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Systematics of nuclear ground-state properties of Sr isotopes by covariant density functional theory
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The hyperfine structure and isotope shifts of Sr isotopes, both even-even and odd-even nuclei, are studied in
the covariant density functional theory with the new parameter set DD-PC1. Pairing correlation is treated using
the Bogoliubov model with a separable form of the pairing interaction. Spin parity, charge radii, two-neutron
separation energies, and pairing energies of ground states are calculated and compared with experimental data.
We find a shape transition at N ≈ 60 in charge radii and spin parity, which are consistent with each other and
generally agree with experiments. Although the nuclear masses are not very sensitive to these shape changes,
odd-even mass differences and pairing effects are very important for study of the shape transition and shape
coexistence phenomena in Sr isotopes.
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With new generations of radioactive beam facilities in
many countries around the world, experimental and theoretical
studies of the properties of nuclear shape evolution as the
number of neutron changes is one of the most active and
fruitful areas of research in nuclear physics today. In recent
decades, several measurements on isotopes with Z = 36–40
[1–5] have found a sudden shape transition at N ≈ 60, but the
nature of this transition remains disputed. On the theoretical
side, both phenomenological models [6,7] and microscopical
models [8–11] have been used to study these isotopes. Most of
these models can identify the shape evolution around N ≈ 60
corresponding to the competition between the prolate and the
oblate minimum; the ground states depend on the details of
calculations. One of the major goals of the current study is to
try to understand the uncertainties in the extrapolation of the
pairing strength towards shape coexistence.

Strontium isotopes, with 38 protons, belong to the Z = 40
subshell closure, which has a rapid variation of nuclear ground-
state properties as a function of the neutron number towards
both sides of the line of β stability [5,12]. The charge radius
decreases smoothly form the neutron-deficient side, N ≈ Z =
38, to the neutron shell closure, N = 50, then an almost-linear
increase is followed by a strong discontinuity at N = 59–60.
This means that the ground states of Sr isotopes with N ranging
around the magic number N = 50 are weakly deformed, but
they undergo two shape transitions, from nearly spherical to
well-deformed deformations, on both the neutron-deficient and
the neutron-rich sides.

At present, covariant density functional theory (DFT) based
on the mean-field theory provides a very reasonable concept
for a universal description of nuclei all over the periodic table
[13,14]. Relativistic models incorporate Lorentz invariance,
connecting in a consistent way the spin and spatial degrees of
freedom of the nucleus, and thus provide a relatively simple
phenomenological description for many nuclear properties
using only a few phenomenological parameters. In this frame-
work, there are several popular parameter sets, including NL3
[15] and PK1 [16] for the nonlinear RMF model, DD-ME2 [17]
and PKDD [16] for the density-dependent RMF model, and
density-dependent point-coupling interaction (DD-PC1) [18]
and PC-PK1 [19] for the point-coupling RMF model. Among

these parameter sets, the DD-PC1 was proposed very recently
by additional fitting to the masses of 64 axially deformed
nuclei. Compared with the available data, DD-PC1 provides
a very good agreement with the properties of spherical and
deformed medium-heavy and heavy nuclei, including binding
energies (BEs), charge radii, deformation parameters, neutron
skin thickness, and excitation energies of giant multipole
resonances.

In most DFT calculations, the pairings have often been
taken into account in a very phenomenological way in the
BCS model with the monopole pairing force, adjusted to
the experimental odd-even mass differences. In many cases,
however, this approach presents only a poor approximation.
The physics of weakly bound nuclei, in particular, necessitates
a unified and self-consistent treatment of mean-field and
pairing correlations. This has led to the formulation and devel-
opment of the relativistic Hartree-Bogoliubov (RHB) model,
which represents a relativistic extension of the conventional
Hartree-Fock-Bogoliubov framework. In most applications of
the RHB model simple phenomenological pairing forces such
as the monopole force taking into account pairing correlations
only in the J = 0 channel or density-dependent δ interaction
(DDDI) [20–22] where additional simplifying assumptions
have to be introduced as, for instance, a pairing window. Gogny
forces [23–25] with finite range are considered to provide the
best phenomenological description of pairing correlations in
nuclei. However, because of their numerical complexity, they
are applied only by a rather limited number of groups in the
literature.

Recently, we have introduced a separable form of the
pairing force for RHB calculations in finite nuclei [26–30].
The force is separable in momentum space and is determined
by two parameters that are adjusted to reproduce the pairing
gap of the Gogny force in symmetric nuclear matter. Using
Talmi-Moshinsky techniques [31–33], it can be represented
as a series of separable terms in a harmonic oscillator basis.
Although different from the Gogny force, the corresponding
effective pairing interaction has been shown to reproduce with
a high accuracy pairing gaps and energies calculated with the
original Gogny force, in both spherical and deformed nuclei.
In particular, this approach retains the basic advantage of
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the finite-range Gogny force, and the numerical calculation
is much simpler. Therefore, in this work, we study the
ground-state properties of Sr isotopes in the framework of
the self-consistent RHB approximation based on the DD-PC1
parameter set together with the separable pairing force.

In the framework of covariant DFT, the energy functional
of the RHB model depends not only on the density matrix ρ̂
and the meson fields φm, but also on the pairing tensor

ERHB[ρ̂, φm, κ̂] = ERMF[ρ̂, φm] + Epair[κ̂], (1)

where ERMF[ρ̂, φm] is the RMF functional based on the DD-
PC1 [18], and the pairing energy Epair[κ̂] is given by

Epair[κ̂] = 1
4 Tr[κ̂∗V ppκ̂]. (2)

V pp denotes the two-body pairing interaction. Here we use the
separable form of the pairing force:

〈k|V 1S0
sep |k′〉 = −Gp(k)p(k′). (3)

A simple Gaussian ansatz p(k) = e−a2k2
is assumed. In Ref.

[28] the two parameters G and a have been fitted to the
density dependence of the gap �(kF ) of the Gogny D1S [34] in
nuclear matter. The obtained values for the parameters are G =
728 MeV fm3 and a = 0.644 fm.

Odd-A nuclei can be considered as an even-even core plus
an unpaired nucleon (or quasiparticle). Using the equal filling
approximation (EFA) [35,36], the unpaired nucleon is treated
on an equal footing with its time-reversed state by setting
half a nucleon in a given orbital and the other half in the
time-reversed partner. For axially deformed nuclei, the spin
is simply the projection of the angular momentum along the
symmetry axis for the last occupied proton or neutron level,
when this level is occupied by a single nucleon. For spherical
nuclei with degenerate levels, the nuclear spin is defined as the
maximum value of jz, which is |j |.

The mean-square charge radius is calculated as [37,38]

r2
c = 1

Z

∫
r2d3np(r) + r2

p + N

Z
r2
n − r2

c.m., (4)

where np(r) is the point-proton density and r2
p = 0.63 fm2 and

r2
n = −0.12 fm2 are the rms proton and neutron charge radii,

respectively. The center-of-mass correction is computed as
r2

c.m. = 3h̄/2mωA fm2, with ω = 1.85 + 35.5/A1/3 MeV. We
show in Fig. 1 a comparison of calculated and experimental
charge radii, plotted as δ〈r2

c 〉50,N = 〈r2
c 〉N − 〈r2

c 〉50.
The potential energy surface in the plane of deformation

variables is obtained by imposing a quadratic constraint on the
mass quadrupole moments,

〈H 〉 + C20(Q20 − q20)2, (5)

where 〈H 〉 is the total energy, q20 is a constrained value of the
quadrupole moments, and C20 is the corresponding stiffness
constant [39]. The quadrupole Q20 moments for neutrons and
protons are calculated using the expressions

Q20 = 〈2r2P2(cos θ )〉n,p = 〈2z2 − x2 − y2〉. (6)

FIG. 1. (Color online) Calculated δ〈r2
c 〉 in Sr isotopes compared

to experimental data from Ref. [41]. Results for oblate, prolate, and
spherical minima are displayed by different symbols (see the legend).
Open circles and squares correspond to ground-state results with
different pairing strengths.

The conventional deformation parameter β is obtained from
the calculated quadrupole moments through

Q20 =
√

16π

5

3

4π
AR2

0β, (7)

with R0 = 1.2A1/3 (fm).
In this article, we also calculate the three-point neutron

pairing energy (�3
n) and two-neutron separation energy (S2n)

of the Sr isotope, which can be easily obtained from the BEs:

�3
n(N,Z) = 1

2 (BE(N − 1, Z) − 2BE(N,Z)

+ BE(N + 1, Z), (8)

S2n(N,Z) = BE(N − 2, Z) − BE(N,Z). (9)

The ground-state properties of Sr isotopes from N = 44
to N = 66 with both even-even and even-odd nuclei have
been calculated with RHB theory with DD-PC1 [18] and the
separable pairing force [27].

The experimental spin-parity assignments in odd-A Sr-
isotopes [40] are listed in the third column in Table I. They
are compared to the one-quasiparticle states calculated by

TABLE I. Experimental spin-parity assignments [40] compared
with RHB-EFA results for one-quasiparticle states in odd-A Sr
isotopes.

A N Expt. [40] Spherical Oblate Prolate

83 45 7/2 + (9/2 + ) g9/2

85 47 9/2 + g9/2

87 49 9/2 + g9/2

89 51 5/2 + d5/2

91 53 5/2 + d5/2

93 55 5/2 + d5/2 3 + [402] 3 + [422]
95 57 1/2 + 1 + [400] 3 − [541]
97 59 1/2 + 1 + [400] 9 + [404]
99 61 3/2 + 3 + [411]
101 63 5/2− 5 − [532]
103 65 5 + [413]
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the RHB-EFA. In our calculations, Sr isotopes evolve from
spherical shapes in 83−91Sr around N = 50 with the spherical
g9/2 and d5/2 shells involved, to slightly deformed shapes in
93Sr, and, finally, to shape coexistence in 95−103Sr. In the lighter
isotopes the two spherical shells give the same ground states
as the experimental. For slightly deformed nuclei, the exper-
imental ground states are 5/2+ in 93Sr. In 93Sr, the potential
energy surface is very flat. Although the oblate minimum
(β ≈ −0.2) with 3 + [402] is slightly deeper, the spherical
minimum with d5/2 is very close and it is consistent with the
measurement. For N � 57 Sr isotopes, there are two minima,
for the oblate and prolate shapes. The competition between
these two minima is very sensitive to the calculations. In
our work, the oblate ground state in 95,97Sr is 1 + [400],
and the prolate ground state is 3 − [541] and 9 + [404],
respectively. Compared with the measurements, these two
nuclei should be oblate deformed. But our results prefer the
prolate ground state, as N = 58 is a subshell structure on
the prolate side for our calculation. For the higher isotopes,
the prolate ground states with 3 + [411] in 99Sr and 5 − [532]
in 101,103Sr are in agreement with the experiment.

Figure 1 displays the evolution of the nuclear charge radii
in Sr isotopes, where the experimental [41] and the calculated
charge radii corresponding to the oblate, prolate, and spherical
including both even-even and odd-A isotopes are plotted as
functions of the neutron number. The charge radii decrease
until the shell closure at N = 50. After that, an almost-linear
increase is followed by a strong discontinuity at N = 59–60.

For 44 � N � 55, our calculations predict that these nuclei
are soft against deformation. The softness, or the width of
the potential energy surface around β = 0, increases as one
departs from the shell closure at N = 50. Thus, the actual
charge radius of our calculation will increase slightly and be
very close to the experimental data if we take account of the
contributions of deformed configurations for the ground state.

For neutron-rich (N � 56) nuclei, the axial symmetric
calculation provides two minima in both the prolate and the
oblate regions. The BE difference between the lowest oblate
and the lowest prolate minima is less than 1 MeV for these
nuclei. We indicate a sudden increase in the charge radius from
N = 56 to N = 57, which corresponds to the transition from
the oblate shape β = −0.2 (94Sr) to the prolate shape β = 0.5
(95Sr). As we see in Fig. 1 a jump in the experimental data is
observed between N = 59 and N = 60. However, we do not
think this discrepancy is significant, as it is related to the subtle
competition between prolate and oblate shapes.

In Fig. 2 we can see the results of two neutron separation
energies S2n and three-point neutron pairing energies �3

shown as a function of the neutron number for both even and
odd. In general, we reproduce the experimental data reasonably
well, which is taken from the mass table [42]. Between
N = 52 and N = 54, the S2n energies are underestimated by
the calculations, which are also found in Ref. [10]. In our
calculations a change in the tendency is observed from N = 56
to N = 57, and the three-point neutron pairing energies from
N = 56 to N = 59 are slightly lower than the experimental
data.

In general, our calculations for Sr isotopes follow the
measurements very well except for the nuclei around N = 58.

FIG. 2. (Color online) Calculated S2n (a) and �3 (b) compared to
experimental data from Ref. [42]. Open squares are the results of S2n

and �3 with a higher pairing strength.

Because the effective mass of DD-PC1 is a little small, a
subshell structure has been found in the prolate ground state
of nuclei around N = 58 for our calculations. This special
structure makes N = 58 a “magic” number on the prolate side,
and it becomes more stable than other minima. However, the
experimental spin-parity and charge radii have shown us that
the oblate minima of these nuclei are the real ground state. The
basic idea to solve this problem is to use another parameter
set with a large effective mass, such as the Skyrme(SkM*) or
Gogny D1S interaction, which we will discuss in the future.

Figure 2(b) shows that the calculated �3 is smaller than the
experimental data after N = 55. So here we slightly increase
the pairing strength (15%) to fit the experimental results
[open-square line in Fig. 2(b)] and study the pairing effect
on shape coexistence. As Figs. 1 and 2 show, the calculated
δ〈r2

c 〉 and two neutron separation energies with larger pairings
are much closer to the experimental results, especially for
nuclei around N = 58. In Fig. 3 we display the potential
energy surfaces of 96Sr obtained from a self-consistent RHB
calculation based on the parameter set DD-PC1 using a
separable pairing with 100% (black) and 115% (red) strengths
in the pairing channel. And we find that the ground state of

FIG. 3. (Color online) Potential energy surfaces in 96Sr obtained
in different pairing schemes (see legend) with DD-PC1 parametriza-
tion of the RMF Lagrangian.
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TABLE II. Binding energies and charge radii of nuclei around the N = 58 subshell with different
pairing interactions.

N β BE δ〈r2
c 〉 BE (15%) δ〈r2

c 〉 (15%) δ〈r2
c 〉 (exp)

57 Oblate −810.320 1.075 −811.911 1.018 1.003
Prolate −811.294 1.971 −811.192 1.693

58 Oblate −816.909 1.214 −818.917 1.128 1.213
Prolate −817.764 2.137 −818.385 1.965

59 Oblate −821.918 1.431 −822.975 1.378 1.312
Prolate −822.750 2.086 −822.906 2.071

96Sr jumps from prolate to oblate. In Table II, we compare
the ground-state properties of nuclei around N = 58 with
different pairing strengths. Compared with the experimental
δ〈r2

c 〉 and spin-parity results in Sec. III A, the oblate minimum
should be the ground state for these three nuclei. The
separable pairing interaction is introduced by reproducing the
pairing properties of the Gogny D1S in nuclear matter. And we
have proved that the separable pairing interaction can give the
same pairing properties as the Gogny D1S in both spherical and
deformed nuclei [26–30]. Compared with the experimental �3,
the Gogny D1S is obviously too small for these nuclei. And the
same problem occurs in the HFB calculation with the Gogny
D1S; it cannot reproduce the experimental results for these
three nuclei either [43]. In this paper, by increasing the pairing
strength slightly, we reproduce not only the experimental
�3, but also other ground states of nuclei around N = 58,

such as the charge radii, two-neutron separation energies, and
spin-parity properties of odd-A nuclei.

In summary we have studied the ground-state properties of
Sr isotopes on the neutron-rich side. We have analyzed various
sensitive nuclear observables, such as the charge radius, two-
neutron separation energy, neutron pairing energy, and spin
parity of the ground states in a search for signatures of shape
transitions. We have found that the charge radii and the spin
parity are very sensitive to shape changes. In addition, although
the pairing cannot change the level density, the effect is very
important and should be treated very carefully.
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supported by the National Natural Science Foundation of
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Péru, N. Pillet, and G. F. Bertsch, Phys. Rev. C 81, 014303
(2010).

[39] P. Ring and P. Schuck, The Nuclear Many-Body Problem, Texts
and Monographs in Physics (Springer, Berlin, 1980).

[40] Evaluated Nuclear Structure Data Files (ENSDF);
www.nndc.bnl.gov/ensdf.

[41] I. Angeli, At. Data Nucl. Data Tables 87, 185
(2004).

[42] G. Audi, A. Wapstra, and C. Thibault, Nucl. Phys. A
729, 337 (2003); The 2003 NUBASE and Atomic Mass
Evaluations.

[43] R. Rodriguez-Guzman, P. Sarriguren, and L. M. Robledo, Phys.
Rev. C 82, 044318 (2010).

057305-5

http://dx.doi.org/10.1103/PhysRevC.81.054318
http://dx.doi.org/10.1103/PhysRevC.81.054318
http://dx.doi.org/10.1016/0029-5582(59)90143-9
http://dx.doi.org/10.1016/0029-5582(60)90097-3
http://dx.doi.org/10.1016/0029-5582(60)90097-3
http://dx.doi.org/10.1016/0010-4655(91)90263-K
http://dx.doi.org/10.1016/0010-4655(91)90263-K
http://dx.doi.org/10.1103/PhysRevC.78.014304
http://dx.doi.org/10.1103/PhysRevC.78.014304
http://dx.doi.org/10.1103/PhysRevC.81.024316
http://dx.doi.org/10.1103/PhysRevC.81.024316
http://dx.doi.org/10.1103/PhysRevC.1.1260
http://dx.doi.org/10.1103/PhysRevC.81.014303
http://dx.doi.org/10.1103/PhysRevC.81.014303
http://www.nndc.bnl.gov/ensdf
http://dx.doi.org/10.1016/j.adt.2004.04.002
http://dx.doi.org/10.1016/j.adt.2004.04.002
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1103/PhysRevC.82.044318
http://dx.doi.org/10.1103/PhysRevC.82.044318



