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Isospin symmetry breaking and the neutron-proton mass difference
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QCD sum rules using polynomial kernels are used to evaluate the strong part of the proton-neutron mass differ-
ence δMnp in a model independent fashion. The result for the mass difference turns out to depend sensitively on the
value of the four-quark condensate 〈(qq)2〉 and reproduces the experimental value of δMnp for 〈(q̄q)2〉 ∼ 2〈q̄q〉2.
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I. INTRODUCTION

The QCD sum rule method introduced by Shifman, Vain-
shtein, and Zakharov [1] has extended the applicability of
QCD far beyond simple perturbation theory. The method was
adapted to the case of nucleons by Ioffe [2] and independently
by Chung, Dosch, Kremer, and Schall [3]. These authors
showed how to approach one of the fundamental problems
of hadronic physics, the calculation of the baryon masses from
the Lagrangian, and the vacuum condensates of QCD.

Several authors [4] undertook the study of the neutron-
proton mass difference δMnp using the external field method
of Ioffe and Smilga [2]. These authors use Borel (Laplace)
transforms of correlators in order to suppress the unknown con-
tributions of the continua which appear in dispersion integrals.

I present here a different approach which uses instead as
kernels in the dispersion integrals simple polynomials [5] the
coefficients of which are determined by the general shape
of the physical spectrum and which, as will be shown, offer
stronger damping of the unknown parts of the spectrum in
addition to better stability.

II. THE CALCULATION

It has been known since the early days of QCD that the
mass splitting of hadrons in an isospin multiplet arises from
two sources: virtual photon exchange, which can be related to
virtual photon scattering by the Cottingham formula [6] and
isospin symmetry breaking which arises from the difference
between the masses of the light quarks muand md as well as the
difference between the light quark condensates 〈uu〉 and 〈dd〉.

Let us start by a reminder of how electromagnetic and strong
parts of the mass splittings arise [9]. The quark mass term in
the QCD Hamiltonian density reads

H (x) = muuu + mddd + · · · . (1)

The effect of turning on electromagnetism is described by
the additional term

Hem(x) = e2

2(2π )4

∫
d4q

q2

∫
d4xeiqxTjμ(x)jμ(0) (2)

which accounts for virtual photon exchange:

jμ = 1
3uγμu − 2

3dγμd (3)
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is the electromagnetic current expressed in terms of quark
fields.

Following Cottingham [6] Eq. (2) can be transformed into

Hem(0) = e2

8π2

∫ ∞

0

dQ2

Q2

∫ Q

−Q

dq0

√
Q2 − q2

0 · i

×
∫

d4xeiqxTjμ(x)jμ(0)

= e2

8π2

∫ λ

0

dQ2

Q2

∫ Q

−Q

dq0

√
Q2 − q2

0 · i

×
∫

d4xeiqxTjμ(x)jμ(0) + e2

8π2

∫ ∞

λ

dQ2

Q2

×
∫ Q

−Q

dq0

√
Q2 − q2

0 · i

∫
d4xeiqxTjμ(x)jμ(0),

(4)

where Q2 = −q2 and λ is a divider between small and large
values of Q2.

Matrix elements of the low-energy contribution to Eq. (4)
can be obtained from experimental observation, the insertion
of intermediate states, etc., this term we call Hλ

Coul.(0), the
“Coulomb” part. In the (divergent) high energy part we can use
the operator product expansion (OPE) of the electromagnetic
currents with the result

Hem(0) = Hλ
Coul.(0) + e2

6π2
ln

�2

λ2
mddd

− e2

24π2
ln

�2

λ2
muuu + · · · (5)

with � an ultraviolet cutoff.
When this is added to expression (1) the divergent terms

are absorbed in the renormalized masses and the Hamiltonian
density takes the form

H (0) = HCoul.(0) + (mu + md )

2
(uu + dd)

+ (mu − md )

2
(uu − dd). (6)

The first and last terms in the equation above break
isospin symmetry and contribute to the neutron-proton mass
difference δMnp:

δMnp = 〈p |HCoul.(0)| p〉 + δm

2Mp

〈p |u3| p〉
= δMCoul. + δMq (7)
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with

δm = md − mu,
(8)

u3 = uu − dd.

This separation depends of course on the value of the divider
λ but this dependence is extremely weak: the relative change
in the value of δMq for two values λ1 and λ2 is

�1.5 × 10−3 ln
λ2

2

λ2
1

. (9)

δMCoul. was estimated a long time ago [7], δMCoul. =
−(0.76 ± 0.30 MeV). A recent evaluation [8] which is here
adopted is

δMCoul. = (−1.30 ± 0.50) MeV. (10)

The measured value δMnp = 1.29 MeV yields then

(δMq)exp = (2.60 ± 0.50) MeV. (11)

The theoretical expression is given by Eq. (7):

δMq = δmU (12)

with

U = 〈p |u3| p〉/2Mp. (13)

The aim of the present calculation is to evaluate U using the
asymptotic forms of the various matrix elements given by QCD
and the incomplete available knowledge about the nucleon
continuum with an emphasis on the stability of the calculation.
For this purpose I follow the external field approach of Ioffe
and Smilga [2] in which the quarks are coupled to a weak
external scalar field S(x) through an additional term to the
QCD Lagrangian

�L = −S(x)(uu − dd). (14)

S(x) can be taken a constant. The correlation function of the
nucleon currents in the presence of S(x) is

�(S, q) = i

∫
d4xeiq.x〈0 ∣∣T ηp(x)ηp(0)

∣∣ 0〉S, (15)

where ηp(x) is the proton interpolating field of Ioffe [2]

ηp(x) = εabcU
T
a (x)CγμUb(x)γ5γμdc(x), (16)

where a, b, c stand for color indices and C = −CT is the charge
conjugation matrix. Lorentz covariance and parity allow the
decomposition

�(S, q) = �1(S, q) + γ.q�q (S, q). (17)

To first order in S the two invariant functions can be written as

�i(S, q) = �i
0(q2) + S�i

1(q2), (18)

where �i
0 denote the invariant functions in the absence of

the external field and �i
1 are the linear responses to the latter

which, in QCD, can be expressed via the OPE to various
vacuum condensates.

The external field will contribute in two different ways:
by directly coupling to the nucleon fields which enter in the
nucleon current and by polarizing the QCD vacuum. This will

introduce a susceptibility χ which describes the response of
the quark condensates to S,

〈uu〉S = 〈uu〉 − χS〈uu〉,
(19)

〈dd〉S = 〈dd〉 + χS〈dd〉,
where 〈qq〉 ≡ 〈0 |qq| 0〉.

Using Eq. (14) one obtains

χ〈uu〉 = i

2

∫
d4x〈0 |T u3(x)u3(0)| 0〉. (20)

The QCD expression for �
q
1(t) has been evaluated in

Ref. [4]:

�
q
1(t) =

(
C0 ln(−t) + C1

t
+ C2

t2
+ · · ·

)
. (21)

The constants Ci are expressed in terms of the quark con-
densates, the susceptibility χ , and the quark gluon mixed con-
densate gsq

−→σ .
−→
Gq and its corresponding susceptibility χm:

C0 = 〈qq〉
4π2

,

C1 = 4

3
χ〈(qq)2〉 − m2

0

24π2
〈qq〉, (22)

C2 = (χ + χm)m2
0〈qq〉2/6.

To a good approximation χm = χ [4] with the estimate

m2
0 = 〈gSq

−→σ −→
Gq〉0

〈qq〉 =̃ (0.80 ± 0.20) GeV2. (23)

At low energies �
q
1(t) has double and single isolated poles at

the nucleon mass squared as well as a cut on the positive real
axis starting at tth = (Mp + mπ )2:

�
q
1(t) = −2λ2Mp.U(

t − M2
p

)2 + A(
t − M2

p

) + · · · , (24)

where λ is the coupling of the nucleon to its current

〈0 ∣∣ηp

∣∣p〉 = λUp. (25)

In order to relate the residue U to the QCD condensates
consider the integral of the product �

q
1(t)F (t) over a contour

C in the complex t plane. The contour C consists of two
straight lines parallel to the cut, sandwiching it from above
and below, and running from threshold to a value R and a
circle of radius R taken large enough to allow the replacement
of �

q
1(t) by its asymptotic form Eq. (21) on it.

F (t) is a so far arbitrary entire function. Using next
Cauchy’s theorem we obtain an expression relating the residue
at the pole to an integral over the cut plus an integral over
the circle where the QCD expression for the amplitude can
be used. The integral over the cut cannot be evaluated as the
information on the integrand over the continuum is scarce. We
shall use the arbitrariness in the choice of F (t) to minimize
this contribution so it can be safely neglected.

First take

F (t) =
(

1 − t

M2
p

)
P (t) (26)
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in order to eliminate the contribution of the simple pole which
represents nucleon to continuum transitions. Cauchy’s theorem
then yields

2λ2MpUP
(
M2

p

) = 1

π

∫ R

th

dtF (t)Im�
q
1(t)

+ 1

2iπ

∮
dtF (t)

(
�

q
1(t)

)
QCD. (27)

The second integral in the expression above runs over the circle
of large radius R.

The coupling λ itself can be obtained from the nucleon mass
sum rule [2,3,10] using P (t) as an integration kernel with the
result

−Mpλ2P
(
M2

p

) = 1

π

∫ R

th

dtP (t)Im�2(t)

+ 1

2iπ

∮
dtP (t)�QCD

2 (t) (28)

with

�
QCD
2 (t) = B3t ln(−t) + B7

t
+ B9

t2
+ · · · , (29)

B3 = 1

4π2
〈qq〉

(
1 + 3

2
a

)
,

B7 = − 1

12
〈qq〉〈aGG〉, (30)

B9 = 4π2 136

81
a〈qq〉3,

a = αS/π is the strong coupling constant. The ratio of
Eqs. (27) and (28) yields the residue U of interest. Not enough
experimental data are available to allow the evaluation of the
first integrals on the right-hand side of Eqs. (27) and (28), only
the positions of the 1

2
+

and 1
2

−
resonances are known and the

background is impossible to model realistically.
The choice of the function P (t) aims at reducing this

contribution as much as possible in order to allow its neglect.
This is achieved by minimizing the ratio |P (t)/P (M2

p| or
equivalently |P (t)| over the resonance region. In the vast
domain of QCD sum rules the usual choice would be P (t) =
exp(−t/M2) where the magnitude of M (the Borel mass)
determines the strength of the damping of the contribution
of the integrals over the continuum. If M is small the damping
is good but the contribution of the unknown terms in the QCD
asymptotic expansion of the amplitudes increases rapidly. If
M increases the contribution of the unknown terms decreases
but the damping worsens. An intermediate value of M has to
be chosen from stability conditions which are not always met.

Because the QCD expressions for the amplitude are (except
for logarithms ) infinite series in inverse powers of t , Cn/tn and
because the exponential can be expanded in an infinite series
of powers of t of the form 1

n! (
t

M2 )n the integral over the circle

consists of an infinite sum of terms of the form Cn+1

n!M2n which
become important if M is too small. This prompts us to choose
for P (t) a polynomial of degree N which involves only a finite
number of condensates (C1, C2, . . . , CN+2) resulting from
the integral over the circle. In order to limit the uncertainty
introduced by the condensates N has to be chosen as small as

possible still large enough to provide adequate damping of the
continuum. It turns out that a second-order polynomial will do
the job. This will introduce the unknown condensates C3 and
C4 but, as we shall see, their contribution can be estimated and
turns out to be small.

The choice adopted for P (t) stems from the observation
of the spectrum of the positive and negative parity nucleon
resonances N (1440), N (1535), N (1650), and N (1710). The
position of these resonances imply that the main contribution
to the integrals over the nucleon continuum arises from the
interval I : 2.0 GeV2 � t � 3.0 GeV2. So let

P (t) = 1 − a′
1t − a′

2t
2. (31)

The coefficients a′
1 and a′

2 are chosen so as to practically
annihilate the contribution of the continuum on the interval
I , e.g., they can be chosen so as to minimize the integral∫
I
dtP (t)2 which insures the smallness of |P (t)|. Another

choice,which yields almost identical results, would be to
minimize the sum

∑
P (t)2 at the resonances.

This choice reduces the relative contribution of the integrals
over the continua to only a few percent of their initial values
and allows their neglect. Numerically

a′
1 = 0.807 GeV−2, a′

2 = −0.160 GeV−4. (32)

The relative damping provided by P (t) at the masses of the
nucleon resonances listed above, P (resonance)/P (nucleon) is
excellent. This ratio amounts respectively to 0.036, −0.032,
−0.027, 0.019 which is to be compared to the corresponding
values obtained from exponential damping (at, e.g., M2 =
1.1 GeV2) 0.34, 0.26, 0.19, 0.16.

We have thus

F (t) = 1 − a1t − a2t
2 − a3t

3 (33)

with

a1 = 1.947 GeV−2,

a2 = −1.084 GeV−4, (34)

a3 = 0.184 GeV−6.

If the contributions of the nucleon continua are then neglected
Eqs. (27) and (28) become

2λ2 U

Mp

P
(
M2

p

) = C0R

(
1 − a1

2
R − a2

3
R2 − a3

4
R3

)
+C1 − a1C2, (35)

λ2MpP
(
M2

p

) = −B3R
2

(
1

2
− a′

1

3
R − a′

2

4
R2

)
− B7 + a′

1B9,

(36)

the ratio of which yields U.
The choice of R is dictated by stability considerations, it

should be large enough to allow the use of the QCD expressions
in the integrals over the circle of radius R but not too large to
invalidate the neglect of the integral over the continuum. The
optimal value of R is chosen in the stability region of both
Eqs. (35) and (36). Indeed, as can be seen in Fig. 1 both terms
are practically constant for 1.5 GeV2 � R � 3 GeV2.
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0.5

 1

 1  2  3  4
R (GeV2)

A

B

FIG. 1. The right hand sides of Eqs. (35) (A) and (36) (B) as a
function of R (not normalized).

III. EVALUATION OF THE SUSCEPTIBILITY χ

The next task is to calculate the susceptibility χ which
enters in the expressions for the condensates. For this purpose
I use a simple model independent method [11].

It follows from Eq. (20) and from the Gell-Mann–Oakes–
Renner relation [13]

f 2
π m2

π = −(mu + md ) 〈qq〉, (37)

that

χ = − (mu + md )

f 2
π m2

π

ψ(0) (38)

with

ψ(q2) = i

∫
d4xeiqx 〈0 |T (q(x)q(x))(q(0)q(0))| 0〉. (39)

This correlator exhibits a cut on the positive t axis running from
threshold to ∞ and consider a contour C similar to the one
used previously for the nucleon correlator. The integral over
C of the quantity ψ(t)/t gives ψ(0). As before the integration
kernel is modified so as to minimize the contribution of the 0+
continuum, i.e., consider the integral∫

C

dt�(t)ψ(t), (40)

�(t) = 1

t
− b0 − b1t (41)

we have

ψ(0) = 1

π

∫
cut

dt�(t)ψ(t) + 1

2iπ

∮
dt�(t)ψ(t). (42)

In the first term on the right-hand side of the equation
above the integrand is impossible to model realistically and
mostly unknown except for the existence of two isovector 0+

resonances at m2
1 = 0.97 GeV2 and m2

2 = 2.10 GeV2. It is
expected that the overwhelming contribution to this integral
over the cut is provided by the interval 0.90 GeV2 � t �
2.20 GeV2.

The choice of the constants b0 and b1 such that �(m2
1) =

�(m2
2) = 0 will practically annihilate the contribution of the

integral over the continuum so that Eq. (42) becomes

ψ(0) � 1

2iπ

∮
dtψQCD(t)�(t). (43)

The perturbative part of the correlator (43) is known to five
loops in addition to two nonperturbative terms [12]:

ψQCD(t) = A0.t ln(−t) + A1

t
+ A2

t2
+ · · · , (44)

where

A0 = − 3

8π2

(
1 + 11

3
a + 14.1785a2 + 77.3535a3

+ 511.696a4 + . . .

)
,

A1 = −1

8
〈aGG〉

(
1 + 16

9
a(−1 GeV2) + 121

18
a

)
, (45)

A2 = 112

27
π2a〈qq〉2.

So that Eq. (43) gives

ψ(0) = A0

(
R − b0

2
R2 − b1

3
R3

)
− b0A1 − b1A2. (46)

In the interval 1.5 GeV2 � R � 2.5G GeV2 the value of
ψ(0) oscillates between −0.30 GeV and −0.35 GeV which
gives an estimate of the error involved and yields

χ = (1.03 ± 0.10) GeV−1. (47)

Which can be compared to values appearing in the literature
which lie in the range 0.6 GeV−1 � χ � 3 GeV−1 [4].

IV. RESULTS AND CONCLUSIONS

Before joining pieces together let us look at the values of
the condensates which enter in the Ai , Bi , and Ci :

〈qq〉 is obtained from the Gell-Mann–Oakes–Renner rela-
tion [13] with the values of the quark masses mu = (2.9 ±
0.2) MeV, md = (5.3 ± 0.4) MeV [14]:

4π2〈qq〉 = −(0.79 ± 0.01) GeV3. (48)

The standard value is taken for the gluon condensate

〈aGG〉 = (0.012 ± 0.006) GeV4 (49)

and

〈(qq)2〉 = κ〈qq〉2, (50)

where κ quantifies deviations from factorization.
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We have finally

U = M2
p

2

(
C0R

(
1 − a1

2
R − a2

3
R2 − a3

4
R3

)
+ C1 − a1C2

)/
(

−B3R
2

(
1

2
− a′

1

3
R − a′

2

4
R2

)
− B7 − a′

1B9

)
.

(51)

Let us look at the sources of uncertainty in the expression
above.

The first stems from the incomplete knowledge of the OPE:
with our choice of polynomials the numerator of Eq. (51)
should be augmented by two additional terms a2C3 + a3C4

and the denominator by a′
2B11. The higher-order condensates

C3, C4, and B11 are of course unknown but it is possible to
estimate them using the method of Padé approximants. It turns
out that the error introduced by the neglect of the higher order
condensates amounts to no more than 2%.

Another source of uncertainty stems from the choice of
the coefficients a′

1, a′
2 (and consequently of the coefficients

a1, a2, a3) varying these within reasonable limit in order
to deplete the contribution of the interval 2.0 GeV2 � t �
3.0 GeV2 introduces an uncertainty of ∼6–7 % in the value
of U. An additional uncertainty of course is the one arising
from the values of the condensates themselves.

All these uncertainties however are overwhelmed by the
one coming from the undeterminacy in the value of κ which
measures the deviation from factorization in the value of the
four-quark condensate. There is no consensus on the value of
this quantity in the literature. Phenomenological estimates [15]
place it in the range 1 � κ � 4. With a central value [14]
δm = 2.4 MeV, δMq is plotted against κ in Fig. 2 where the
experimental limits are also shown.

 2

 2.5

 3

 1  1.5  2  2.5  3

δ 
M

q
(M

eV
)

κ

FIG. 2. The strong part of the neutron-proton mass difference
δMq as a function of κ .

 1

 2

 3

 4

 0.8  0.9  1  1.1  1.2  1.3  1.4

δ 
M

q
(M

eV
)

M2 (GeV2)

FIG. 3. δMq as a function of the Borel mass M2 for κ = 2.

Taking into consideration the uncertainty in δm we see that
the experimental value of δMq is reproduced for

1.7 � κ � 2.3. (52)

It is instructive to compare the results obtained to the ones
given by use of the exponential damping kernel P (t) = e

− t

M2 .
Expression (51) for U is then replaced by

U = M2
p

2

(
C0M

4
∫ R/M2

0
dxe−x

(
x − M2

p

M2

)
− M2

pC1

+
(

1 + M2
p

M2

)
C2

)/(
B3M

4
∫ R/M2

0
dxxe−x + B7 − B9

M2

)
(53)

which reproduces qualitatively the same results as before but
which fails to show good stability in variations of the Borel
mass M2 as can be seen from Fig. 3. This instability stems
mostly from the fact that the contribution of the nucleon
continuum remains important. In Ref. [4] the contribution
of the single pole in Eq. (24) is not eliminated but taken
into account. This introduces an additional parameter and the
accuracy of the method used to estimate it is hard to assess.

To conclude, I have presented an evaluation of the neutron-
proton mass difference δMnp using polynomial kernels in
dispersion integrals tailored to reduce the contributions of the
unknown parts of the continua to an extent which allows their
neglect and which guarantees the stability of the calculation.

The numerical result depends sensitively on the value
of κ which quantifies the deviation of the value of the four
quark condensate from the one given by the factorization
assumption and reproduces the experimental value of δMnp

for κ ∼ 2. The old value δMCoul. = −(0.76 ± 0.30) MeV
would correspond to values of κ closer to unity. It is finally
worth to note that a recent analysis of Weinberg type sum
rules [16] yields κ = 2.1+0.3

−0.2.
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