two- and three-body forces. When including the strong correlation effects in the gap equation, the pairing gap
turns out to be nonvanishing in a range of densities about 0.1–0.4 fm−3 with a peak value a bit less than 0.05 MeV.
These results could limit the role of the 3PF2 superfluidity in the interpretation of phenomena occurring in the
neutron-star core.
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Introduction. So far, neutron stars (NSs) have been consid-
ered as rich laboratories of various superfluid phases of nuclear
matter [1–11]. Recently interest has been focused on the NS
interior, where both the vortex pinning responsible for the
observed period glitches [12] and the nucleon superfluidity
responsible for the main cooling mechanisms [13] are sup-
posed to be located. In particular, the recent observations of
cooling in the NS of Cassiopeia A have been considered to be
direct evidence of the anisotropic 3PF2 neutron-neutron (nn)
pairing in the NS core, and the energy gap needed to explain
the data has been estimated to be around 0.1 MeV [13].

From a theoretical viewpoint, the preceding calculations
show that 3PF2 pairing might extend to several times the
saturation density of nuclear matter in the pure BCS theory
without many-body effects. However, in such a high-density
regime the short-range correlations are so strong that the
momentum distribution around the Fermi level significantly
departs from the typical profile of a degenerate Fermi system.
This departure is measured by the so-called Z factor (0 < Z <
1) [14]. Since the deformation of the Fermi surface hinders
particle transitions around the Fermi energy εF , the pairing
gap is expected to get reduced. This effect was investigated
in the case of low-density 1S0 pairing channel (see, e.g.,
Ref. [15]), but it was ignored in the case of high-density nn
pairing in the 3PF2 channel, owing to the large uncertainty
still existing in the strength of the pairing interaction, both
two-body-force (2BF) and three-body-force (3BF) compo-
nents. Many-body effects on the pairing interaction, such as
the medium polarization in the uncoupled 3P2 channel [16]
and screening in the 1S0 channel [15], also point to gap
suppression.

In this Rapid Communication, we present a study of the
Z-factor effect on the 3PF2 pairing in pure neutron matter. In
principle, we should consider asymmetric nuclear matter for
application to the NS core, but the small proton fraction is not
relevant in this context, as discussed below. The deformation of
the Fermi surface and the Z factor are studied in the framework
of the Brueckner theory with 2BF and 3BF [17]. The energy
gap is then calculated within the generalized BCS theory [18],
including in the pairing interaction not only 2BF but also 3BF.
The latter, in fact, is dominant at high density and therefore is
expected to directly influence pairing gap in addition to the Z
factor.

Formalism and results: Nucleon propagator in neutron
matter. The neutron Green’s function is given by

G−1(p,ω) = ω − p2

2m
− �(p,ω) + eF , (1)

where eF denotes the Fermi energy and �(p,ω) is the
self-energy. Expanding the latter in a series of powers of the
quasiparticle energy around the Fermi surface, we obtain

G−1(p,ω) ≈ Z(p)−1(ω − εp), (2)

where the quasiparticle energy and the quasiparticle strength
are

εp = p2

2m
+ �(p, εp) − eF , Z(p) =

[
1 − ∂�(p,ω)

∂ω

]−1

ω=εp

,

respectively. The quasiparticle strength Z(p) measures the
deviation of a correlated Fermi system from the ideal
degenerate Fermi gas. The occupation numbers n(p)
and the Z(p) factors have been calculated in the framework
of the Brueckner theory [19,20]. Because of the inclusion
of the three-body forces, the hole-line expansion can be
extended up to high densities. The self-energy, truncated to
the second order (see Ref. [21] for details), provides us with
a good reproduction of the empirical nuclear mean field [22]
and the optical-model potential [23], so that we are quite
confident that the next orders are irrelevant for the present
calculation. We employ as 2BF the meson exchange Bonn B
potential [24], whose meson parameters are constrained by the
fit with the experimental phase shifts of NN scattering. The
microscopic meson exchange 3BF is the one constructed by Li
et al. [17]. It is consistent with the 2BF because it adopts the
same meson parameters as Bonn B, so that there are no free
parameters in the model.

The Z(p) factor is related to the depletion of the occupation
number n(p) around the Fermi surface. According to the
Migdal-Luttinger theorem [25] its value Z = Z(pF )(Z factor)
equals the discontinuity of the occupation number at the Fermi
surface, i.e.,

lim
ε→0

[n(pF − ε) − n(pF + ε)] = Z(pF ), (3)

where pF is the Fermi momentum. In our approximation
�(p,ω) = �1(p,ω) + �2(p,ω), where �1(p,ω) determines
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the left limit and �2(p,ω) determines the right limit of the
preceding equation for ε → 0.

In Fig. 1(a), we display the calculated occupation proba-
bility in pure neutron matter at density ρ = 0.3 fm−3. One
easily observes the remarkable deviation from the ideal Fermi
gas (solid line) due to the strong short-range correlations.
As expected, the deviation is slightly enhanced by 3BF. In
Fig. 1(b) the calculated Z factor is displayed vs density
in the two different approximations for the self-energy, i.e.,
� ≈ �1 and � ≈ �1 + �2, respectively. The calculation of
ZF from Eq. (3) requires a high numerical accuracy: By
increasing the accuracy the calculated ZF gets lower and
until the converging value is reached. It is noticed that without
3BF, the Z factors decrease slowly as a function of density.
Adding the contribution of �2 leads to an overall reduction
of the Z factor. The 3BF reduces further the Z factor and
its effect increases rapidly with density. As a consequence,
including 3BF makes the decrease of the Z factor as a function
of density much more rapid than that obtained by adopting pure
2BF. Therefore 3BF induces a strong extra deviation from the
ideal Fermi gas model.

Gap equation in the 3PF2 channel. The 3PF2 super-
fluidity in pure neutron matter has been investigated us-
ing various theoretical approaches [26–32] with 2BF and
extended to microscopic 3BF forces by Zuo et al. [18]. In
this case, the pairing gaps are determined by the equation:

FIG. 1. (Color online) Occupation numbers vs momentum at a
given density (upper panel) and Z factors vs density (lower panel) in
pure neutron matter. The effect of 3BF is shown in both panels. In
the lower panel the calculations are reported for two approximations
of the self-energy.

(
�L(p)
�L+2(p)

)
= − 1

π

∫ ∞

0
p′2dp′ Z(p)Z(p′)

Ep′

(
VL,L(p, p′) VL,L+2(p, p′)
VL+2,L(p, p′) VL+2,L+2(p, p′)

) (
�L(p′)
�L+2(p′)

)
, (4)

where E2
p = (εp − μ)2 + �2

p and �2 = �2
L + �2

L+2.
VL,L′(p, p′) are the matrix elements of the realistic NN
interaction in the coupled 3PF2 channel. In the gap equation,
the Z factors and the single-particle energy εp are calculated
from the Brueckner theory. As for the pairing interaction
VL,L′(p, p′) in the 3PF2 coupled channel, we adopt the same
2BF and 3BF as in the Brueckner calculation. The 3BF cannot
be neglected in the gap calculation because the 3PF2 pairing
is expected to occur in the high-density domain, where 3BF
is quite sizable, especially in the 3PF2 channel.

The results are summarized in Fig. 2. When neglecting the Z
factor effect (upper panel), the magnitude of the 3PF2 gap with
the new interaction dos not differ from previous calculations
with AV18 potential [18]. On the other hand, the 3BF enhances
the 3PF2 superfluidity significantly at higher densities. As
shown in the lower panel of Fig. 2, the introduction of the
Z-factor effect fatally quenches the pairing gaps to a value of
less than 0.05 MeV, one order of magnitude smaller than the
value with full interaction. The effect of the Z factor appears
to be extremely sizable at high densities. It is worth noticing
that this effect is opposite the 3BF effect on the 3PF2 pairing
in neutron matter: The former turns out to be much stronger
than the latter. In conclusion, the departure of the system from
the pure degenerate limit drives the pairing attenuation at high
density, regardless of whether the 3BF is included.

In Ref. [33], the effect of the Z factor was investigated
also for the 1S0 pairing in neutron matter, and it was shown to
reduce the energy gap. Compared with the results of Ref. [33],

FIG. 2. (Color online) Effect of the Fermi surface depletion on
3PF2 pairing gap in pure neutron matter. Notice the y-scale change
from panel (a) to panel (b).
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the same effect on the 3PF2 superfluidity appears to be much
stronger. This is simply because in the density region of the
3PF2 superfluidity the deviation of neutron matter from the
degenerate Fermi gas limit becomes much larger.

Conclusions. In conclusion, we have studied the anisotropic
3PF2 pairing in pure neutron matter. The effects of the
Fermi surface depletion (Z factor) have been included in the
calculation of the energy gap. In the pure degenerate limit,
the 3PF2 superfluid phase extends over a broad density range
with a gap peak value of about 0.2 MeV without 3BF and
0.5 MeV with 3BF. The inclusion of the Z factor leads to a rapid
decrease of the gap magnitude by one order of magnitude: Its
peak value drops to less than 0.05 MeV and the superfluidity
domain shrinks to 0.1–0.4 fm−3. These results for the 3PF2

superfluidity of high-density neutron matter cannot be directly
applied to the NS core, because of the presence of a proton
fraction in β equilibrium with neutrons. The appearance of
hyperons and/or the transition to deconfined phase can also
affect the neutron core structure. Here we briefly discuss the
effects of proton and hyperons, leaving for another study the
effect of quark phase that can be by itself a source of pairing.
The proton fraction in β equilibrium with neutrons, at the

densities relevant for pairing, is less than 15% of the total
density, and recent calculations of the quasiparticle strength
show that the enhancement of the neutron Z factor is negligible
for such a small proton fraction [34]. As to the hyperon phase,
leaving aside the small NS mass predicted by a model of
hyperons and baryons interacting via realistic forces [35], its
main effect is to reduce the neutron effective mass and then
to further suppress any pairing gap. The conclusion is that the
present results are expected to have a significant impact on the
investigations of the cooling and other transport properties of
neutron stars, based on models where the NS core is made of
high-density neutron matter (with or without hyperons) in β
equilibrium with protons.
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