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Azimuthal anisotropy in a jet absorption model with fluctuating initial
geometry in heavy ion collisions
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The azimuthal anisotropy due to path-length-dependent jet energy loss is studied in a simple jet absorption
model that includes event-by-event fluctuating Glauber geometry. Significant anisotropy coefficients vn are
observed for n = 1, 2, and 3, but they are very small for n > 3. These coefficients are expected to result in a
ridge for correlations between two independently produced jets. The correlations between the orientation of the
nth-order anisotropy induced by jet absorption (�QP

n ) and the nth-order participant plane (�PP
n ) responsible for

harmonic flow are studied. Tight correlations are observed for n = 2 in mid-central collisions, but they weaken
significantly for n �= 2. The correlations are positive for n � 3, but become negative in central collisions for
n > 3. The dispersion between �QP

n and �PP
n is expected to break the factorization of the Fourier coefficients

from two-particle correlation vn,n into the single particle vn, and has important implications for the high-pT ridge
phenomena.
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Introduction. Recently, a great deal of attention is focused
on the study of the azimuthal anisotropy of the particle
production in heavy ion collisions at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider (LHC).
This anisotropy is usually expanded into a Fourier series

dN

dφ
∝ 1 + 2

∞∑
n=1

vn cos n(φ − �n) (1)

with vn and �n representing the magnitude and direction of
nth-order anisotropy, respectively. At low pT, vn is thought to
be driven by the anisotropic pressure gradient associated with
the initial spatial asymmetries, with more particles emitted
in the direction of largest gradients [1]. Asymmetries giving
rise to nonzero vn are associated with either average shape
(for n = 2) or shapes arising from spatial fluctuations of the
participating nucleons [2–5]. They can be characterized by a
set of multipole components (also known as eccentricities),
calculated from the participating nucleons at (r, φ) [3]

εn =
√

〈r2 cos nφ〉2 + 〈r2 sin nφ〉2

〈r2〉 . (2)

The orientations of the minor axis for each moment n, also
known as the participant plane (PP) are given by

�PP
n = atan2(〈r2 sin nφ〉, 〈r2 cos nφ〉)

n
+ π

n
. (3)

When fluctuations are small and linearized hydrodynamics is
applicable, each vn is expected to be independently driven
by εn along �PP

n = �n [3]. This may not be true when the
fluctuations are large, as the nonlinear effects may lead to
significant mixing between harmonic flows of different order
[6]. In this paper, linear hydrodynamics are assumed (�PP

n =
�n) in order to facilitate the study of the correlations between
�n of different physics origins.

At high pT (pT � 10) GeV, the vn is thought to be driven
by the path-length-dependent energy loss of jets traversing the

medium, with more particles emitted along the direction of
shortest path length, �QP

n (QP stands for “quenching plane”,
the direction of minimal jet attenuation) [7,8]. Since jet
quenching is influenced by the same geometry as for flow, the
direction of smallest jet attenuation is expected to be correlated
with the direction of largest pressure gradient for flow. In fact,
these two directions are often implicitly assumed to be the same
in many theoretical calculations [9–14]. An explicit study of
the correlation between these directions can help clarify this
assumption.

In this paper, we estimate the high-pT anisotropy coeffi-
cients vn and �QP

n using a jet absorption model with event-
by-event fluctuating Glauber geometry. In multijet events
with multiple hard-scattering processes, we show that the
attenuation of jet yield leads to collimation of jet pairs
at small relative angles and results in a near-side ridge in
two-particle correlations (2PC) at high pT. We study the
correlations between �PP

n and �QP
n , and show explicitly that

these two angles are not the same. We explain how this angle
misalignment influences the relation between the high-pT

ridge and high-pT vn. The experimental prospect for measuring
the high-pT ridge is discussed in our model framework.

Model. We use a simple jet-absorption–Glauber model of
Ref. [15] to calculate vn and �QP

n . This model has been used
previously to study the centrality and path-length dependence
of single particle suppression RAA, dihadron suppression IAA,
and v2. Back-to-back jet pairs are generated according to the
binary collision density profile (ρc) in the transverse (xy) plane
with random orientation. They are then propagated through
the medium, whose density is given by the participant density
profile (ρp). Both profiles are generated with a Monte Carlo
Glauber model with event-by-event fluctuation of positions of
nucleons in Au ions [16]. The nucleons are sampled from
a Woods-Saxon distribution with a radius of 6.38 fm and
diffuseness of 0.535 fm, with a nucleon-nucleon cross section
of σnn = 42 mb. In order to have smooth distributions for ρc

and ρp, the nucleons are assumed to have a Gaussian profile
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in transverse plane with a width of r0 = 0.4 fm in x and y
direction similar to Ref. [10]. The value of r0 is varied from
0.2–0.4 fm, and the nucleon is also assumed to be a uniform
disk with a radius of

√
σnn/π/2 = 0.58 fm. However the final

results are found to be insensitive to the details of the nucleon
shape, except in peripheral collisions.

The jet quenching is implemented via exponential attenua-
tion f = e−κI for midrapidity, where the matter integral I is
calculated as

Im =
∫ ∞

0
dl

lm

l + l0
ρ(−→r + (l + l0)̂v) (4)

≈
∫ ∞

0
dl lm−1 ρ(−→r + l̂v), m = 1, 2 (5)

for jet generated at −→r = (x, y) and propagated along direction
v̂ with the same speed. They correspond to lm+1 dependence
of absorption (∝ lmdl) in a longitudinal expanding or 1+1D
medium (∝ 1/(l0 + l) or 1D Hubble expansion) with a
thermalization time of l0 = cτ0. The l0 is fixed to 0 by default,
but we have checked that the vn does not change much for
l0 < 0.3 fm [10]. The two cases, m = 1 and m = 2, are
motivated for the l dependence expected for radiative and
AdS/CFT energy loss in 1+1D medium [17,18], respectively.

The absorption coefficient κ controls the jet quenching
strength and is the only parameter in this calculation. It is
tuned to reproduce RAA = 〈e−κIm〉 ∼ 0.19 for 0-5% π0 data
at RHIC after averaging over many Glauber events [19]. This

leads to a value of κ = 0.1473 fm−1 and 0.0968 fm−2 for
m = 1 and 2, respectively.

Results. Figure 1 summarizes the basic information ob-
tained from this procedure for one typical Au-Au event in
0–5% centrality interval. Figures 1(a) and 1(b) show the
density profile for ρp and ρc, respectively. Figure 1(c) shows
the normalized probability distribution of I1: P [I1(φ)], which
is obtained by calculating I1 over all possible di-jet production
points ρc and jet propagation direction φ. This distribution
exhibits characteristic high-density and low-density regions
in (I1, φ) space, presumably reflecting spatial correlation
between the ρc and ρp profiles. Figure 1(d) shows the
normalized probability distribution of the attenuation e−κI1 .
Figure 1(e) shows the 〈e−κI1〉 averaged along the y axis in
Fig. 1(d) as a function φ, which is precisely the azimuthal
angle-dependent suppression RAA(φ). A clear anticorrelation
can be seen between the peak magnitude of the RAA(φ) and
breadth of the I1 distribution in Fig. 1(c). This distribution
can also be obtained by randomly generating many di-jet pairs
according the ρc and propagating them through ρp via Eq. (6).
We expand it into a Fourier series

RAA(φ) = R0
AA

[
1 + 2

∞∑
n=1

vQP
n cos n

(
φ − �QP

n

)]
, (6)

where R0
AA represents the average suppression, vQP

n and �QP
n

represent the magnitude and direction of nth-order harmonic of
emission probability distribution, respectively. Similar studies
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FIG. 1. (Color online) The complete set of output obtained in the jet absorption model for one event in 0–5% centrality interval:
(a) the participant density profile (ρp); (b) the collision density profile (ρc); (c) the probability distribution of the path-length integral I1;
(d) the probability distribution of jet surviving the exponential attenuation; (e) the distribution of survival rate as function of azimuth angle;
(f) the initial spatial asymmetry of the participants calculated via Eq. (7). The original impact parameter of the event is aligned along the x axis.
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FIG. 2. (Color online) The correlation between participant plane
�PP

n and quenching plane �QP
n with n = 1–6 calculated for I1

path-length dependence and for (a) 0–5% and (b) 20–25% centrality
interval.

of RAA(φ) were pursued before in Ref. [12] for a pQCD energy
loss in an event-by-event hydrodynamic underlying event.
However it focused primarily on the influence of fluctuations
on the event-averaged RAA(φ) distribution relative to the
second-order event plane (EP).

Figure 1(f) shows a distribution calculated from εn and �QP
n ,

ε(φ) = 1 + 2
∞∑

n=1

εn cos n
(
φ − �PP

n

)
. (7)

It visualizes the shape of the initial geometry that is trans-
formed into the final momentum anisotropy via either flow or
jet quenching. A good alignment is seen between �PP

n and �QP
n

for n � 3. It also shows that the large εn for n > 3 are strongly
damped after jet absorption, leading to very small values of
vQP

n for n > 3.
The study shown in Fig. 1 can be repeated for many

events. We divide the simulation data into 5% centrality
intervals, each containing about 2500 events. Figure 2 shows
the distribution of �PP

n –�QP
n for two centrality intervals. Strong

positive correlations are obtained for n = 1, 2, and 3, while
the correlations are rather weak or even become negative for
n > 3.1

In heavy ion collisions at RHIC and LHC, the vn is
usually measured from particle distribution relative to �n via
Eq. (1) [20]. However it has also been derived from the Fourier
coefficients of two-particle correlation in relative azimuthal
angle 
φ = φa − φb [21]

dNpairs

d
φ
∝ 1 + 2

∞∑
n=1

vn,n

(
pa

T, pb
T

)
cos n
φ, (8)

with

vn,n

(
pa

T, pb
T

) = vn

(
pa

T

)
vn

(
pb

T

)
. (9)

1�PP
n in Eq. (3) is calculated with r2 weighting. We have also

repeated the study using rn weighting for n > 1 and r3 weighting
for n = 1 [5], but very little differences are seen.
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FIG. 3. (Color online) The centrality dependence of anisotropy
coefficients vQP

n (left panels) and correlation between the participant
plane and quenching plane 〈cos n(�PP

n − �QP
n )〉 (right panels) for I1

type of path-length dependence (top panels) and I2 types of path-
length dependence (bottom panels). Note that the values of vQP

n are
positive by construction according to Eq. (6).

The fact that the quenching plane and participant plane do
not align exactly with each other implies that the vn measured
relative to �PP

n is not the same as those contributing to the 2PC
in Eq. (8). In other words, it is possible that the vn obtained
from single particle analysis is only a fraction of the true
anisotropy resulting from jet quenching

vn = vQP
n

〈
cos n

(
�PP

n − �QP
n

)〉
. (10)

Since what is measured in experiment is the event plane not the
PP, it is important to check whether the event plane aligns with
QP or not, for example in a hydrodynamic model calculation.

Figures 3(a) and 3(c) summarize the centrality dependence
of vQP

n with n = 1–6 and for I1 and I2, respectively. Significant
vQP

n signals are observed for n � 3, while higher-order vQP
n

are usually smaller than 1%. The v
QP
2 and v

QP
4 –v

QP
6 all show

strong centrality dependence, while the v
QP
1 and v

QP
3 show little

centrality dependence for Npart > 100. Interestingly, the value
of the v

QP
1 is consistently larger than that for v

QP
3 , and it even

exceeds v
QP
2 value in most central collisions. This behavior

suggests that the path-length dependence of energy loss and
initial dipole asymmetry from fluctuations combine to produce
a large v

QP
1 . This large v

QP
1 is expected to contribute to the

high-pT v1 signal observed by the ATLAS Collaboration [21].
Figure 3 also shows that the I2 type of path-length dependence
induces significantly larger vQP

n than that for I1: the increase
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FIG. 4. (Color online) The expected long-range structures for
correlations between two high-pT particles from independent hard-
scattering processes. They are shown for two typical events in 0–5%
centrality interval (left panels) and 20–25% centrality interval (right
panels); each of them should be regarded as the distributions obtained
for many events with identical initial geometry.

is almost a factor of two for n = 1 and n = 3. This is also
observed in other studies before [10,18].

Figures 3(b) and 3(d) summarize the centrality dependence
of 〈cos n(�PP

n − �QP
n )〉 with n = 1−6 and for I1 and I2, respec-

tively. As indicated by Eq. (10), this represents the reduction
factor of the vn when it is measured relative to the �PP

n . The
reduction is small for n = 2, except in central collisions where
it reaches 15% for I1 and 30% for I2. However the reduction
is significantly larger for n = 1 and 3, reaching about 50% for
n = 1 in mid-central collisions. The 〈cos n(�PP

n − �QP
n )〉 value

becomes negative for n > 3 in central collisions, reflecting
an anticorrelation between �PP

n and �QP
n (already shown in

Fig. 2). Interestingly, 〈cos n(�PP
n − �QP

n )〉 values for n = 1
are always smaller than that for n = 3 (more misalignment),
while v

QP
1 is always larger than v

QP
3 .

The dispersion between the �QP
n and �PP

n has important
implications on the factorization relation Eq. (9). The fac-
torization of vn,n into vn is obviously valid for correlations
between two low pT particles (soft-soft correlation) as both are
modulated around �PP

n . The factorization should also be valid
for correlation between a low-pT particle and a high-pT parti-
cle (soft-hard correlation) since it involves the projection of the
vn onto �PP

n , i.e., vn,n(pa
T, pb

T) = vn(pa
T)vQP

n (pb
T)〈cos n(�PP

n −
�QP

n )〉 = vn(pa
T)vn(pb

T). Experimental data indeed support
this [21,23]. However the correlation between two high-pT

particles from two independent hard-scattering processes
(hard-hard correlation) is expected to be larger than the product
of the two single particle vn

vn,n

(
pa

T, pb
T

) = vQP
n

(
pa

T

)
vQP

n

(
pb

T

) = vn

(
pa

T

)
vn

(
pb

T

)〈
cos n

(
�PP

n − �
QP
n

)〉2 .

(11)

Therefore, the factorization can not work simultaneously for
soft-soft, soft-hard, and hard-hard correlations.
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FIG. 5. (Color online) The expected long-range structures for
correlations between two high pT particles from two independent
hard-scattering processes (solid lines) and those calculated from
single particle vQP

n relative to participant planes (dashed lines) for
various centrality intervals. They are average distribution over many
events for a given centrality intervals. The thick (thin) lines denote
the I1 (I2) type of path-length dependence.

The large anisotropy coefficients vQP
n also has important

consequences for the ridge observed in two-particle correla-
tions [21–23]. This ridge is thought to be the result of the
constructive contribution of harmonics at 
φ ∼ 0. In the
literature, it is referred to as either the soft ridge [24,25]
for soft-soft correlation or hard ridge [22,26] for soft-hard
correlation, respectively. Here we show that the correlation
between two independently produced high-pT jets can also
produce the ridgelike structure. This hard-hard ridge can be
calculated on a probability basis event-by-event by simply self-
convoluting the RAA(φ) distribution as in Fig. 1(e). Examples
of these structures are shown in Fig. 4 for two representative
events in both 0–5% and 20–25% centrality intervals. The
magnitude of the ridge, as well as the away-side shape changes
dramatically from event to event. They also change a lot
between the I1 and I2 types of path-length dependence jet
absorption.

Figure 5 show the long-range structures (solid lines)
obtained from the jet absorption model, averaged over many
events. The ridge magnitude increases with centrality to about
1.5% (4%) for I1 (I2) path-length dependence in mid-central
collisions. This signal should be measurable with the large
statistics data set from LHC. The dashed lines in Fig. 5 show
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the 2PC predicted from the vn measured relative to �PP
n .

Clearly the misalignments between �QP
n and �PP

n reduces the
ridge magnitude. The reduction is almost 50% in most central
collisions, but decrease to about 20% in mid-central collisions.
This suggests the difference between the measured ridge and
those predicted by the event plane method could be large and
measurable.

Conclusion. The anisotropy of high-pT particle is studied
in a simple jet absorption framework with event-by-event
fluctuating geometry. The harmonic coefficients vn are found
to be significant for n = 1–3 (>1%) but become very small
for n > 3. The correlation between the quenching plane and
participant plane are studied. A strong decorrelation is found
for n = 2 in central collisions and for n = 1 and 3 over the full
centrality range. The correlations become negative for n > 3
in central collisions. This decorrelation, if also confirmed
between the event plane and the quenching plane (e.g., via
hydrodynamic model that has dijets embedded), is expected

to break the global factorization of the two-particle Fourier
coefficient vn,n into the vn for the two single particles. It
would also imply that the high-pT vn measured relative to
the event plane could be significantly smaller than the true
anisotropy from path-length-dependent jet energy loss. These
jet quenching vn also give rise to long-range ridge structures in
two-particle correlations. The predicted ridge amplitude is on
the order of 0.5–4% depending on the centrality and functional
form of the l dependence of the energy loss, and should be
measurable at the LHC using the correlations between two
high-pT particles with a large rapidity separation. Our study
bears some similarities to Ref. [14]. However, Ref. [14] uses
a cumulant expansion framework instead of Monte Carlo
Glauber model for initial geometry, and it focuses on the
soft-hard ridge instead of the hard-hard ridge in our case.
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