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Strangeness-driven phase transition in (proto-)neutron star matter
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The phase diagram of a system constituted of neutrons, protons, � hyperons, and electrons is evaluated in
the mean-field approximation in the complete three-dimensional space given by the baryon, lepton, and strange
charge. It is shown that the phase diagram at subsaturation densities is strongly affected by the electromagnetic
interaction, while it is almost independent of the electric charge at suprasaturation density. As a consequence,
stellar matter under the condition of strangeness equilibrium is expected to experience a first as well as a
second-order strangeness-driven phase transition at high density, while the liquid-gas phase transition is expected
to be quenched. An RPA calculation indicates that the presence of this critical point might have sizable implications
for the neutrino propagation in core-collapse supernovae.
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I. INTRODUCTION

Supernova explosions following the gravitational collapse
of a massive star (M � 8M�) are among the most fascinating
events in the universe as they radiate as much energy as the
sun is expected to emit over its whole life span [1]. Nuclear
physics is an essential ingredient in the numerical simulations
which aim to describe these events, since realistic astrophysical
descriptions of the collapse and post-bounce evolution rely
on the accuracy of the implementation of weak processes
and equation(s) of state (EOS) [2,3]. Determining the EOS
constitutes a particularly difficult task since phenomenology
ranges from a quasi-ideal unhomogeneous gas to strongly
interacting uniform matter and, potentially, deconfined quark
matter. The situation is even more difficult if phase transi-
tions are experienced, since mean-field models fail in such
situations [4].

The Coulomb-quenched liquid-gas (LG) phase transition
taking place at densities smaller than the nuclear saturation
density (n0 = 0.16 fm−3) is, probably, the most notorious and
best understood case [5–9]. At highest densities, a quark-gluon
plasma is expected, but predictions on the exact location
of the transition are strongly model dependent [10]. In the
intermediate density domain simple energetic considerations
show that additional degrees of freedom may be available,
such as hyperons, nuclear resonances, mesons, or muons [11].
The possibility that the onset of hyperons could pass via a
first-order phase transition in neutron stars has been evoked in
Ref. [12], using a relativistic mean field model (RMF), and in
Ref. [13], a phase transition between phases with different
hyperonic species has been observed for cold matter. The
possibility of a first-order phase transition to hyperonic matter
in effective RMF models has been discussed in Refs. [14–16],
as well. Within the latter models, the phase transition region
is located at subsaturation densities, and is thus not relevant
for star matter. Using a simple two-component (n,�) model,
we have recently studied the complete phase diagram of
strange baryonic matter showing that it exhibits a complex

structure with first- and second-order phase transitions [17].
However, the exploratory calculation of Ref. [17] neglects the
fact that in addition to baryon number B and strangeness S, the
charge Q and lepton L quantum numbers are also populated.
The thermodynamics of the complete system should thus be
studied in the four-dimensional space of the associated charges
nB, nS, nL, nQ. The strict electroneutrality constraint nQ = 0,
necessary to obtain a thermodynamic limit [18], makes the
physical space three-dimensional. As it is known from the
EOS studies at subsaturation density [19], the introduction of
the charge degree of freedom can have a very strong influence
on the phase diagram and cannot be neglected. In this work
we therefore introduce a four-component model consisting of
neutrons, protons, electrons, and � hyperons. Electrons are
treated as an ideal gas.

We present, in Sec. II of this paper, the thermodynamics and
phase transition of the n, p, e, and � system, and discuss the
influence of the Coulomb interaction. The consequence of the
phase transition on the cooling of protoneutron stars, through
the neutrino mean free path, is qualitatively discussed in
Sec. III. Finally, we present our conclusions in Sec. IV.

II. THERMODYNAMICS OF A n, p, � SYSTEM
WITH ELECTRONS

In the widely used mean-field approximation [11,20–26]
the total baryonic energy density is given by the sum of the
mass, kinetic, and potential energy density functionals which
represents a surface in the three-dimensional space defined
by the baryon, strange, and charge density given, in our
case, by nB = nn + np + n�, nS = −n�, and nQ = np. In
the nonrelativistic formalism valid in the considered domains
of density and temperature it reads

eB =
∑

i=n,p,�

(
nimic

2 + h̄2

2mi

τi

)
+ epot(nn, np, n�). (1)
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The single-particle densities are given by the Fermi
integrals

ni = 4π

h3

(
2mi

β

) 3
2

F 1
2
(βμ̃i); τi = 8π3

h5

(
2mi

β

) 5
2

F 3
2
(βμ̃i),

(2)

where Fν(η) = ∫ ∞
0 dx xν

1+exp(x−η) is the Fermi-Dirac integral,

β = T −1 is the inverse temperature, mi is the effective i-
particle mass, and μ̃i is the effective chemical potential of
the i species self-defined by the single-particle density.

A. The model

A full thermodynamics characterization of the system is
provided by the pressure PB = T sB − eB + ∑

i μini together
with the entropy density sB in mean field,

sB =
∑

i={n,p,�}

[
10h̄2

6 mi

βτi − niβμ̃i

]
. (3)

The thermodynamical definition ni
.= ( ∂P

∂μi
)|β allows to

infer the relation among the chemical potentials μi and
the effective parameters μ̃i as μi = μ̃i + mic

2 + Ui , with
Ui = ∂epot/∂ni .

Within the numerical applications we shall use the potential
energy density proposed by Balberg and Gal [27],

epot (nn, np, n�)

= 1

2

[
aNNn2

N + bNN (nn − np)2 + cNNnδ+1
N

]

+ a�NnNn� + c�N

(
nN

nN + n�

n
γ
Nn� + n�

nN + n�

n
γ
�nN

)

+ 1

2

[
a��n2

� + c��n
γ+1
�

]
(4)

accounting for nucleon-nucleon, nucleon-�, and �-� inter-
actions, where nN = nn + np. In the nonstrange sector the
form of the interaction is the same as in the widely used
Lattimer-Swesty [28] EOS.

Let us mention that the observation of a neutron star (PSR
J 1614-2230) with a mass of almost two solar masses [29]
imposes stringent constraints on the hyperonic interaction in
dense neutron star matter. The maximum mass for a n, p,� +
e system as studied in the present manuscript is 2.04M� with
the parameter set BG I for the coupling constants (see Table I)
in agreement with the mass of PSR J 1614-2230. Including
all hyperonic degrees of freedom, the maximum neutron
star mass obtained with parametrization BG I decreases and
becomes slightly too low. However, the qualitative results
discussed here about the thermodynamics of the system and the

consequences on the neutrino mean free path are independent
of the parametrization used. In particular, the same qualitative
results are obtained with the parametrizations from Ref. [21],
in agreement with the mass of PSR J 1614-2230 even upon
including all the different hyperons. Quantitative differences
are very small, such that we have chosen here to use for
numerical applications one parametrization from the original
paper by Balberg and Gal [27], BG I.

B. Instabilities and phase transition

Matter stability with respect to phase separation can be
checked in any point of the extensive variable space by
analyzing the eigenvalues of the curvature matrix [5,30,31],
Cij = ∂2f ({nl}l={i,j,k})/∂ni∂nj , where i, j, k = B, S,Q and
f = etot − T stot is the total free energy. The occurrence of,
at least, one negative eigenvalue in a certain domain of
(nB, nS, nQ) means that the system is unstable versus phase
separation. The associated three-dimensional Gibbs construc-
tion can be reduced to a simpler one-dimensional Maxwell
construction [5] by performing a Legendre transformation with
respect to two out of the three chemical potentials μB = μn,
μS = −μ� + μn and μQ = μp − μn. We have chosen to
work in the hybrid ensemble (nB,μS, μQ) defined by

f̄baryon(nB,μS, μQ) = fbaryon − μSnS − μQnQ, (5)

If the associated equation of state μB =
∂f̄baryon(nB,μS, μQ)/∂nB as a function of nB presents
a slope inversion, the relation μB(nB) is three-valued within a
given interval of μB . Then a Maxwell equal-area construction
on this function allows defining two values n

(1)
B , n

(2)
B ,

which are characterized by the complete Gibbs equilibrium
conditions (P,μB,μS, μQ)(1) = (P,μB,μS, μQ)(2) for a
multicomponent system. The hypersurface connecting the
two points (nB, nS, nQ)(1),(nB, nS, nQ)(2) is the usual Gibbs
construction. This procedure is independent of the choice
of the densities (here: nS, nQ) to be Legendre-transformed,
provided the order parameter has a nonvanishing component
along the remaining density (here: nB). If this was not the
case, that is if there was no jump in nB at the phase transition,
n

(1)
B = n

(2)
B , the information on the phase transition could

not be extracted from the hybrid ensemble Eq. (5). We have
verified that this is never the case, and the phase transition
we will identify always separates a more diluted (lower nB)
from a denser (higher nB) phase. For a generic physical
multicomponent system, this is not always the case and in
the general case the convexity properties of the free energy
have to be examined with care in order to identify phase
transitions in such systems. In particular for our specific
physics application of strangeness phase transition, we will
explicitly show that the charge density is almost unaffected
by the phase transition. This means that the concavity of

TABLE I. Coupling constants corresponding to the stiffest interaction proposed in Ref. [27].

Parameter set aNN bNN cNN a�� c�� a�N c�N δ γ

MeV fm3 MeV fm3 MeV fm3δ MeV fm3 MeV fm3γ MeV fm3 MeV fm3γ

BGI −784.4 214.2 1936 −486.2 1553.6 −340 1087.5 2 2
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the free energy f̄baryon(μB,μS, nQ) as a function of nQ is
extremely small. This means that working in that statistical
ensemble would have rendered the observation of the phase
transition very difficult. We stress that the one-dimensional
Maxwell construction in the hybrid ensemble Eq. (5), as long
as a nB jump occurs through the phase transition as it does
here, is strictly equivalent to the complete Gibbs construction.
In particular, the pressure, as function of one density with
the other densities kept constant, has not a constant value in
the mixed phase [5]. For instance, P (nB) at fixed nS, nQ is
not constant in the mixed phase region. On the contrary, a
Maxwell construction on P (nB) or μB(nB) at constant values
of nS, nQ is never theoretically justified.

The upper part of Fig. 1 illustrates the projection of the
T = 0 phase diagram in the nB − nS plane for μS = 0. The
arrows mark the direction of phase separation which, in case
of phase coexistence, coincides with the order parameter.
Two phase-coexistence domains may be identified. The one
lying along nS = 0 at subsaturation density corresponds to the
well known LG like phase transition taking place in dilute
nuclear matter [5]. The second domain lies at suprasaturation
densities (nB � 2n0), and the direction of phase separation
is dominated by the strange density. In the density range
shown by the figure, this domain is not upper limited in ρB .
We observe a bending at very high density meaning that the
domain is finite as for the subsaturation LG transition, but
since we do not consider these densities as being realistically
described within the present model, we refrain from showing
the whole domain here. This transition is consistent with our
previous findings within a simpler 2D model [17], though it
obviously depends on the assumed strengths of the NN,NY ,
and YY interactions. A very interesting issue is that, by
relaxing the constraint on μS(= 0), the very same coexistence
region is obtained for the strangeness-driven phase transition.
In principle the coexistence borders of a first order phase
transition with three conserved charges are given by two
surfaces in the three dimensional space. For their projection
on the nB − nS plane to be given by a one-dimensional curve,
these surfaces have to be perpendicular to that plane, that is
independent of nQ. The observed independence on the electric
charge shows that the strange charge is the dominant order
parameter for this transition. However, we can expect that
some dependence on the electric charge would arise if charged
strange particles were included, because of the correlation
which would then exist between nQ and nS . The middle part
of Fig. 1 illustrates the projection of the phase coexistence
domains in the nB − nQ plane for μS = 0, corresponding to
the strangeness-equilibrium condition which is relevant for
star matter. As discussed above, the coexistence domain being
three-dimensional this representation depends on the value of
the third variable given by μS (or nS). The well-known isospin
dependence of the LG phase transition occurring at nS = 0 [5]
is apparent. We have just noticed that the order parameter of
the strangeness phase transition is given by a combination
of the strange and baryonic density. Not surprisingly, the
direction of phase separation of this transition in the nB − nQ

plane is thus dominated by the baryonic density. The order
parameter component in the direction of the electric charge can
be understood as due to the correlation between the different
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FIG. 1. (Color online) Borders of the phase-coexistence domains
at T = 0 and μS = 0. Upper (middle): (n, p,�) mixture in nB − nS

(nB − nC) coordinates. Lower: (n, p,�, e) mixture in nB − nL

coordinates. Red: liquid-gas phase transition of nonstrange dilute
nuclear matter; blue: nonstrange to strange phase transition. The
arrows mark the directions of phase separation.

densities. We are facing a transition between a relatively
diluted, non-strange phase to a relatively dense, more strange
one. Since �’s are neutral, the positively charged component
of the baryonic density is relatively less important in the dense
phase, which explains the slope of the separation direction.

Figure 2 offers the complementary image on how the two
phase coexistence domains look like when plotted with respect
to μS − μB . In this case the condition μS = 0 is released
and alternative arbitrary constraints on μQ = −50, 0, 50 MeV
are imposed. The absence of �-hyperons at subsaturation
densities makes the conjugated chemical potential undefined.
Mathematically, this means that any μ� � (U� + m�c2) is
possible. This makes μS span a semi-infinite domain lower
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FIG. 2. (Color online) Borders of the phase-coexistence domains
corresponding to the (n, p,�) mixture at T = 0 and μQ = −50, 0,

50 MeV in μB − μS coordinates. Red: liquid-gas phase transition
of nonstrange dilute nuclear matter; blue: phase transition from
nonstrange to strange compressed baryonic matter.

limited by (μn − U� − m�c2). Reminding that—in μn − μp

coordinates—the nuclear matter LG phase coexistence is
figured by a curve whose extremities are the critical points, it
is easy to understand that, by fixing μQ, one fixes both μn and
μp. Now, one can straightforwardly identify the semi-infinite
horizontal coexisting lines as the ones corresponding to LG.
The strangeness-driven phase coexistence at fixed μQ appears
in μS − μB as two merged semi-infinite linear segments. The
merging point corresponds to the state where the equilibrium
counter-part of the dense phase jumps from vacuum (low μS)
to a dilute mixture (high μS).

C. Influence of the Coulomb interaction

We now turn to investigate the influence of Coulomb effects
on the phase diagram. For simplicity, we will consider only
electrons and neglect other charged leptons or mesons.

Electrons are coupled to charged baryons through the
electromagnetic interaction, which can modify the baryonic
phase diagram. However, the charge neutrality condition
nQ = 0 makes the associated chemical potential μQ ill-defined
and keeps the problem three-dimensional [18]. Since in
homogeneous matter with the condition nQ = 0 the Coulomb
interaction exactly vanishes [18], the total mean field pressure
can be written as a sum over independent terms PB +
PL + Pγ + Pν + · · · . We shall still concentrate on the PB

contribution, as the other terms do not affect the convexity
properties of the thermodynamical potential on which phase
transitions rely. We have constructed the full phase diagram of
the (np�e) system in the (nB, nS, nL) space using the hybrid
ensemble

f̄baryon(nB,μS, μL) = fbaryon − μSnS − μLnL. (6)

In practice, the charge neutrality condition gives np = ne,
which allows to infer the electron chemical potential, μe, via

ne = 1

3π2

(
μe

h̄c

)3 [
1 + μ−2

e

(
π2T 2 − 1

2
m2

ec
4

)]
, (7)

and to obtain μL = μp − μn + μe. Note that ne = ne− −
ne+ = nL(=np) stands here for the net electron density. If
neutrinos were in equilibrium, then μL would correspond to
the electron neutrino chemical potential. In particular, in a cold
neutron star in β equilibrium we would have μL = 0 fixing
ne. In core collapse events, on the other hand, neutrinos cannot
be considered in equilibrium in the major part of the system.
Here we want to study the entire phase diagram, not restricting
to β equilibrium, and we therefore leave μL free. Neutrinos,
even in equilibrium, would not change the phase properties,
and are thus neglected for the sake of simplicity in the present
discussion.

The lowest panel of Fig. 1 depicts the phase coexistence
regions of the (np�e) system at T = 0 and μS = 0. In
agreement with the results of Refs. [19,32], a strong Coulomb
quenching of the LG-phase transition is obtained. However, the
coexistence domain of the strangeness-driven phase transition
is practically unmodified. This can be easily understood from
the fact that the effect of the neutrality condition nQ = 0 on
the two phase transitions is very different. The phase transition
at subsaturation density has the total baryonic density as
order parameter. At such densities, nB is strongly correlated
to np because of the nuclear symmetry energy which favors
symmetric nn = np matter. The phase transition thus implies
a discontinuity in np = ne, which is strongly disfavored by
the huge electron incompressibility [19]. At supersaturation
densities the order parameter is given by nS which is very
loosely correlated to nQ. The phase transition thus does not
imply any strong change in the electron distribution and the
presence of electrons thus does not influence much the phase
diagram.

The temperature dependence of the phase diagram along
μS = 0 is presented in Fig. 3. We can observe that the
direction of phase separation is almost independent of T . More
interesting, starting from a finite value of T , a critical point
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FIG. 3. (Color online) Borders of the strangeness driven
phase transition domain corresponding to the neutral net-charge
(n, p,�, e)- mixture at T = 10, 20, 30 MeV and μS = 0 in nB − nL

coordinates. The dot-dashed line marks, for T = 20 MeV, a path of
constant Ye = 0.298.
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FIG. 4. (Color online) Electron fraction, Ye, and nB at the
corresponding critical temperature for μS = 0.

appears and survives up to very high temperature. In Fig. 4
the critical temperature and the electron fraction Ye = ne/nB

are shown as a function of baryon density. These values
are typically reached within the cooling protoneutron star,
meaning that effects of criticality should be experienced.

III. EFFECT OF THE PHASE TRANSITION ON THE
NEUTRINO MEAN FREE PATH

The cooling of protoneutron stars is mostly driven by
neutrino diffusion during the first seconds. To explore the
consequence of criticality for the cooling of protoneutron
star, we therefore turn to calculate the mean free path for
the neutrino scattering off n, p, and � particles including the
long-range correlations, essential for the study of criticality,
in the linear response approximation. In the nonrelativistic
limit for the baryonic components, the mean free path at
temperature T of a neutrino with initial energy Eν is given

by 1/λ = 1/λV + 1/λA [33,34] where the contribution of the
vector channel is defined as

1

λV (Eν, T )
= G2

F

16π2

∫
(1 + cos θ )SV (q, T )(1 − fν(k3))dk3,

(8)

and that of the axial channel,

1

λA(Eν, T )
= G2

F

16π2

∫
(3 − cos θ )SA(q, T )(1 − fν(k3))dk3.

(9)

In Eqs. (8) and (9), GF is the Fermi constant, θ is the angle
between the initial and final neutrino momentum (=k3), q is
the transferred energy momentum, q = (ω, q), and fν is the
Fermi-Dirac distribution of the outgoing neutrino. SV (SA)
are the dynamical response function in the vector (axial)
channel. Since this study is focused on the impact of the
density fluctuations close to the critical point, only the vector
channel is considered. For densities close to the critical point,
spin-density fluctuations are however expected to be small
[35,36].

The dynamical response function in the vector channel is
defined as

SV (q, T ) = − 2

π

1

1 − exp(−ω/T )

× (
cn
V c

p
V c�

V

)
�V (q, T )

⎛
⎜⎝

cn
V

c
p
V

c�
V

⎞
⎟⎠ , (10)

where �V (q, T ) is the vector-polarization matrix for the three
species n, p, and �, given by the Lindhard functions in the
case of the mean-field approximation and by the solution of the
Bethe-Salpeter equations in the case of the mean-field + RPA
approximation [33,34,36]. The vector coupling constants are
set to be: −1 (n), 0.08 (p), −1 (�) [37]. The residual p-h
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FIG. 5. (Color online) (a) Neutrino mean free path for the scattering off n, p, and � at T = 20 MeV along a constant-Ye = 0.2981 trajectory
in the phase diagram for Eν = μν , μν ± T as a function of the baryonic density ρ. The result of the mean-field approximation is compared to
the mean-field + RPA. (b) The ratio of the mean free path within mean-field + RPA over mean-field approximation is shown.
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interaction is derived from the potential energy (5) and is
closely related to the curvature matrix without electrons [31].

The neutrino mean free path along an arbitrary Ye = 0.2981
trajectory in the phase diagram which passes by the critical
point [see dot-dashed line in Fig. 3(a)] is shown in Fig. 5. As
expected, the RPA correlations strongly reduce the neutrino
mean free path close to the critical point, similar to the
critical opalescence effect observed for the photon scattering
off matter in critical water. The ratio of the neutrino mean free
path in mean-field + RPA approximation over that at the mean-
field level is shown in panel (b) exploring different neutrino
energies around the neutrino chemical potential defined at beta
equilibrium. The effect of the RPA correlations around the
critical point is almost independent of the neutrino energy in
agreement with the interpretation as critical opalescence.

IV. CONCLUSIONS

To conclude, we have studied the phase diagram of a
mixture constituted of interacting neutrons, protons, and �
hyperons under the condition of strangeness equilibrium,
relevant for supernovae and neutron star physics. At supra-
saturation densities, a strangeness-driven phase transition can
take place, depending on the assumed strengths of nucleon-�

and �-� interactions [17]. This second transition survives
the screening effect of electrons and persists over a large
domain of temperatures such that it may have an impact on star
phenomenology. For a first study of this equation of state (EoS)
within core-collapse supernovae, see [38]. In addition to the
EoS, linear response theory shows that the neutrino mean-free
path dramatically decreases close to the critical point of this
phase transition, which occurs in a thermodynamic domain
accessible to newly born protoneutron stars.

These results present a first step, and quantitative results
might be somewhat modified in the presence of other strange-
and nonstrange baryonic, leptonic or mesonic degrees of
freedom. This work is in progress and it will make the subject
of a forthcoming publication.
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