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Three-body calculations of the triple-α reaction
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Recently, the triple-α (3α) process, by which three 4He nuclei are fused into a 12C nucleus in stars, was
studied by using different methods to solve the quantum mechanical three-body problem. The results for the
thermonuclear reaction rate for the process differ by several orders at low stellar temperatures of 107–108 K. In
this paper, we will present calculations of the 3α process by using a modified Faddeev three-body formalism
in which the long-range effects of Coulomb interactions are accommodated. The reaction rate of the process is
calculated via an inverse process: three-alpha (3-α) photodisintegration of a 12C nucleus. The calculated reaction
rate is about 10 times larger than that of the Nuclear Astrophysics Compilation of Reaction Rates at 107 K and
is notably smaller than the results of recent three-body calculations. We will discuss a possible reason for the
difference.
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I. INTRODUCTION

The thermonuclear reaction rate of the triple-α (3α)
process is known to be important input to studies of stellar
nucleosynthesis and stellar evolution (see, e.g., Refs. [1,2]).
This process at stellar temperatures as high as 109 K (the
resonant region) is dominated by a sequential process in which
successive formations of the 2-α resonant state, e.g., 8Be(0+

1 ),
and then the three-alpha (3-α) resonant state, e.g., 12C(0+

2 ) (the
Hoyle state) play the essential role [3,4]. On the other hand, at
lower temperatures of 107 K, where kinematical energies of α
particles are not high enough to produce the 8Be(0+

1 ) resonance
as a doorway state, the process is nonresonant and should
be considered as a direct three-body reaction. The Nuclear
Astrophysics Compilation of Reaction Rates (NACRE) 3α
reaction rate [5] is evaluated by adapting the sequential process
with extensions of the resonance formula to low energies
under the assumption of energy-dependent widths [6,7] as a
simulation of the direct reaction.

Because of recent developments in solving the Schrödinger
equations for three-body continuum states numerically, there
appeared some three-body calculations of the 3α reaction
rate. Ogata et al. [8] have first calculated the 3α reaction
rate by solving the 3-α Schrödinger equations by using the
continuum-discretized coupled-channel (CDCC) method, in
which a three-body wave function is expanded by a set
of discretized α-α scattering states. (Hereafter their rate is
referred to as the OKK rate.) Due to huge differences from
the NACRE rate at low temperatures (see Fig. 4 below),
the OKK rate was reported to have significant effects on
stellar evolutionary phenomena [9–15]. Recently, calculations
in which 3-α continuum states are treated by using the
hyperspherical harmonics method combined with the R-matrix
method was performed in Refs. [16,17] (HHR rate). In Refs.
[18,19], the present author reported some results of the 3α
reaction rate calculated by using the Faddeev three-body
formalism [20] modified so that effects of long-range Coulomb
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interactions are accommodated, which has been successfully
applied to the study three-nucleon scattering systems [21,22].
More recently, a method of imaginary time [23] has been
applied to calculate the 3α reaction rate [24]. While these
different calculations agree with each other and with the
NACRE rate in the resonant region, they differ considerably
at lower temperatures (see Fig. 4 below).

This paper will describe some details of the calculations
of the 3α reaction rate partially reported in Refs. [18,19] and
will discuss the differences among the calculations. In the
following, after a formalism to calculate the reaction rate is
described in Sec. II, results of calculations will be presented in
Sec. III. In Sec. IV, to understand the differences between the
present calculations and those of others, CDCC calculations
will be performed. A summary will be given in Sec. V.

II. FORMALISM

A. Basic formalism

We consider a system of three α particles 1, 2, and 3, and use
Jacobi coordinates {xi , yi} to describe the three-body system
defined as

xi = rj − rk,

yi = r i − 1
2 (rj + rk), (1)

where (i, j, k) denotes (1, 2, 3) or its cyclic permutations, and
r i is the position vector of particle i. Momenta conjugate to
xi and yi are denoted by qi and pi , respectively. Subscripts to
indicate particles will be omitted when there is no confusion.

Let us consider the electric quadrupole (E2) transition from
a 3-α continuum state of the total angular momentum 0 to the
12C(2+

1 ) bound state emitting a photon of energy

Eγ = E − Eb = E + |Eb|, (2)

where E is the total energy of the 3-α continuum state in the
center-of-mass system and Eb is the energy of the 12C(2+

1 )
state with respect to the 3-α threshold energy. The transition
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amplitude for the process is given by

F (B)(q, x̂, ŷ) = 〈�b|Hγ |q, p〉(+), (3)

where Hγ is the electromagnetic transition operator, �b is
the 3-α bound-state wave function of the 12C(2+

1 ) state, and
|q, p〉(+) is the 3-α continuum state initiated by a free 3-α state
|q, p〉 with the outgoing boundary condition.

The initial momenta, q and p, take a variety of values as
far as satisfying the energy conservation relation

E = h̄2

mα

q2 + 3h̄2

4mα

p2, (4)

where mα is the mass of the α particle. To avoid a cumbersome
procedure to calculate all |q, p〉(+) states, we calculate the
inverse reaction of the 3α reaction, namely, the E2 photodis-
integration of 12C(2+

1 ):

12C(2+
1 ) + γ → α + α + α. (5)

By using the disintegration cross section of this process,
σγ (Eγ ), the 3α reaction rate 〈ααα〉 at stellar temperature T is
calculated (see, e.g., Ref. [25]) from

〈ααα〉 = (3)3/2240π

(
h̄

mαc

)3
c

(kBT )3
e
− Eb

kBT

×
∫ ∞

|Eb|
E2

γ σγ (Eγ )e− Eγ
kBT dEγ , (6)

where kB is the Boltzmann constant. Note that we apply
nonrelativistic kinematics for the 3-α systems and that we
do not consider a capture to the 12C ground state directly by an
electron-positron pair emission in the present work as in other
works [8,16,17].

The three-body disintegration reaction is calculated by
defining a wave function [26] in an integral equation form,

|�〉 = 1

E + ıε − H3α

Hγ |�b〉, (7)

or in a differential equation form,

(E − H3α) |�〉 = Hγ |�b〉, (8)

where H3α is the Hamiltonian of the 3-α system.
The asymptotic form of the wave function evaluated by

using the saddle-point approximation [27] is a purely outgoing
wave in three-body space with amplitude F (B),

�(x, y) →
x → ∞
y/x fixed

eı(K0+O(R−1))R

R5/2
F (B)∗(q, x̂, ŷ), (9)

where the hyperradius R and momentum K0 are given by

R =
√

x2 + 4

3
y2 (10)

and

K0 =
√

mα

h̄2 E, (11)

q is calculated from the following relation:

q = 1√
1 + 4

3
y2

x2

K0, (12)

and long-range terms due to the Coulomb interaction [22] are
expressed just by O(R−1) for simplicity.

The photodisintegration cross section is given by the
breakup amplitude as

σγ (Eγ ) = 1

20π

h̄

mαc

1

K3
0

(
3

4

)2

×
∫ K0

0
dq q2p|F (B)(q, x̂, ŷ)|2. (13)

We write the 3-α Hamiltonian as

H3α = H0 +
3∑

i=1

Vi + W, (14)

where H0 is the internal kinetic energy operator of the
three-body system, Vi is a two-body potential (2BP) to
describe the interaction between particles j and k consisting
of a short-range nuclear potential V S

i (xi) and the Coulomb
potential V C(xi) with Z = 2:

Vi = V S(xi) + V C(xi) = V S(xi) + (Ze)2

xi

, (15)

and W is a 3-α potential (3BP). Details of potentials used in
this work will be described in the next section.

A partial-wave decomposition is performed by introducing
an angular function,

|θ (x̂, ŷ)) = [YL(x̂) ⊗ Y	( ŷ)]JM , (16)

where L denotes the relative orbital angular momentum of
the pair of particles, � is the orbital angular momentum of the
spectator particle, and J(= L + �) and M are the total angular
momentum of the three particles and its third component,
respectively. A set of quantum numbers (L, 	, J,M) is
represented by the index θ .

B. Faddeev method

Now, we consider applying a modified version of the
Faddeev three-body method [20] to solve Eq. (7), in which
we take into account the long-range property of Coulomb
interactions [28]. Here, we introduce an auxiliary Coulomb
potential uC

i,j (yi) that acts between the center of mass of the
pair (j, k) and the spectator i with respect to the charges of the
pair (i, j ),

uC
i,j (yi) = (Ze)2

yi

. (17)

Together with the similarly defined uC
i,k(yi), we introduce a

Coulomb potential

uC
i (yi) = uC

i,j (yi) + uC
i,k(yi) = 2(Ze)2

yi

. (18)
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In Faddeev theory, a three-body wave function � is
decomposed into three (Faddeev) components:

� = 
(1) + 
(2) + 
(3). (19)

Corresponding to this decomposition, the three-body potential
and the electromagnetic operator are decomposed into three
components:

W = W1 + W2 + W3 (20)

and

Hγ = Hγ,1 + Hγ,2 + Hγ,3 (21)

with the condition that Wi and Hγ,i are symmetric with respect
to the exchange of j and k.

The modified Faddeev equations [26,28] read


(1) = G1(E)Hγ,1|�b〉 + G1(E) [�
](1)

(and cyclic permutations), (22)

where the operator Gi(E) is a channel Green’s function defined
as

Gi(E) ≡ 1

E + ıε − H0 − Vi − uC
i

, (23)

and we use the shorthand notation

[�
](1) ≡ (
V1 − uC

2,3

)

(2) + (

V1 − uC
3,2

)

(3)

+W1(
(1) + 
(2) + 
(3)). (24)

We remark that one obtains the original Schrödinger-type
equation (8) by summing up the differential equation version
of all equations in (22), and then using Eqs. (18)–(21). We
also remark that Eq. (22) ensures that the component 
(i) is
symmetric under exchange of particles j and k, and thus the
total wave function �, Eq. (19), is totally symmetric with
respect to i, j , and k.

Here, we define a set of complete and orthogonal functions
describing the angular parts of the three-body system with
state index θ and the radial part of the spectator particle with
momentum p,

|Fθ (p)) ≡ |θ (x̂, ŷ)) ×
√

2

π

F	[η(p), py]

y
, (25)

where F	[η(p), py] is the regular Coulomb function:

[T	(y) + uC(y)]F	[η(p), py] =
(

3h̄2

4mα

p2

)
F	[η(p), py],

(26)

with

T	(y) = − 3h̄2

4mα

(
d2

dy2
− 	(	 + 1)

y2

)
(27)

and a Coulomb parameter η(p) = 2mα

3h̄2
2(Ze)2

p
.

The function 
(1)(x, y) thereby can be expanded as


(1)(x, y) =
∑

θ

∫ ∞

0
dp |Fθ (p))

φθ (x, p)

x
, (28)

where the function φθ (x, p) is a solution of an ordinary
differential equation:

[Eq − TL(x) − V S(x) − V C(x)]φθ (x, p) = ωθ (x, p) (29)

with

Eq = h̄2

mα

q2 = E − 3h̄2

4mα

p2 (30)

and

TL(x) = − h̄2

mα

(
d2

dx2
− L(L + 1)

x2

)
. (31)

The source function ωθ (x, p) is given by

ωθ (x, p) = x(Fθ (p)|Hγ,1�b + [�
](1)〉. (32)

The boundary condition to get a physical solution of
Eq. (29) depends on Eq and thus on the integral variable p in
Eq. (28) via Eq. (30). According to the sign of Eq , the range of
p (0 � p < ∞) is divided into two regions: (i) 0 � p � pc =√

4mα

3h̄2 E, where Eq � 0, and (ii) pc < p < ∞, where Eq < 0.
The corresponding boundary conditions are

φθ (x, p) ∝
x→∞

{
u

(+)
L [γ (q), qx] (0 � p � pc),

W−γ (|q|),L+1/2(2|q|x) (pc < p < ∞),

(33)

where u
(±)
L (γ, r) is defined as

u
(±)
L (γ, r) = e∓ıσL(γ ) [GL(γ, r) ± ıFL(γ, r)] , (34)

where GL(γ, r) is the irregular Coulomb function, the factor
σL(γ ) is the Coulomb phase shift, γ (q) = mα

2h̄2
(Ze)2

q
, and the

function Wκ,μ(z) is the Whittaker function [29]. We solve
Eq. (29) with the above conditions by applying the usual
techniques as in the two-body problem, e.g., the Numerov
algorithm [22,30].

The Faddeev component 
(1)(x, y) has an asymptotic form
similar to Eq. (9) with a breakup amplitude:

f (B)(q, x̂, ŷ) = e
π
4 ı

(
4K0

3

)3/2 ∑
θ

|θ (x̂, ŷ))

× ı−L−	

p

mα/h̄2

1 − ıKL(q)
〈ψ̄L(q)|ωθ (p)〉, (35)

where ψ̄L(x; q) is an α-α scattering solution with the standing-
wave boundary condition and KL(q) is the scattering K matrix
for two-body scattering (see Appendix C of Ref. [22]). The
total breakup amplitude is thus obtained according to the
Faddeev decomposition (19) as

F (B)(q1, x̂1, ŷ1) = f (B)(q1, x̂1, ŷ1) + f (B)(q2, x̂2, ŷ2)

+ f (B)(q3, x̂3, ŷ3). (36)

III. CALCULATIONS

A. Remarks on three-body calculations

Here, we remark on the 3-α calculations. Some other techni-
cal remarks in solving the Faddeev equations for three-body
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TABLE I. Potential parameters of the α-α potential, Eq. (37), for
AB(A′) [35] and AB(D) [34] and calculated values of the 8Be(0+

1 )
resonance energy Er,2α and width �2α . Empirical values are taken
from Ref. [36].

Potential AB(A′) AB(D) Empirical

aR (fm) 1.53 1/0.70(∼1.4)
V

(0)
R (MeV) 125.0 500.0

V
(2)
R (MeV) 20.0 320.0

aA (fm) 2.85 1/0.475(∼2.11)
VA (MeV) − 30.18 − 130.0
Er,2α (keV) 93.4 95.1 91.8
�2α (eV) 8.59 8.32 5.57 ± 0.25

breakup reactions accommodating three-body potentials and
Coulomb potentials are given in Refs. [21,22,31–33].

1. Interactions

We use the two-range Gaussian form [34] for the nuclear
part of the α-α potential,

V S(x) = P̂2α,LV
(L)
R e−(x/aR )2 + VAe−(x/aA)2

, (37)

where P̂2α,L is a projection operator on the L angular
momentum α-α state. In the present work, two different
parameter sets will be used: one is from Ref. [35], which
is a slightly modified version of model A of the Ali-Bodmer
(AB) potential [34], AB(A′); the second set is model D of
the AB potential, AB(D). Table I shows the parameters and
calculated properties of α-α resonance in comparison with
empirical values [36].

The α-α potentials used in this work are shallow and so
do not support bound states. However, it is known (see, e.g.,
Refs. [37–39]) that the use of such shallow α-α potentials does
not reproduce some 3-α observables, e.g., binding energies and
resonance energies. In order to reproduce these observables,
we introduce a 3BP, which depends on the total angular
momentum of the 3-α system, which takes a form given in
Ref. [35],

V3α =
∑

J=0,2

P̂3α,J W
(J )
3 exp

(
−AαR2

2b2
3

)
, (38)

where P̂3α,J is a projection operator on the 3-α state with total
angular momentum J , Aα = mα/mN = 3.97 and b3 = 3.9 fm,
and the strength parameters W

(J )
3 will be determined below.

2. Two-body singularity

In the integral representation of wave functions, Eq. (28),
we need to take care of the existing 8Be(0+

1 ) resonance with
energy Er,2α and width �2α , which causes a rapid dependence
of φθ (x, p) on the variable p through Eq. (30). As an example,
the function φθ (x, p) for the inhomogeneous term in Eq. (22)
at x = 2.8 fm and E = 0.2 MeV with the AB(D) potential
is plotted as a function of Eq instead of p in Fig. 1. Here,
we set about 30 p-mesh (equivalently, Eq-mesh) points for

FIG. 1. The function φθ (x, p) for the inhomogeneous term in
Eq. (22) at x = 2.8 fm and E = 0.2 MeV with the AB(D) potential
plotted as a function of Eq . The insertion is the magnified drawing of
φθ (x, p) around the 2-α resonance energy.

Er,2α − 10�2α < Eq < Er,2α + 10�2α . The function reveals a
sharp Eq dependence around the 8Be(0+

1 ) resonance energy,
which is safely treated by the condensed mesh points. Also, we
remark that the effects of the function at negative Eq values,
which correspond to a closed channel, are significant. Thus, in
the present calculation, we choose the maximum value of the
variable p as the one corresponding to Ep ≈ 160 MeV.

3. Cutoff procedure

Here, we remark on the introduction of the auxiliary
potentials. Besides the role of introducing the Coulomb
distorted spectator function F	[η(p), py], Eq. (26), they have
another role to play: In the integral kernel of Eq. (22), there
appears uC

2,3(y1) with a combination of the Coulomb potential
acting on particles 2 and 3:(

1

x1
− 1

y2

)
. (39)

As explained in Ref. [21], this term is supposed to be a
short-range function with respect to the variable x1 because
of the cancellation between two terms, which makes the
integral kernel tractable. However, while this cancellation
holds sufficiently for bound states and continuum states below
three-body breakup threshold, it does not hold sufficiently for
the case of the three-body breakup reaction [22]. To avoid
difficulties arising from this, we introduce a mandatory cutoff
factor e−(x/RC )4

to Eq. (39). This is an approximation made
for this calculations. To check the convergence property of the
cutoff range RC , we performed calculations by changing the
cutoff radius RC , and we found that RC = 35 fm is enough to
obtain converged results.

4. Bound state

For the initial 12C(2+
1 ) state, we solve a homogeneous

version of Eq. (22) [31] by taking into account 3-α partial
wave states having 2-α states of the angular momentum up
to 4 [37,38]. The strength parameter of the 3BP for the
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TABLE II. The strength parameters of the three-body potential
W

(2)
3 for the AB(A′) and AB(D) α-α potential modes together with

calculated values of the binding energy of the 12C(2+
1 ) state, Eb. The

empirical binding energy is taken from Ref. [40].

α-α model W
(2)
3 (MeV) Eb (MeV)

AB(A′) −56.3 −2.840
AB(D) −46.0 −2.830
Empirical −2.8357

J = 2 state, W
(2)
3 , is determined to reproduce the empirical

binding energy of the 12C(2+
1 ) state [40]. The chosen values of

W
(2)
3 for the AB(A′) and AB(D) α-α potentials are shown in

Table II.
In solving the bound-state problem, it is enough to calculate

wave functions within a rather restricted area, e.g., (x � 12 fm,
y � 80 fm). However, to use the bound-state wave function
in solving Eq. (22), we need to extend it to large values
of the x and y variables. In actual calculation, we extend
the bound-state wave function up to 100 fm for both of
these variables. In the present calculations, the extension is
performed by expanding the calculated wave function by
using Gaussian functions. The previous results of the present
author [18,19] were insufficient with respect to this expansion,
and the present results below are updated, which causes a
minor change.

5. The x- and y-mesh points

To solve the Schödinger-type equation (29), the solution
φθ (x, p) is connected to the asymptotic form of Eq. (33) at
x = 40 fm in the present calculation. The function φθ (x, p) is
then extended up to x = 1000 fm by using the asymptotic form.
By using these functions and Eq. (28), the wave function can
be extended up to 1000 fm in the y variable. These maximum
values in x and y variables are checked to give a converged
result.

B. Numerical results

For calculations of 3-α continuum states with the J = 0
state, we take into account 3-α partial wave states of (L, 	) =
(0, 0) and (2, 2). The calculated photodisintegration cross
sections reveal a sharp resonance corresponding to the Hoyle
state. The strength parameter of the 3BP, W (0)

3 , is determined to
reproduce the empirical resonance energy of the Hoyle state.
Results for the combination with the AB(A′) and for the AB(D)
potentials are listed in Table III, where truncated calculations
with the (L, 	) = (0, 0) state are denoted by a subscript 0.

The partial decay width for the photoemission process, �γ ,
and the 3-α decay width �3α , which is assumed to equal
the total width, are evaluated by fitting the calculated cross
sections around the Hoyle resonance with a Breit-Wigner
formula:

σγ (E) = π

10

(
h̄c

Eγ

)2
�3α�γ

(E − Er )2 + �2
3α/4

, (40)

TABLE III. Strength parameters of the 3BP for the 3-α 0+ state,
W

(0)
3 , and calculated resonance parameters of the Hoyle state, Er,3α ,

�3α , and �γ , for the Faddeev and CDCC calculations. See the text for
the subscript 0 in the Faddeev calculation. Empirical values are taken
from Ref. [40].

Calculation W
(0)
3 Er,3α �3α �γ

(MeV) (keV) (eV) (meV)

Faddeev
AB(A′) −96.2 376.966 9.1 1.8
AB(A′)0 −168.0 377.929 9.5 2.7
AB(D) −155.5 377.956 6.9 2.4
AB(D)0 −305.5 376.724 6.4 2.9
CDCC
AB(A′) −315.0 381.241 126 4.7
Empirical 379.4 8.3 ± 1.0 3.7 ± 0.5

and these are also listed in Table III. The calculated photodis-
integration cross sections are plotted in Fig. 2.

By adapting calculated photodisintegration cross sections
to Eq. (6), the 3α reaction rates are obtained by numerical
integrations. The cross sections are normalized to reproduce
the empirical value of �γ . This is essential to give a reaction
rate that agrees with that of the NACRE rate in the resonant
region, where the sequential process dominates the reaction
and the 3α rate is proportional to �γ (see, e.g., Eq. (15) of
Ref. [6]).

Calculated 3α reaction rates, multiplied by the square of
the Avogadro constant NA by convention, for AB(A′) and
AB(D) are shown in Fig. 3 as a function of temperature T7 =
T/(107 K). In the figure, reaction rates for NACRE, OKK, and
HHR are also plotted for comparison. In Fig. 4, ratios of these
calculations to the NACRE rate are shown.

Although Table III demonstrates that the determined values
of W

(0)
3 depend on the truncation of the partial wave states, it

turns out that calculated 3α reaction rates essentially do not
change once the resonance energy is fitted. Actually, those
calculations are indistinguishable even if plotted in Fig. 4.

Our results for the 3α reaction rate at higher temperatures
T7 > 10 agree with the NACRE rate within a few percent

FIG. 2. (Color online) Calculated photodisintegration cross sec-
tion for the process, Eq. (5), as a function of the 3-α energy E. The
solid line is the result for AB(A′) and the dashed line is for AB(D).
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〈
〉

FIG. 3. (Color online) The 3α reaction rate as a function of
temperature. The solid line denotes the present calculation for
AB(A′), the dashed line is for AB(D), the dot-dashed line is the
NACRE rate [5], the dotted line is the OKK rate [8], and the
dot-dot-dashed line is the HHR rate [17].

owing to normalization of the photodisintegration cross section
to reproduce the γ decay width of the Hoyle state. However,
this contrasts with the calculations of Refs. [8,17], which need
to be multiplied by an additional factor after the normalization.
To see the contribution of the Hoyle state, the 3α rate is
calculated by performing the integration of Eq. (6) just around
the Hoyle state energy, i.e., in the limited range within 10 times
the 3-α decay width. The result for AB(A′) is plotted in Fig. 4
as a thin solid line, which demonstrates that the reaction rate
for T7 > 10 is actually dominated by the Hoyle state.

At lower temperatures, the present results are slightly higher
than the NACRE rate, which contradicts the OKK and HRR
rates. While the present 3α rates for AB(A′) and AB(D) are
about 10 times larger than the NACRE rate at T7 = 1, the
OKK (HHR) rate is about 1026 (1018) times larger than the
NACRE rate at the same temperature. These differences will
be discussed in the next section.

FIG. 4. (Color online) Ratio of the 3α reaction rates to the
NACRE rate as a function of temperature. The solid and dashed lines
denote the Faddeev calculations for AB(A′) and AB(D), respectively;
the dotted line is for the OKK rate; the dot-dashed line is for the HHR
rate; the thin solid line is the Hoyle state contribution for AB(A′)
(see the text).

〈
〉

FIG. 5. (Color online) Temperature-dependent parameter
d log10〈ααα〉/d log10 T calculated from the present 3α reaction
rate. The solid and dashed lines denote the Faddeev calculations for
AB(A′) and AB(D), respectively.

Recently, Suda et al. [14] studied constraints on the
3α reaction rate from stellar evolution theory. They ob-
tained the following constraints: (i) N2

A〈ααα〉 < 10−29

cm6 s−1 mol−2 at T ≈ 107.8 K (T7 ≈ 6.1); (ii) a temperature-
dependent parameter d log10〈ααα〉/d log10 T � 10 at T7 ≈
(10–12). Figure 3 demonstrates that the present rate satisfies
constraint (i). The temperature-dependent parameter calcu-
lated from the present result is plotted in Fig. 5, which shows
that constraint (ii) is also satisfied for the present rates.

IV. DISCUSSION

A. CDCC calculation

In order to discuss the differences between the present
Faddeev calculations and the OKK calculation for the 3α
reaction rate in some detail, we will perform a CDCC
calculation for the 3α process. However, while the CDCC
method was applied to calculate the 3-α continuum states
|q, p〉(+) in Ref. [8], it is applied to solve Eq. (8) in the present
work.

In the CDCC method [41,42], a three-body wave function
is expressed by a particular set of Jacobi coordinates, e.g.,
(x1, y1), which will be designated as (x, y).

We divide the range of the q variable into small in-
tervals of size �q, called bins, [qn−1, qn(= qn−1 + �q)]
(n = 1, 2, . . . ,Nq). For each bin, we define a continuum
discretized (CD) α-α base function by

φ̂n(x) = 1√
Cn

∫ qn

qn−1

dq wn(q)φ(x; q), (41)

where φ(x; q) is the α-α scattering wave functions for the
energy Eq ,

[Eq − TL(x) − V1(x)]φ(x; q) = 0, (42)

wn(q) is a weight function [41,42], and Cn is the normalization
factor,

Cn =
∫ qn

qn−1

dq |wn(q)|2 . (43)
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Here, we consider solving Eq. (8) by expanding the solution
by the CD base restricting the L = 	 = L0 = 0 partial wave
state,

�(x, y) = 1

4π

Nq∑
n=1

φ̂n(x)

x

ψ̂n(y)

y
, (44)

which leads to a set of coupled equations,

Nq∑
n′=1

[[Epn
− T	(y)]δn,n′ − V̂n,n′ (y)]ψ̂n′(y)

= y

4π
〈φ̂n|Hγ |�b〉, (45)

where

Epn
= E − Eqn

(46)

and

V̂n,n′ (y) = 1

(4π )2
〈φ̂n|V2 + V3 + W |φ̂n′ 〉. (47)

In calculating this coupling potential, we neglect the angular
momentum dependence of the α-α potential to avoid any
nonlocality, and we use the L = 0 component of the 2BP.

The boundary condition for the function ψ̂n(y) depends on
the energy of the spectator particle, Epn

. For a positive energy
state of the spectator, it is purely outgoing, e.g.,

ψ̂n(y) →
y→∞u

(+)
0 [η(pn), pny]Tn, (48)

and then the photodisintegration cross section is given by

σγ = 2

45π

h̄c

mc2

∑
n

′ |Tn|2
pn

, (49)

where the prime means that the summation over n is restricted
within a range where Epn

� 0.
In the present calculation, we use 120 averaged states

by setting q0 = 0.010 fm−1 (Eq0 = 1.0 keV) with �q =
0.001 fm−1, namely, q120 = 0.130 fm−1 (Eq120 = 175 keV),
which is a choice similar to that of the OKK calculation:
122 states for q0 = 0.008 fm−1 (Eq0 = 0.608 keV) to q122 =
0.130 fm−1 (Eq122 = 176 keV). Equation (45) is integrated up
to ymax = 2500 fm, and the obtained solutions are connected
to the outgoing boundary conditions (48). In calculating the
coupling potential (47), the CD-base functions are integrated
up to xmax = 5000 fm. These maximum values are the same
as in the OKK calculations. We use the AB(A′) α-α potential.
The same wave function as in the Faddeev calculation above is
used for the initial 3-α 12C(2+

1 ) state using the AB(A′) model.
The strength parameter of the 3BP that is determined to

reproduce the Hoyle resonance energy is shown in Table III.
Due to numerical difficulties in solving Eq. (45) when a

channel with negative energy of Epn
exists, in the present

work, calculations are performed for E � 250 keV, where all
CD channels involved in the calculations are open.

In Fig. 6, we plot results of the phododisintegration cross
section by the solid line in comparison with the Faddeev result
as denoted by the dashed line. As is expected, the CDCC cross
sections are larger by several orders of magnitude compared

FIG. 6. (Color online) Photodisintegration cross sections of
12C(2+

1 ) calculated by using the CDCC method (solid line) and the
Faddeev method (dashed line).

to the Faddeev cross sections. The resonance parameters
calculated by using the CDCC method are listed in Table III,
which shows that the calculated width for 3-α decay in the
CDCC calculations is 10 times larger than that of the Faddeev
calculations and the empirical value.

The calculated 3α reaction rate as a ratio to the NACRE
rate is plotted in Fig. 7, together with those of the OKK and
the AB(A′)-Faddeev calculations, which demonstrates that
a similar reaction rate enhancement as for the OKK rate is
observed for the present CDCC calculation.

B. Decay of the Hoyle resonance

The authors of Ref. [8] claimed that the significant increase
of the OKK rate at low temperatures is due to effects of
the direct capture reaction, which are enhanced by a proper
reduction of the Coulomb barrier between a nonresonant
α-α pair and the spectator α particle (see, e.g., Fig. 3 of
Ref. [8]). To check the effect of the direct process in the inverse
photodisintegration cross section, we extract the sequential
cross section as a term of the momentum bin including the
α-α resonant state from Eq. (49), and then we define the direct

FIG. 7. (Color online) Ratio of the 3α reaction rates to the
NACRE rate as a function of temperature. The solid line denotes
the Faddeev calculations for AB(A′), the dashed line is the present
CDCC calculation for AB(A′), and the dotted line is for the OKK rate.
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FIG. 8. Ratio of the resonant contribution to the phododisintegra-
tion cross section of the 12C(2+

1 ) state calculated by using the CDCC
method for AB(A′).

cross section as the remaining portion. Figure 8 shows the ratio
of the sequential cross section to the total cross section of the
CDCC calculation for 0.3 � E � 0.5 MeV. The figure shows
that the contribution of the sequential cross section accounts
for only a small fraction of the total. This implies a large
contribution of the direct cross section and a reduction of the
Coulomb barrier for the nonresonant 2-α state as mentioned
above. In contrast to this, the sequential contribution for the
Faddeev calculation defined as an integration around the 2-α
resonance energy in Eq. (13) contributes more than 99% of the
total cross section.

Here, we notice that the contribution of the sequential cross
section in the present CDCC calculations becomes only about
30% of the total even at the Hoyle resonance energy. This
tendency seems to contradict recent experimental results on
the decay mechanism of the Hoyle state, which is produced
in different ways: by 40Ca + 12C at 25 MeV/nucleon [43], by
10C + 12C at 10.7 MeV/nucleon [44], or by the 11B(3He, d)
reaction at 8.5 MeV [45]. In these experiments, three α
particles in the final state are measured in complete kinematics,
from which a fraction of the sequential decay is extracted.
While the authors of Ref. [43] obtained a rather small fraction,
83(±5)%, of the sequential decay, others [44,45] obtained a
fraction of almost 100%. These results are consistent with the
Faddeev calculations, but not with the CDCC calculations.

A possible reason for this difference may be related to
the importance of rearrangement channels of the 3α reaction:
Suppose that a pair of α particles, say 2 and 3, is in a
nonresonant state. In the CDCC calculation, the third α

particle, 1, feels a rather low Coulomb barrier compared
to the case in which the pair is in the 8Be(0+

1 ) resonant
state as shown in Fig. 3 of Ref. [8], and thus the direct
reaction proceeds favorably to cause an enhancement of the 3α
reaction rate. However, in the Faddeev formalism, because of
a rearrangement reaction, another pair, say 1 and 3, can form
a resonant state, and then the spectator, 2, feels a rather high
Coulomb barrier, which can suppress the reaction. The CDCC
calculations do not include such a coupling to rearrangement
channels. As a result, we may say that the direct decay
is enhanced for the CDCC calculation due to the lack of
rearrangement channels.

Since the authors of Refs. [16,17] insist that the sym-
metrization of 3-α wave functions be explicitly taken into
account in the HHR calculation, the above context may not
apply to the difference between the present calculations and
the HHR calculation. However, for further studies, it would be
interesting to see how large the direct contribution in the HHR
calculations can be.

V. SUMMARY

In this paper, calculations of the 3α reaction as a quantum
mechanical three-body problem are performed. For this, a
wave function corresponding to the inverse process is defined
and solved by applying Faddeev three-body theory and
accommodating the long-range Coulomb force effect.

Two different models of α-α potentials are used supple-
mented with 3-α potentials to reproduce the binding energy
of the 12C(2+

1 ) state and the resonance energy of the Hoyle
state. Our results for the 3α reaction rate are consistent with
the NACRE rate at higher temperatures of T7 > 10, where
the sequential process is dominant, and are about 10 times
larger at low temperature of T7 = 1, although there exists a
potential model dependence. However, our results contradict
recent calculations obtained by using the CDCC and HHR
methods, which exceed the NACRE rate by 1026 and 1018,
respectively, at T7 = 1.

CDCC calculations for the three-body disintegration pro-
cess have been performed, and results show a reaction rate
enhancement similar to that for the OKK rate. We found
that a significant difference between the Faddeev and the
CDCC results exist in the contents of the decay of the Hoyle
state: while sequential decay is dominant for the Faddeev
calculation, it is only about 30% for the CDCC calculation,
which contradicts recent experimental data for the decay of
the Hoyle resonance.
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