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We study the equation of state and composition of hypernuclear matter within a relativistic density functional
theory with density-dependent couplings. The parameter space of hyperon–scalar-meson couplings is explored
by allowing for mixing and breaking of SU(6) symmetry, while keeping the nucleonic coupling constants fixed.
The subset of equations of state, which corresponds to small values of hyperon–scalar-meson couplings, allows
for massive M � 2.25M� compact stars; the radii of hypernuclear stars are within the range 12–14 km. We
also study the equation of state of hot neutrino-rich and neutrinoless hypernuclear matter and confirm that
neutrinos stiffen the equation of state and dramatically change the composition of matter by keeping the fractions
of charged leptons nearly independent of the density prior to the onset of neutrino transparency. We provide
piecewise polytropic fits to six representative equations of state of hypernuclear matter, which are suitable for
applications in numerical astrophysics.
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I. INTRODUCTION

The integral parameters of compact stars depend on
their equation of state (hereafter EoS) at high densities.
Measurements of pulsar masses in binaries provide the most
valuable information on the underlying EoS because these,
being deduced from binary system parameters, are model
independent within a given theory of gravity [1]. The recent
discovery of the pulsar J1614-2230 in a binary orbit with a
white dwarf provided the initial evidence for 2M� compact
stars. The mass of the compact star, measured via the
Shapiro delay, is 1.97 ± 0.04M� [2]. The recent observation
of a relativistic binary consisting of a white dwarf and a
pulsar (J0348 + 0432) in optical and radio bands, respectively,
provided another measurement, with similar accuracy and
slightly larger mass 2.01 ± 0.04M� [3]. The fact that the
masses were measured by different methods strengthens
the idea that massive (2M�) compact stars exist in nature.
The first of these observations spurred an intensive discussion
of the phase structure of dense matter, which is consistent with
the implied observational lower bound on the maximum mass
of any sequence of compact stars [4–27].

Pulsar radii have been extracted, e.g., from modeling the
x-ray binaries under certain reasonable model assumptions,
but the uncertainties are large [28–31]. An example that
we use in our analysis is the pulse phase-resolved x-ray
spectroscopy of PSR J0437-4715, which sets a lower limit on
the radius of a 1.76M� solar mass compact star R > 11 km
within 3σ error [31].

Large masses and radii are evidence for the relative
stiffness of the EoS of dense matter at high densities. Large
densities may require substantial population of heavy baryons
(hyperons), because these become energetically favorable once
the Fermi energy of neutrons becomes of the order of their rest
mass. Their onset then reduces the degeneracy pressure of
a cold thermodynamic ensemble and softens effectively the
EoS of dense matter. This decreases the maximum mass of a
compact stars to values which contradict the observation of

massive compact stars in nature. This controversy between the
theory and observations is the essence of the “hyperonization
puzzle” in compact stars.

Although the emergence of heavy baryons (mainly �± and
� hyperons) were considered even before the discovery of
pulsars and their identification with the neutron stars [32], their
existence in the cores of neutron stars is still elusive. Seminal
work on interacting hyperonic matter was carried early after the
discovery of pulsars [33,34]. Systematic studies of interacting
dense hypernuclear matter were carried with the advent of
relativistic density functional methods [35–44]; for reviews
see Refs. [45,46]. Most of these works predicted masses that
are not much larger than the canonical mass of a neutron
star (in contradiction with modern observations). Masses on
the order of �1.8M� were obtained later in nonrelativistic
phenomenological models [47]. Fully microscopic models
based on hyperon-nucleon potentials, which include the
repulsive three-body forces, predict low maximal masses for
hypernuclear stars [48,49].

Finite-temperature hyperonic matter in the presence of a
thermal bath of neutrinos may differ significantly from the cold
hypernuclear matter found in evolved neutron stars. Previous
studies [50–53] showed that as the EoS becomes stiffer, the
deleptonizing effect of charged hyperons at zero temperature
is removed in the presence of neutrinos and the sequence in
which hyperons appear changes.

In this work we contribute to the investigation of the
“hyperonization puzzle” by studying the parameter space
of the coupling of hyperons to the light scalar octet of
mesons. The parameter space is partially motivated by the
hypernuclear potentials as well as investigations of the external
field QCD sum rules that involve SU(6) symmetry breaking
and mixing effects [54,55]. Because the structure and even
content of the scalar mesons is still a subject of discussion
it appears necessary to investigate this particular domain of
hypernuclear physics with respect to the consistency with the
compact star observations. Conversely, as we show below, the
considered parameter space can in fact account for massive

055806-10556-2813/2013/87(5)/055806(10) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.87.055806


GIUSEPPE COLUCCI AND ARMEN SEDRAKIAN PHYSICAL REVIEW C 87, 055806 (2013)

hyperonic compact stars, thus providing a possible solution to
the “hyperonization puzzle.”

To study the EoS of hypernuclear matter we use a model
based on relativistic density functional theory of Walecka and
a density-dependent parametrization of the nucleon-meson
couplings of Ref. [56]. The EoS and composition of matter are
studied both in the zero-temperature limit relevant to mature
compact stars as well as at finite temperatures relevant for
the hot proto-neutron star stage of evolution. In the latter case
we assume neutrino-rich matter in β equilibrium and explore
the effects of finite temperature and neutrino content on the
stiffness and composition of matter. We confirm the general
features found in the previous analysis [50–53] and provide a
detailed account of these effects within our model.

This paper is structured as follows: In Sec. II we discuss the
theoretical setup of the relativistic density functional theory.
The parametrization of the coupling constant of the theory is
discussed in Sec. III. Section IV is devoted to the discussion
of the choice of the hyperon-meson coupling constants. We
present our results in Sec. V. Finally, our conclusions are
collected in Sec. VI.

II. THEORETICAL MODEL

The relevant degrees of freedom in nuclear matter at high
density are nucleons and hyperons. In particular, we choose
as degrees of freedom of our relativistic mean field model
the baryon octet (JP = 1

2
+

), and we study the interaction
of these fields with the isoscalar-scalar σ , isoscalar-vector
ωμ, and isovector-vector ρμ mesons. Besides these fields, we
also consider the presence of leptons, e−, μ−. In the case of
finite-temperature matter, which describes proto-neutron star
matter, the model has the neutrino degrees of freedom, because
they are expected to be trapped in a proto-neutron star after
the first minute of its birth. The introduction of additional
variables, the neutrino chemical potentials, requires additional
constraints, which we provide by fixing the lepton fractions,
YLl , appropriate for conditions prevailing in the evolution of a
proto-neutron star [51].

The relativistic Lagrangian reads

L =
∑
B

ψ̄B

[
γ μ

(
i∂μ − gωBωμ − 1

2
gρBτ · ρμ

)

− (mB − gσBσ )

]
ψB + 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2

− 1

4
ωμνωμν + 1

2
m2

ωωμωμ − 1

4
ρμνρμν + 1

2
m2

ρρ
μ · ρμ

+
∑

λ

ψ̄λ(iγ μ∂μ − mλ)ψλ − 1

4
FμνFμν, (1)

where the B sum is over the JP = 1
2

+
baryon octet and ψB

are the baryonic Dirac fields with masses mB . The interaction
is mediated by the σ, ωμ, and ρμ meson fields with the ωμν

and ρμν field strength tensors and masses mσ , mω, and mρ .
The baryon-meson coupling constants are denoted by gmB

(their numerical value is discussed in Sec. III below). The λ
sum in Eq. (1) runs over the leptons e−, μ−, νe, and νμ with

masses mλ and the last term is the electromagnetic energy
density. The contribution of neutrinos to the sum above is
included only at nonzero temperature, when they are trapped
in stellar matter and form a statistical ensemble in equilibrium.
In mature compact stars at essentially zero temperature, the
neutrinos do not contribute to the thermodynamical quantities
of matter because they are out of equilibrium and their
chemical potential vanishes.

The Lagrangian density (1) yields the pressure and the
energy density, which at finite temperature read respectively

P = −m2
σ

2
σ 2 + m2

ω

2
ω2

0 + m2
ρ

2
ρ2

03 + 1

3

∑
B

2JB + 1

2π2

×
∫ ∞

0

dk k4

EB
k

[
f

(
EB

k − μ∗
B

) + f
(
EB

k + μ∗
B

)]

+ 1

3π2

∑
λ

∫ ∞

0

dk k4

Eλ
k

[
f

(
Eλ

k − μλ

) + f
(
Eλ

k + μλ

)]

(2)

and

ε = m2
σ

2
σ 2 + m2

ω

2
ω2

0 + m2
ρ

2
ρ2

03 +
∑
B

2JB + 1

2π2

×
∫ ∞

0
dk k2EB

k

[
f

(
EB

k − μ∗
B

) + f
(
EB

k + μ∗
B

)]

+
∑

λ

∫ ∞

0

dk

π2
k2Eλ

k

[
f

(
Eλ

k − μλ

) + f
(
Eλ

k + μλ

)]
,

(3)

where σ , ω0, and ρ03 are the nonvanishing mesonic mean
fields, JB is the baryon degeneracy factor, m∗

B = mB − gσB

is the effective baryon mass, μ∗
B = μB − gωBω0 − gρBI3ρ

0
3 is

the baryon chemical potential including the time component
of the fermion self-energy, I3 is the third component of baryon

isospin, EB
k =

√
k2 + m∗2

B and Eλ
k =

√
k2 + m2

λ are the single-
particle energies of baryons and leptons respectively, and
f (y) = [1 + exp(y/T )]−1 is the Fermi distribution function
with T being the temperature. We take each lepton mass mλ

equal to its free-space value.
At nonzero temperature the net entropy of the matter is the

sum of the baryon, SB , and lepton, SL, contributions

SB = −
∑
B

2JB + 1

2π2

∫ ∞

0
dkk2

{[
f

(
EB

k − μ∗
B

)
ln f

(
EB

k −μ∗
B

)

+ f̄
(
EB

k − μ∗
B

)
ln f̄

(
EB

k − μ∗
B

)] + (μ∗
B → −μ∗

B )
}

(4)

and

SL = −
∑

λ

∫ ∞

0

dk

π2

[
f

(
Eλ

k − μλ

)
ln f

(
Eλ

k − μλ

)

+ f̄
(
Eλ

k − μλ

)
ln f̄

(
Eλ

k − μλ

)]
, (5)

where f̄ (y) = 1 − f (y). The free-energy density is then given
by

F = ε − T (SB + SL). (6)
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III. DENSITY-DEPENDENT PARAMETRIZATION DD-ME2

Below, we work with a density-dependent parametrization,
which is designed to account for in an economical manner
the many-body correlations that arise beyond the mean-
field approximation. The density dependence of the coupling
constant thus accounts for the influence of the medium on the
scattering of baryons. We choose to work with the Density
Dependent Meson Exchange (DD-ME2) parametrization of
Ref. [56], which introduces an explicit density dependence
in the nucleon-meson couplings gNσ , gNω, and gNρ . The
phenomenological ansatz for the density dependence for the
σ - and ωμ-meson coupling constants is [56,57]

giN (ρB) = giN (ρ0)hi(x), i = σ, ω, (7)

where ρB is the baryon density,

hi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
(8)

is a function of x = ρB/ρ0, and ρ0 is the nuclear saturation
density. The parameters in Eq. (8) are not independent. Indeed,
the five constraints hi(1) = 1, h′′

σ (1) = h′′
ω(1), and h′′

i (0) = 0
reduce the number of independent parameters to three. Three
additional parameters in the isoscalar-scalar channel are
gNσ (ρ0), gNω(ρ0), and mσ , the mass of the phenomenological
σ meson. Microscopic calculations show that the ρμ-meson
coupling decreases at high densities [57]. Therefore, instead
of the ansatz (8) one can use a minimalistic ansatz with
exponential form of density dependence [56,57]

gρN (ρB) = gρN (ρ0) exp[−aρ(x − 1)]. (9)

Thus, the parametrization we use has in total eight parameters,
which are adjusted to reproduce the properties of symmetric
and asymmetric nuclear matter, binding energies, charge radii,
and neutron radii of spherical nuclei. The parameters of the
DD-ME2 effective interaction are shown in Table I.

When the coupling constants are density dependent, the
thermodynamical consistency (specifically the energy conser-
vation and fulfillment of the Hugenholtz–van Hove theorem)
require the inclusion of the so-called rearrangement self-
energy [58]. This contributes to the pressure but not to the
energy of the system. The pressure becomes

Pr = P + ρB�r, (10)

where the rearrangement self-energy, �r , is given by

�r = ∂gNω

∂ρB

ω0ρB − ∂gNσ

∂ρB

σρS, (11)

TABLE I. Meson masses and couplings to the baryons in DD-
ME2 effective interaction.

σ ω ρ

mi (MeV) 550.1238 783.0000 763.0000
gNi (ρ0) 10.5396 13.0189 3.6836
ai 1.3881 1.3892 0.5647
bi 1.0943 0.9240
ci 1.7057 1.4620
di 0.4421 0.4775

where ρS is the scalar density. It can be verified that the
contribution from the rearrangement self-energy restores the
thermodynamical relation

Pr = ρ2
B

∂

∂ρB

(
ε

ρB

)
, (12)

which is otherwise violated. Below we always consider the
pressure including the rearrangement term and drop the
subscript r .

IV. HYPERON-MESON COUPLING CONSTANTS

To extend the description of matter to full baryon octet
we need the hyperon-meson coupling constants. Because the
information on the properties of hypernuclear matter is far
less extensive than for nucleons, their values cannot be fixed
with certainty and several approaches have been used in the
literature.

One way to fix these couplings is to consider the SU(3)-
flavor symmetric model, namely the octet model. In this model
the degrees of freedom are represented by the lowest nontrivial
irreducible representation (IR) of the symmetry group which
is physically possible, {8}, that is, the baryon octet and the
mesonic octet.

Let us consider first the interaction between the baryon
octet, JP = 1

2
+

, and the vector meson octet, JP = 1−. Within
the assumption of SU(3)-flavor symmetry, one can express
the meson-baryon coupling constants in terms of only two
parameters [59], the nucleon–ρμ-meson coupling constant gNρ

and the F/(F + D) ratio of the vector octet αV :

gNρ = g8, g�ρ = −g8(1 − 2αV ),

g�ρ = 2g8αV , g�ρ = 0,

gNω8 = 1√
3
g8(4αV − 1), g�ω8 = − 1√

3
g8(1 + 2αV ),

g�ω8 = 2√
3
g8(1 − αV ), g�ω8 = − 2√

3
g8(1 − αV ), (13)

where we have shown only the coupling constants relevant for
our model. The vector-meson dominance model [60] predicts
αV = 1, which is a result of the universal coupling of the ρμ

meson to the isospin current. This result is also in agreement
with recent QCD sum rules calculations [55]. Therefore,
we set αV = 1 in hyperon–ρμ-meson coupling constants in
Eq. (13), i.e.,

g�ρ = g8, g�ρ = 2g8, g�ρ = 0. (14)

To describe the mixing between the singlet and the octet
members of the vector nonet, one has to introduce two
additional parameters, the flavor singlet coupling constant, g1,
and the vector mixing angle, θV . Therefore, the coupling of
the baryon to the physical ωμ-meson state now reads

gBω = cos θV g1 + sin θV gBω8 . (15)

It is widely accepted that the mixing between nonstrange
and strange quark wave functions in the ω and φ mesons is
ideal [61,62]. In this limit tan θV = 1/

√
2 and assuming again
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αV = 1 we obtain the baryon–ωμ-meson couplings as

gNω

sin θV

=
√

2g1 +
√

3g8,
g�ω

sin θV

=
√

2g1 −
√

3g8,

(16)
g�ω

sin θV

= g�ω

sin θV

=
√

2g1.

Next we assume that the nucleon does not couple to pure
strange mesons (φμ). One then obtains the relation between
the singlet and the octet coupling constants [63]:

g1 =
√

6 g8, (17)

which allows one to eliminate g1 from Eqs. (16). Thus, the
hyperon–ωμ-meson coupling constants can be related to the
nucleon one,

g�ω = 1
3gNω, g�ω = g�ω = 2

3gNω. (18)

We are now left with the hyperon–scalar-meson (σ ) coupling
constants. In order to fix these parameters, we consider the
relations among the coupling constants for the scalar octet [54],
which are given [in analogy with the relations for the vector
meson octet in Eq. (13)] by

gNa0 = gS, g�a0 = −gS(1 − 2αS),

g�a0 = 2gSαS, g�a0 = 0,
(19)

gNσ8 = 1√
3
gS(4αS − 1), g�σ8 = − 1√

3
gS(1 + 2αS),

g�σ8 = 2√
3
gS(1 − αS), g�σ8 = − 2√

3
gS(1 − αS).

The mixing between the singlet and the octet states of the
scalar nonet is given by

gBσ = cos θSg1 + sin θSgBσ8 . (20)

Then, the σ -meson–baryon coupling constants are

gNσ = cos θSg1 + sin θS(4αS − 1)gS/
√

3, (21)

g�σ = cos θSg1 − 2 sin θS(1 − αS)gS/
√

3, (22)

g�σ = cos θSg1 + 2 sin θS(1 − αS)gS/
√

3, (23)

g�σ = cos θSg1 − sin θS(1 + 2αS)gS/
√

3. (24)

Combining the couplings, we obtain

g�σ + g�σ = 2 cos θSg1, (25)

gNσ + g�σ = 2 cos θSg1 − 2 sin θS(1 − αS)gS/
√

3

= cos θSg1 + g�σ . (26)

By eliminating g1 from these expressions we obtain a relation,

2(gNσ + g�σ ) = 3g�σ + g�σ , (27)

which is valid for arbitrary values of the four parameters αS ,
g1, gS , and θS . In particular, it is satisfied for the values of
the coupling constants in the SU(6) symmetric quark model.
Indeed, the latter model assumes that the σ meson is a pure up
and down state; therefore, for strangeness −1 � and � baryons

g�σ = g�σ = 2
3gNσ , whereas for strangeness −2 � baryons

g�σ = 1
3gNσ . Due to the constraint (27) the parameter space

of our model is spanned by three out of the four parameters
αS , g1, gS , and θS . Further constraints on the parameter space
can be placed because the hyperon coupling constants must
be positive and less than the nucleon coupling constant. This
implies two additional constraints, which can be translated into
constraints on the range of variability of the hyperon–scalar-
meson coupling constants. Indeed, by expressing one of the
hyperon coupling constants, say g�σ , in terms of the others
with the help of Eq. (27) one finds

g�σ = 1
2

(
3g�σ + g�σ

) − gNσ , (28)

and therefore, by requiring that

0 � g�σ � gNσ , (29)

one is left with the following two simultaneous inequalities:

gNσ � 1
2

(
3g�σ + g�σ

)
� 2gNσ . (30)

To explore the parameter space spanned by the hyperon–σ -
meson couplings, we use our nuclear density functional and
fix the remaining couplings. We fix the value of g�σ at the
value provided by the Nijmegen soft core (NSC) hypernuclear
potential model of Ref. [64] and vary the range of couplings
g�σ within the limits provided by Eq. (30). The corresponding
g�σ couplings are found from Eq. (28). Analogously, to
explore the range of admissible g�σ couplings, we next fix
the value of g�σ to the value provided by the NSC model and
change the g�σ coupling within a range which keeps the values
of g�σ consistent with Eq. (29). The parameter space is further
limited by the requirement that the maximal values of g�σ and
g�σ should be below their values in the SU(6) symmetric
model. This latter constraint is motivated physically by our
search for a stiff EoS of hypernuclear matter.

V. RESULTS

The matter in evolved compact stars is charge neutral and
in β equilibrium. These two conditions are imposed when
computing the EoS at zero temperature. For young neutron
stars at nonzero temperature, a thermal ensemble of neutrinos
should be included for temperatures T � 5 MeV. In this case
a common practice is to vary the lepton fraction of matter in
a certain range compatible with astrophysical simulations. We
treat these distinct cases in turn below.

A. Zero temperature

We start the discussion of our results by comparing the
EoS of purely nucleonic matter, computed using DD param-
eterization of nuclear matter, to the EoS where interacting
hyperons are added with couplings taken according to the
SU(6) quark model; see Fig. 1. The appearance of hyperons,
which is triggered by the fact that the cost of having a hyperon
heavier than a nucleon is energetically more favorable than a
neutron at the top of the Fermi sea, always softens the EoS.
Because in our search the coupling constants are bound from
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 ρB/ρ0

0

100
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400
P 

[M
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 fm
3 ]

N
N + H

FIG. 1. (Color online) Equations of state of nuclear (dashed, blue
online) and hypernuclear (solid, red online) matter. The coupling
constants for nuclear matter correspond to density-dependent (DD)
ME2 parametrization of Ref. [56]. The coupling constants of
hyperons are related to the nucleonic ones according to the SU(6)
symmetric quark model. The density is normalized to the nuclear
saturation density ρ0 = 0.152 fm−3 in the DD ME2 parametrization.

above by their values in the SU(6) model, these two EoS
correspond to the stiffest and softest EoS in our collection.

Our next step is to explore the impact of the variation of
the hyperon–scalar-meson coupling on the EoS. As explained
previously in Sec. IV, we keep the hyperon–vector-meson
couplings fixed at the values given by Eqs. (14) and (18) and
vary the hyperon–scalar-meson coupling constants in the range
and manner defined above.

The left panel of Fig. 2 shows the dependence of the EoS of
hypernuclear matter on variations of the coupling constant in
the range 0.26 � x�σ � 0.66 at fixed x�σ = 0.58 (a value that
corresponds to the NSC model), where xHσ = gHσ /gNσ is the
ratio of the hyperon-σ and the nucleon-σ coupling constants.
The resulting EoS covers the shaded area, which is bound
by the two EoSs corresponding to the limiting values of the
parameter g�σ ; in addition we show the special case where
the g�σ parameter is fitted to reproduce the empirical value of
the �-hyperon potential in nuclear matter at saturation U� =
30 MeV according to

U� = g�σ

gNσ

〈σ 〉 + g�ω

gNω

〈ω〉, (31)

where 〈· · ·〉 refers to the mean-field value of the field. The
right panel of Fig. 2 shows the dependence of the EoS
of hypernuclear matter on variations of the g�σ coupling
constant in the range 0.52 � x�σ � 0.66 at fixed x�σ = 0.448
(as implied by the NSC model). The set of resulting EoS
covers the shaded area; we also show explicitly the limiting
cases as well as the special case, where the g�σ coupling
is fitted to reproduce the �-hyperon potential in nuclear
matter at saturation U� = −28 MeV according to an equation

0 1 2 3 4 5
ρB/ρ0

0

100

200

300

P 
[M

eV
 fm

3 ]

xΣσ = 0.26 
xΣσ = 0.46
xΣσ = 0.66 
SU(6)
N

0 1 2 3 4 5 6
ρB/ρ0

xΛσ = 0.52
xΛσ = 0.59
xΛσ = 0.66
SU(6)
N

(a) (b)

FIG. 2. (Color online) Equations of state of hypernuclear matter
for a range of values of hyperon–σ -meson couplings defined in
terms of xHσ = gHσ /gNσ , H ∈ �,�. The nucleonic EoS (dotted
line, magenta online) and hyperonic EoS with SU(6) quark model
couplings (dot-dashed line, green online) are shown as a reference.
The nucleonic coupling constants correspond to the DD-ME2
parametrization [56]; the hyperon–vector-meson couplings are fixed
as explained in the text. In panel (a) we assume x�σ = 0.58, as in
the NSC potential model, and a range 0.26 � x�σ � 0.66 which
generates the shaded area; in (b) we assume x�σ = 0.448, as in the
NSC potential model, and a range 0.26 � x�σ � 0.66. The cases
x�σ = 0.46 (left panel) and x�σ = 0.59 (right panel), shown by
dash-double-dotted (black online) lines, fit the depth of the potentials
of the �− and � hyperons in nuclear matter at saturation.

analogous to Eq. (31). As expected, the reduction of the
hyperon couplings stiffens the EoS. The stiffest hypernuclear
EoS in this set corresponds to the values of couplings x�σ =
0.448 and x�σ = 0.52.

Figure 3 shows the particle fractions of fermions, defined
as the ratio of particle number densities to the baryon number

1 2 3 4 5
ρB/ρ0

0.01

0.1

1

n i/n
B

1 2 3 4 5 6
ρB/ρ0

n

e−

p

μ−

ΛΣ−

Σ0

Ξ−

n

p

e−

μ−

ΛΣ−

Σ+

Ξ0

Σ0

(a) (b)

FIG. 3. (Color online) Particle fractions in hypernuclear matter at
T = 0: (a) hyperon–scalar-meson couplings are fixed as in the SU(6)
symmetric quark model, and (b) a stiff hypernuclear EoS from our
parameter space with x�σ = 0.448 and x�σ = 0.52.
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density for the limiting cases of the SU(6) quark model
couplings and the stiffest hypernuclear EoS. There are a
number of features that are common to both EoSs. The
appearance of �− hyperons, which compensate for the positive
change of the nuclear matter and excess negative isospin
of the neutrons, is favored at low density. They contribute
to the suppression and eventual extinction of electron and
muon populations at large densities, i.e., the matter becomes
deleptonized. Once the population of �− hyperons reaches
that of the protons and charge neutrality is established, its
further increase is not favored. Instead, an excess of neutral
� hyperons builds up and dominates the hyperon population
at asymptotically large densities. In the case of softer EoS
(left panel of Fig. 3) the deleptonization and onset of hyperons
like �0,+ and cascades �0,− occurs at densities lower than
in the case of the stiff EoS (right panel of Fig. 3). This is
the consequence of the fact that the large hyperon-meson
couplings favor the formation of hyperons, which in turn
soften the EoS. Thus the SU(6) quark model, with its large
meson-hyperon couplings, favors the onset of hyperons at low
densities, which produces a soft EoS. Conversely, the stiffest
EoS, which corresponds to small values of the hyperon-meson
couplings, disfavors the onset of hyperons.

B. Finite temperatures

Compact stars become transparent to neutrinos after about
a minute of formation in a supernova explosion. Prior to the
neutrino-transparency era the star is hot, with temperatures
on the order of several tens of MeV, and neutrinos are in
equilibrium with matter. The neutrino thermal distribution
is characterized by the neutrino chemical potential μν and
neutrino fraction Yν = nν/nB , i.e., the ratio of the neutrino
number density to the baryon number density. The neutrino
fraction is commonly parameterized by specifying the lepton
fraction for each flavor YL = Yl + Yν , where Yl is the fraction
of the charged leptons of a given flavor. The relevant to
proto-neutron stars range of lepton fraction is 0.1 � YL � 0.4.

Figure 4 shows the EoS of hot hypernuclear matter in
the cases when there is a thermal population of neutrinos
with 0.1 � YL � 0.4 (shaded area) and in the absence of
neutrinos, i.e., Yν = 0 and Yl determined from β equilibrium
with μν,l = 0, as in cold hypernuclear matter. The influence of
including the neutrino population was studied for two EoS:
a soft EoS with parameters according to the SU(6) quark
model and a stiff EoS with x�σ = 0.448 and x�σ = 0.52
(see Fig. 2 for the T = 0 counterparts). It can be seen that
the EoS is stiff when neutrinos are present (Yν �= 0) and as
the fraction of neutrinos, i.e., YL, increases the EoS becomes
stiffer. The stiffening of the EoS can be attributed to the fact
that the thermal population of neutrinos adds its contribution
to the pressure of matter. However, neutrinos stiffen the
EoS also indirectly by changing the composition of matter.
As seen in Figs. 5 and 6 the presence of neutrinos has a
dramatic effect on charge leptons: The deleptonization effect
observed in neutrino-less matter is reversed when neutrinos
are present, which has the consequence that the �− hyperons
are not favored in neutrino-rich matter. In fact the sequence of

0 1 2 3 4 5
ρB/ρ0

0

100

200

300

400

P 
[M
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 fm

3 ]

YL = 0.4
YL = 0.1
Yν = 0

0 1 2 3 4 5 6
ρB/ρ0

YL = 0.4
YL = 0.1
Yν= 0

(a) (b)

FIG. 4. (Color online) Equation of state in the DD-ME2
parametrization [56] at finite temperature, T = 50 MeV. (a) The
hyperon–scalar-meson coupling constants are fixed by the quark
model. In this figure the dependence on the presence of trapped
neutrinos is shown. The dot-dashed line (green online) corresponds
to the case without neutrinos. The presence of neutrinos make the
EoS stiffer. The dashed region represents the variation of the EoS
with the lepton fraction. The dashed line (red online) corresponds to a
lepton fraction YL = 0.1 and the full line (blue online) corresponds to
YL = 0.4; (b) same as left, in which the coupling constants are the one
of the stiffest cases considered, corresponding to g�σ = 0.448gNσ ,
fixed by the NSC potential and g�σ = 0.52gNσ .

appearance of charged � hyperons is reversed (cf. the left and
right panels of Fig. 5). Since neutrinos suppress the hyperon
fractions (predominantly � hyperon), at fixed baryon density,
the EoS is closer to the nucleonic one, which as we have seen,
is always stiffer than the hypernuclear EoS. By comparing
Figs. 5 and 6 one can access how various choices of the
hyperon–scalar-meson couplings influence the composition of
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FIG. 5. (Color online) Particle fractions in hypernuclear matter at
T = 50 MeV for soft hypernuclear EoS based with couplings fixed
by SU(6) symmetric quark model. In panel (a) Yν = 0, and in panel
(b) YL = 0.4
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FIG. 6. (Color online) Same as in Fig. 5, but for a stiff hypernu-
clear EoS with to x�σ = 0.448 and x�σ = 0.52.

matter. The general trend, observed at T = 0 (Fig. 3), persists
at nonzero temperatures; i.e., the thresholds for the onset
of the various hyperons shift to higher densities for smaller
values of the couplings of hyperons to the scalar mesons. The
models with high values of these couplings are softer and
more hyperon-rich than the ones with smaller values of these
couplings.

C. Polytropic fits to the EoS

Numerical relativity and astrophysics problems frequently
require a simple parametrization of the EoS matter at zero
temperature. The polytropic form of the EoS has been one of
the common choices and more recently piecewise polytropic
EoSs were used to construct accurate representations of the

microscopic EoS [65]. We use below the representation

P =
4∑

i=1

Kiρ
�i θ (ρ − aiρ0)θ (biρ0 − ρ), (32)

where �i is the polytropic exponent, Ki is a dimensionful
constant, and ρ0 is the saturation density. These parameters
are used to fit the EoS with a given interval of densities, the
lower and upper boundaries specified by the parameters ai

and bi . The six different EoSs that were parameterized using
Eq. (32) include a nuclear EoS, a hypernuclear EoS based on
the SU(6) symmetric quark model, and four additional EoSs
with x�σ and x�σ from the range discussed in the previous
sections. The details are given in Table II. The polytropic
representation above should be supplemented by a suitable
EoS of matter in the crust of a neutron star below the density
ρB/ρ0 � 0.5. This should be matched to given EoSs, which
are fitted only up to the crustal base, assumed to be at 0.5ρ0. To
optimize the fit, the density segments were chosen to optimally
reflect the changes in the EoS; for example, one knot, in the
case of hypernuclear EoS, is chosen to be the density of the
onset of hyperons. The change of the polytropic exponent
with density is consistent with the expectation that as matter
becomes more relativistic, the polytropic exponent decreases.

D. Stellar structure

The spherically symmetric solutions of Einstein’s equations
for self-gravitating fluids are given by the well-known Tolman-
Oppenheimer-Volkoff equations, which can be integrated for
any given EoS. It is convenient to parametrize the equilibrium
sequences of nonrotating configurations at zero temperature
by their central density. A universal feature of these solutions
is the existence of a maximum mass for any EoS; i.e.,
as the central density is increased a sequence reaches the

TABLE II. Piecewise-polytropic parametrization of various EoS according to Eq. (32). Set A corresponds to a pure nucleonic EoS. The
hyperonic EoSs with different values x�σ and x�σ are arranged as follows: set B, x�σ = 0.52 and x�σ = 0.448; set C, x�σ = 0.66 and
x�σ = 0.448; set D, x�σ = 0.58 and x�σ = 0.26; and set E, x�σ = 0.58 and x�σ = 0.66. Set F refers to the hyperonic EOS with xYYσ fixed to
the values of the SU(6) symmetric quark model. The dimensionful constant Ki is given in units of MeV fm3+3�i .

i Ki �i ai bi Ki �i ai bi

Set A Set B
1 3.685 35 2.863 24 0.5 1.35 3.568 37 3.120 01 0.5 2.5
2 3.733 99 3.073 44 1.35 3 7.665 22 2.274 31 2.5 3
3 6.898 25 2.547 58 3 5 12.0670 1.867 18 3 4
4 13.2029 2.162 47 5 10 12.9132 1.814 31 4 6

Set C Set D
1 3.768 01 2.983 66 0.5 2.25 3.558 34 3.124 37 0.5 2.5
2 9.157 75 1.862 09 2.25 3 9.188 76 2.084 51 2.5 3
3 9.646 38 1.809 67 3 5 12.9246 1.774 19 3 5
4 7.798 75 1.941 52 5 6 15.7905 1.647 81 5 6

Set E Set F
1 4.244 06 2.505 44 0.5 3.5 4.017 72 2.625 86 0.5 2
2 9.279 49 1.880 33 3.5 4.25 5.492 27 2.134 20 2 4.25
3 18.9055 1.389 03 4.25 5 10.5763 1.683 09 4.25 5
4 25.6369 1.198 45 5 6 24.7673 1.154 00 5 6
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FIG. 7. (Color online) Dependence of the gravitational mass of
compact hypernuclear stars on central density at zero temperature.
The solid (blue online) and dashed (red online) show the limiting
cases of parameter space as indicated in the panels (a) and (b). The
dash-dotted (green online) line shows the observational lower limit
on the maximum mass 1.97M�.

configuration with the maximum mass and the stars with larger
central densities are unstable towards gravitational collapse.
A condition of stability for a sequence of configurations is
dM/dρc � 0; i.e., the mass should be an increasing function
of the central density. Alternatively, the stability analysis
of the lowest-order harmonics of pulsation modes (e.g., the
fundamental radial pulsations) allows access to the stability
of a configuration, for these are damped for stable stars and
increase exponentially for unstable stars.

The range of considered hypernuclear EoS translates into
the band of the stable configurations shown in Fig. 7. The
hypernuclear configurations branch off from the purely nuclear
configurations once the central density of a configuration
reaches the threshold for appearance of hyperons in matter.
The gravitational mass of hypernuclear stars increases with
the density, indicating a stable branch of these objects, and
reaches the maximum mass �2.25M� for densities of order
7ρ0. Most of the sequences generated by the parameter space of
the couplings considered is compatible with the observational
bound M/M� � 1.97. There is also room left for larger mass
stars to allow for statistical distribution of the masses of
neutron stars beyond this limit. Note that 1.4M� canonical
mass stars would be pure nucleonic for the softer subclass
of EoS considered, whereas they would contain hypernuclear
matter for the harder subclass; however, all stars with M >
1.5M� contain hypernuclear matter.

In Fig. 8 we show the mass-radius relationship for the
hypernuclear sequences. The configurations with masses close
to the maximum mass M � 2M� have radii of R � 12 km,
whereas the canonical mass stars have radii of order 14 km.
The figure also shows the bound, which predicts that PSR
J0437-4715, being a M = 1.76M� neutron star, has a radius
R > 12.5 km at the 2σ level. Clearly, the hypernuclear stars
are consistent with this observation. Finally we note that it is

0.5
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1.5

2

2.5

M
/M

O

xΣσ = 0.66, x Λσ = 0.58
xΣσ = 0.26, x Λσ = 0.58

10 12 14 16 18
R [km]

0

0.5

1

1.5
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xΛσ = 0.52, x Σσ = 0.448
xΛσ = 0.66, x Σσ = 0.448

FIG. 8. (Color online) The mass-radius relations for compact
hypernuclear stars at zero temperature. The labeling and parameter
space is as in Fig. 7. The arrow shows the mass-radius constraint of
Ref. [31] at 2σ level, which is M = 1.76M� and R � 12.5 km.

not excluded that the low-mass neutron stars with M ∼ 1.2M�
may already contain hypernuclear matter.

VI. CONCLUSIONS

Despite decades of theoretical research on hypernuclear
matter, the appearance of hyperons in compact stars remains an
open issue. While the recent astrophysical measurements ex-
clude a significant fraction of soft EoSs, the hyperonization of
dense nuclear matter remains a serious possibility. Our present
study confirms this within a relativistic density functional
approach to nuclear matter, where we investigated the impact
of variation of the hyperon–scalar-meson couplings on the EoS
of hypernuclear matter. The range of found EoSs is sufficiently
stiff to produce heavy compact stars (M � 2.25M�). The
radii of our sequences are located in the range of 12 � R �
14 km. Piecewise-polytropic fits for six representative EoSs
are provided, which span the complete range of EoS from our
parameter study.

The parameter space of couplings of hyperons to scalar
mesons was explored, holding density-dependent nucleonic
couplings fixed to their values suggested by the DD-
ME2 parametrization of the nuclear density functional [56].
To allow for hyperonization in massive stars a require-
ment is to have small ratios of the hypernuclear-to-nuclear
couplings; in particular, hyperons need to be coupled to
scalar mesons weaker than predicted by the SU(6) quark
model.

By extending our studies to nonzero temperature and
including thermal ensemble of neutrinos (present in a compact
star during the first minute after birth) we confirm that
the neutrinos stiffen the high-density EoS and impact the
charge lepton content of hypernuclear matter. Instead of
deleptonization with increasing density, seen in neutrinoless
matter, the abundances of charged leptons remain constant,
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which has the consequence that the thresholds for appearance
of charged �’s is reversed.

The hyperonic abundances found in our EoS are broadly
consistent with the predictions of other models, both early
and recent, as these are determined by their mass spectrum
and conditions of charge neutrality and β equilibrium. By
varying the scalar-meson couplings, we showed that as the
EoSs are stiffer, the densities at which any type of hyperon
appears are larger. For example, if for soft EoS a substantial
amount of cascades can be built up, only trace amounts are
found in stiff EoS. Furthermore, at nonzero temperatures the
thresholds for the onset of hyperons are located at densities
lower than those at zero temperature. It is evident that during

the early cooling stage of a neutron star, i.e., the period where
the temperature drops from tens of MeV to a MeV and matter
becomes transparent to neutrinos, a rearrangement of particle
content of matter must take place.
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