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Starting from the light-cone plasma (LCP) distribution of gluons produced in proton-proton collisions, we
derive the invariant charged-particle yield dN/dy d2p⊥ in heavy-ion collisions. Multiple scattering of partons in
the other nucleus leads to p⊥ broadening, which depends on the centrality of the collision. The resulting change
of the LCP parameters determines the distributions of charged particles. The charged-particle multiplicity dN/dη

at η = 0 normalized to the number of participating nucleons has a universal centrality dependence, common to
the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). This universal increase is of
geometrical origin. Such a universality can be broken by the energy-dependent coherence effect, shadowing, and
mutual boosting of the saturation scales. However, we found these effects to essentially compensate each other,
leaving the centrality dependence of multiplicity approximately universal.
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I. INTRODUCTION

In a recent publication [1] a universal multiplicity distribu-
tion for produced partons has been deduced from maximum-
entropy theory. Given the experimentally measured total
transverse energy E⊥ and the sum rule requiring the total
light-cone fractions x of partons in the proton to be unity,
one obtains a Bose distribution n(x, p⊥) for gluons with two
Lagrange parameters governing its x and p⊥ dependence. The
underlying picture is simple. In soft high-energy collisions
partons interact by exchanging small transverse momenta and
become liberated subsequently. The resulting hadronization
products reflect the parton distributions via hadron-parton du-
ality. This picture has been worked out for proton-proton (pp)
and nucleus-nucleus (AA) collisions in Ref. [1]. It provides
a satisfactory explanation for soft particle production in pp
collisions throughout the accessible rapidity range. Nuclear
multiplicity distributions dN/dy d2p⊥ can be calculated by
scaling the pp distribution with the number of participating
nucleons and taking into account the higher mean transverse
momentum 〈p⊥〉 observed in experiment. In this paper we
want to theoretically calculate this increased mean transverse
momentum from parton multiple scattering.

To describe the inclusive cross section of charged particles
produced in pp collisions,

dN

dy d2p⊥
= dN

d ln x d2p⊥
= dσ

σindy d2p⊥
, (1)

we use a statistical distribution function which maximizes the
entropy of the produced partons given certain constraints. We
consider the light-cone momenta of the partons with energies
ε and longitudinal momenta pz relative to the light-cone

momentum of the incoming proton with (E,Pz, 0):

x = ε + pz

E + Pz

= p+
P+

. (2)

The maximum-entropy distribution, i.e., the LCP distribu-
tion, has to satisfy the following two requirements: The first
requirement concerns light-cone momentum conservation; i.e.
the sum of all partonic light-cone fractions is unity. The
second constraint is given by the measured total transverse
energy of the produced partons. For symmetric collisions in the
center-of-mass (cm) system, we can consider the multiplicity
distribution in each hemisphere separately. The resulting
individual distributions function have the form of a Bose-
Einstein distribution depending on transverse momentum
and light-cone fractional momentum x. It is important to
emphasize the light-cone property of the maximum-entropy
distribution. The dynamics of collisions at high energies
is governed by the light-cone Hamiltonian which is boost
invariant and determines the distribution functions depending
on transverse momentum and light-cone fractions which label
the eigenstates. The density matrix resulting after the collision
can be built up from an incoherent mixture of such multiparton
states. Without a boost-invariant formulation one cannot define
a number density of partons since in each reference system
it will be different. In the rest system of the proton the
gluons sit in the clouds around the constituent quarks and the
strings holding them together, whereas in a fast-moving proton
the virtual gluons materialize as partons carrying a sizable
momentum fraction. It is this physics which also determines
the maximum-entropy state.

In collisions the projectile and target have to interact,
and this interaction takes place between the soft partons
with low Bjorken x. They acquire transverse momenta;
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therefore, the produced total transverse energy represents an
important input for the maximum-entropy distribution. Boost
invariance applies to the change of the measured inclusive
distribution in the cm system under a change of cm energy.
Once the distribution is formulated with the variables p⊥
and x it can be applied to any cm energy. In reality, the
mean transverse momentum will increase with increasing cm
energy and thereby also modify the softness of the particles
in x. The maximum-entropy principle can describe a real
nonequilibrium state formed in the collision or an average over
many collisions. It is probable that each individual collision
has a different transverse momentum spectrum, but on average
we observe an effective transverse temperature characterizing
the cross section.

The question arises: Is such a formulation really necessary,
since we have the very successful Bjorken picture [2] which
also includes boost invariance? Indeed in the central region
where the rapidity distribution is flat, there is a considerable
overlap between the two formulations, so the effective trans-
verse temperature represented by the parameter λ in the above
distribution is related to the multiplicity distribution for y = 0
in a similar way. There are also differences. In the light-cone
formulation the rapidity distribution is not flat. Furthermore,
the applicability of hydrodynamics is a fundamental ingredient
of the Bjorken picture. From a very early time τ0 ∼ 0.2 fm on,
a locally equilibrated fluid has to be assumed which expands
longitudinally. More complicated modern hydrodynamical
calculations [3] allow also transverse expansion with viscosity,
and calculate the radial flow parameters which seem to
support this picture. A detailed time evolution based on
the thermal equation-of-state results. However, it has to be
carefully checked whether the many assumptions underlying
these calculations are really reflected in the data. Minimal
assumptions based on conservation laws, complemented by
few key observables may also reproduce the main features of
the experiments.

We think that the maximum-entropy distribution can serve
such a purpose. Building on the dynamics of the underlying
pp events, nuclear collisions represent a superposition of pp
events. Multiparton collisions in the evolving larger system
increase the partonic transverse momenta which lead to higher
hadronic momenta in nuclear collisions. We want to under-
stand the microscopic origin of this transverse broadening
and its energy dependence as a function of the centrality of
the collision. Thereby we can separate the geometrical and
dynamical aspects of these processes.

The outline of the paper is as follows. In Sec. II we
review the features of the longitudinal light-cone plasma
(LCP) of gluons which we need. In Sec. III we calculate
the mean density profile a “beam parton” experiences in
a nuclear collision from averaging over “target nucleons”
and evaluate the resulting p⊥ broadening. In Sec. IV we
consider the effects of mutual boosting of saturation scales
and shadowing in nuclear collisions and compare with the
simple parametrization of Sec. III. Finally, in Sec. V the
effect of transverse momentum broadening or saturation on
the pseudorapidity distributions is calculated using the relevant
LCP distributions. The results are discussed in Sec. VI.

II. THE LCP DISTRIBUTION FROM THE
MAXIMUM-ENTROPY PRINCIPLE

The maximum-entropy principle for the multiplicity distri-
bution in pp collisions can be best derived from the entropy of
a Bose system which is not in thermal equilibrium but subject
to constraints. The entropy of the system is proportional to
the logarithm of the integrated phase space. In the following
we set the Boltzmann constant k = 1 and h̄ = 1. On the light
cone, phase space includes the transverse spatial coordinate
b⊥, the transverse momentum p⊥, the longitudinal light-
cone momentum p+, and the longitudinal spatial variable
z− = 1/2(t − z), where t and z are time and longitudinal
coordinate. These variables are handled as in conventional
thermodynamics, i.e., the phase space multiplied by the gluon
degeneracy factor g = 2(N2

c − 1) and divided by the Planck
constant h3 = (2πh̄)3 gives the number of available quantum
states G:

Gb⊥,p⊥,p+,z− = g
d2b⊥d2p⊥dp+dz−

(2π )3
(3)

= g
d2b⊥d2p⊥

(2π )2
dx

dρ

2π
. (4)

For high energies, Feynman scaling is a good phenomeno-
logical concept; therefore, we have multiplied and divided
this expression by P+ = E + Pz to obtain the light-cone mo-
mentum x = p+/P+ and the longitudinal light-cone distance
ρ = z−P+ which are canonically conjugate variables. We
further make the simplifying assumption that the distribution
function and consequently the entropy are homogeneously
distributed in transverse space. The integration over the b⊥
coordinate can then be executed and gives the area L2

⊥. An
estimate of the integral of the scaled light-cone distance

∫
dρ
2π

is more subtle, since it is not independent on the rest of the
variables. It has to be done separately for valence and sea
partons. Interpolating the x dependence of the longitudinal
extension of valence and sea partons we obtain the integral
over the scaled distance; see Ref [1]:∫

dρ

2π
≈ 1

x
. (5)

The so-motivated ansatz for the phase space on the light cone
is crucial for all further derivations:

Gx,p⊥ = gL2
⊥

d2p⊥
(2π )2

dx

x
. (6)

Gluons are bosons; therefore, they can occupy the phase-
space cells in multiples. The binomial of the combined number
of particles and states over the number of states gives the
number of possibilities 	
x,p⊥ to distribute Nx,p⊥ gluons,
i.e., bosons, on Gx,p⊥ quantum states. The entropy of the
system is defined by the logarithm of the phase space. For
large particle numbers and quantum states one can express
the entropy in terms of the phase-space elements and mean
occupation numbers nx,p⊥ = Nx,p⊥/Gx,p⊥ of each quantum
state. By choosing the cell sizes small we convert the sums
into integrals over the continuum variables and then vary the
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entropy under the two constraints of light-cone momentum
conservation and total transverse energy:

gL2
⊥

∫
d2p⊥
(2π )2

∫
dx

x
xn(x, p⊥) = 1, (7)

gL2
⊥

∫
d2p⊥
(2π )2

∫
dx

x
p⊥ n(x, p⊥) = 〈E⊥〉. (8)

The variation gives the LCP distribution function n(x, p⊥) as
maximum-entropy distribution:

n(x, p⊥) = 1

e
p⊥
λ

+xw − 1
. (9)

For details we refer to Ref. [1].
Light-cone momentum conservation serves as a constraint

for the light-cone plasma distribution. Unlike in e+e− col-
lisions it cannot be expected that the center-of-mass energy
is fully available for particle production. The fraction of the
total center-of-mass energy available for particle production
is denoted as K in this paper. Proton-proton collisions at√

s = 0.2 TeV are described by K ≈ 0.5 [1]. For pp collisions
at

√
s = 7 TeV we use K ≈ 0.3.

The LCP distribution together with the measure generate a
gluon rapidity distribution of the following form:

dN

dy d2p⊥
= gL2

⊥
(2π )2

1

exp
[
p⊥

(
1
λ

+ we|y|
K

√
s

)] − 1
. (10)

This is the connection of the maximum-entropy distribution
with the semi-inclusive cross section. The phenomenolog-
ical description of the multiplicity distribution has three
parameters:L2

⊥, λ, and w. The parameter λ plays the role
of an effective transverse “temperature”. The “softness” w
determines how small the mean x becomes. With increasing
center-of-mass energies, we expect that the effective transverse
temperature λ and w increase: The collision becomes “hotter”
and the particle distributions “softer”. The effective transverse
temperature λ is calculated from the mean transverse momen-
tum which is equal to the ratio of the transverse energy and
multiplicity in one hemisphere.

To compare with experiment we assume parton-hadron
duality and saturate the hadronic reaction products by pions
such that the charged hadrons make up 2/3 of the total multi-
plicity. In addition, we convert the multiplicity as a function of
rapidity into a function of pseudorapidity using the Jacobian
depending on the pion mass. In Ref. [1] we have determined
the best values of L⊥,λpp, and wpp for pp collisions at cm
energies of

√
s = 0.2 TeV and

√
s = 2.76 TeV; see Table I.

It is noteworthy that the statistical weights from the spins
and colors of gluons correctly reproduce the magnitude of the
inclusive cross sections.

In general, one would have to split the parton content
of the proton into quarks and gluons such that the gluon
momentum fractions do not integrate up to unity. The quarks
and antiquarks have to be described by Fermi statistics.
The individual momentum fractions will then depend on the
effective saturation scale of the collision. It is clear that not
only the momentum distribution of the LCP, but also the
relative amount of quarks and gluons in this description will
be different from an equilibrated three-dimensional thermal

TABLE I. The first four columns give the cm energy
√

s, the
transverse size L⊥, the effective transverse temperature λpp and the
softness wpp of the pp light-cone distributions. The next columns
contain the mean transverse momentum squared of gluons 〈p2

⊥〉
(GeV2) and the rapidity distribution dNch/dη at η = 0 of charged
particles.

√
s L⊥ λpp wpp 〈p2

⊥〉 dNch/dη

(TeV) (fm) (GeV) (GeV2)

0.20 1.34 0.183 3.44 0.12 2.20
2.76 1.28 0.252 6.81 0.23 4.56

quark-gluon plasma. With increasing energy the reaction
products become more and more gluonic. This would also
show up in the particle content after hadronization. Detailed
consequences of such a more accurate description have to be
explored theoretically and experimentally. Here in this paper
we stick to the approximation where gluons are the only
constituents of the proton and make up the full momentum
sum rule.

III. TRANSVERSE-MOMENTUM BROADENING IN
NUCLEUS-NUCLEUS COLLISIONS

To extend the calculation to nucleus-nucleus collisions we
assume that the multiplicity in the AA collision is proportional
to the number of participating nucleons Npart:

dNAA
ch

dη d2p⊥
= Npart

2

3

√
1 − m2

π

m2
⊥ cosh2(y)

dN(〈p⊥〉)
dy d2p⊥

. (11)

However, this is not sufficient. It is important to take into
account the increase of the mean transverse momentum 〈p⊥〉
with the number of participants. The initial parton distributions
in the projectile nucleus will be broadened by the interaction
with the nucleons in the target nucleus and vice versa. This
broadening will be calculated now.

Transverse momentum broadening results from coherent
rescatterings with vanishing small momentum transfers. Aver-
aging the differential cross section with the acquired transverse
momentum yields the transport coefficient which is defined
as the mean transverse momentum squared times the cross
section, i.e., 〈σp2

⊥〉. This form has been tested in electron-
nucleus and proton-nucleus collisions [4]. The resulting mean
	p2

⊥ is also known as saturation scale Q2
s [5]. It can be derived

from the dipole nucleon cross section as follows.
In the eikonal approximation, the ejected high-momentum

parton moves on a classical trajectory with impact parameter
�b and picks up a non-Abelian phase factor V (�b) in the
background gauge field generated by the nucleon:

V (�b) = P exp

[
ig

∫ +∞

−∞
dxμAμ(x)

]
. (12)

Here V (�b) is the Wilson line of the parton with impact
parameter �b relative to the proton. We use the notation Aμ ≡
Aa

μ ta , where ta’s are the generators of the group SU(Nc) in
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the fundamental representation. The differential cross section
to produce a parton with transverse momentum �p⊥ is given
by projecting the eikonal phase onto �p⊥ and by taking the
modulus of the amplitude integrated over all possible impact
parameters:

dσ

d2p⊥
= 1

(2 π )2

∫
d2b d2b′ei �p⊥(�b−�b′) 1

Nc

〈Tr[V †(�b′) V (�b)]〉.
(13)

Hence, a fake dipole of size �r⊥ = �b − �b′ is constructed from
the ejected parton in the V amplitude and in the V † amplitude.
Their trajectories are displaced from each other by the distance
r⊥. The expectation values of the Wilson lines have to be
evaluated with respect to the target ground state. In the dipole
model, the total cross section for the interaction of a dipole of
size �r⊥ with a target nucleon is given by

σdN (�r⊥) = 2
∫

d2b

(
1 − 1

Nc

〈Tr[V †(�b + �r⊥) V (�b)]〉
)

. (14)

We define the quantity 〈σp2
⊥〉 as the integral over transverse

momentum d2p⊥ of the differential cross section multiplied
by p2

⊥. One sees that 〈σp2
⊥〉 is related to the dipole nucleon

cross section:

〈σp2
⊥〉 ≡

∫
d2p⊥

dσ

d2p⊥
p2

⊥

= 1

(2 π )2

∫
d2p⊥

∫
d2b d2r⊥(−∇2

⊥ei �p⊥�r⊥)

× 1

Nc

〈Tr[V †(�b + �r⊥) V (�b)]〉

= 1

2
∇2

⊥σdN (�r⊥)|r⊥=0. (15)

This expression confirms the result derived in [6]. To obtain
the transverse momentum broadening of gluons one has to
consider the dipole-nucleon cross section as a function of
dipole size r⊥ and dipole-nucleon cm energy

√
ŝ.

Let us first consider (33̄) dipoles. In the parametriza-
tion of Ref. [7] which was adjusted to data on deep-
inelastic scattering (DIS) and photoproduction data, the
fast rise of the dipole cross section for small dipoles
at high energies is included in the energy dependence
of r0(ŝ):

σdN (�r⊥) = σ0(ŝ)

[
1 − exp

(
− �r⊥2

r2
0 (ŝ)

)]
(16)

with

σ0(ŝ) = 23.6

(
ŝ

s0

)0.08 (
1 + 3

8

r2
0 (ŝ)

0.44 fm2

)
mb (17)

and

r0(ŝ) = 0.88 (ŝ/s0)−0.14 fm, (18)

s0 = 1000 GeV2. (19)

For gluons the transport coefficient is modified by the color
factor 9/4:

〈σp2
⊥(ŝ)〉g =

(
9

4

)
1

2
∇2

⊥σdN (�r⊥)|r⊥=0 (20)

=
(

9

4

)
2σ0(ŝ)

r2
0 (ŝ)

. (21)

In pp collisions gluons are liberated with their intrinsic
momenta described by the light-cone distribution n(x, p⊥).
In nuclear collisions this distribution is modified. We will
calculate the effect of multiple scattering on the transverse tem-
perature λAA and then insert this new transverse temperature
in the universal light-cone distribution to determine the central
rapidity distribution. The effective cm energy ŝ for multiple
scattering has to be calculated from the collision of a transverse
gluon with (E⊥, p⊥, 0) colliding with a proton in the opposite
nucleus with four-momentum (

√
sNN/2, 0,

√
sNN/2):

ŝ = p⊥
√

sNN . (22)

In the following we denote the averaging over ŝ with
n(x, p⊥) by a bar. For n(x, p⊥) we use the parameters λpp and
wpp of the corresponding light-cone gluon distributions from
Table I in Sec. II. These are the parameters which describe the
multiplicity distributions for Relativistic Heavy Ion Collider
(RHIC) and Large Hadron Collider (LHC) energies as shown
in Ref. [1]. We obtain

〈σp2
⊥〉g =

∑〈σp2
⊥(ŝ)〉gn(x, p⊥)∑
n(x, p⊥)

(23)

=
{

11.26 for
√

sNN = 0.2 TeV,

21.15 for
√

sNN = 2.76 TeV.
(24)

In the second step we multiply the mean transverse
momentum in a collision with the average profile function.
This gives the mean 	p2

⊥ of gluons:

	p2
⊥ = 〈σp2

⊥〉gτB(b). (25)

We calculate the averaged profile function τB(b) now. The
profile functions TA(b) and TB(b) of the colliding nuclei A and
B are obtained from the nuclear densities with Woods-Saxon
distributions:

TA(b) =
∫

ρA(
√

b2 + z2) dz, (26)

ρA(r) = ρ0

1 + exp[(r − R)/a]
. (27)

We use R = 6.62 (6.38) fm and a = 0.54 fm to describe the
Pb (Au) nucleus, respectively [8].

The number of participants (for a definition see, e.g.,
Ref. [9]) depends on the inelastic nucleon-nucleon cross
section, for which we take the values σ in

NN (0.2 TeV) = 42 mb
and σ in

NN (2.76 TeV) = 64 mb from Ref. [10]. In AB collisions,
the total number of participants, Npart(b), equals the number of
participants in nucleus A and in nucleus B which explains the
factor 2 in the equation below for symmetric AA collisions:

Npart(b) = 2
∫

d2s TA(�s)
{
1 − exp

[−TB(�b − �s)σ in
NN

]}
. (28)
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0.0
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1.2
1.4

Npart

Τ B
b
fm

2

Pb Pb, ΣNNin 64 mb
Au Au, ΣNNin 42 mb

FIG. 1. (Color online) The average profile functions τ (b) [see
Eq. (29)] for Au + Au at

√
sNN = 0.2 TeV (dashed curve) and

Pb + Pb collisions at
√

sNN = 2.76 TeV are shown as functions of
the number of participants. The number of participants increases for
more central collisions. The functional dependence of the resulting
mean profile functions varies because the relation between impact
parameter and number of participants depends on cm energy.

The averaged profile function τB(b) of nucleus B is then
obtained by using the number of participant nucleons in A
as weight function:

τB(b)=
∫

d2s TA(�s)
{
1 − exp

[−TB(�b − �s)σ in
NN

]}
TB(�b − �s)∫

d2s TA(�s)
{
1 − exp

[−TB(�b − �s)σ in
NN

]} .

(29)

Both the number of participants and the average profile
function are functions of the nucleus-nucleus impact parameter
b. In experiment, the number of participants is used as
a measure of the centrality of the collision. Therefore we
eliminate the impact parameter b and represent the mean
profile as a function of the number of participants, i.e.,
centrality. The dependence of the mean profile function as a
function of the number of participants is rather well described
by a power law:

τB(Npart) ≈ n0N
a
part. (30)

The corresponding values for the parameters are
n0 = 0.1155 fm−2, a = 0.435 for A = 197, and
n0 = 0.0775 fm−2, a = 0.491 for A = 208. A plot of

0 100 200 300 400
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Npart

p2
G
eV

2

FIG. 2. (Color online) The average broadening 	p2
⊥ of a gluon

for Au + Au at
√

sNN = 0.2 TeV is shown as functions of the number
of participants. The number of participants increases for more central
collisions. The solid blue line represents the result from the multiple
scattering calculation. The dashed red line is the result from mutual
boosting and shadowing.

0 100 200 300 400
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Npart

p2
G
eV

2

FIG. 3. (Color online) The average broadening 	p2
⊥ of a gluon

for Pb + Pb at
√

sNN = 2.76 TeV is shown as functions of the number
of participants. The number of participants increases for more central
collisions. The solid line represents the result from the multiple
scattering calculation. The dashed red line is the result from mutual
boosting and shadowing.

the numerical profiles for both nuclear collisions is shown in
Fig. 1.

For an estimate of the mean path length traversed by a
parton in the AA collision one has to divide this profile density
by the mean nuclear density ρ0 ≈ 0.17 fm−3. One obtains a
mean path length of approximately 10 fm for central collisions.
Owing to the larger inelastic pp cross section at the LHC
the b distribution of the number of participants extends to
larger impact parameters at the LHC. Therefore, the weight of
shorter trajectories is increased at the LHC. This explains the
difference of the mean profile functions in Fig. 1.

Having described the relevant steps we can now cal-
culate the transverse momentum broadening for gluons in
nucleus-nucleus collisions for the two different energies√

sNN = 0.2 TeV and
√

sNN = 2.76 TeV. Neglecting the small
differences of the average profile functions between Au-Au
and Pb-Pb at the different energies, we see that the transport
coefficient determines the energy dependence of momentum
broadening. This coefficient increases by a factor of 2 between
at RHIC and at the LHC, therefore the mean transverse
momentum broadening increases by the same factor. In Figs. 2
and 3 the thick (blue) lines represent the mean value of 	p2

⊥
of gluons as a function of the number of participants in the
AA collision for RHIC and LHC energies calculated using the
dipole scattering cross section. The two curves have almost
identical shapes because the profile functions in Au-Au and
Pb-Pb collisions are nearly equal; see Fig. 1. The shape of the
curves is determined by the geometry of the nuclear collisions.

IV. MUTUAL BOOSTING OF SATURATION SCALES
AND SHADOWING

In proton nucleus scattering the transverse momentum of a
gluon in the proton propagating through the target nucleus B
increases by the value 	p2

⊥, which depends on the profile τB (b)
of the target. The resulting momentum broadening also defines
the saturation scale Q2

sB of the intrinsic gluon distribution of
the target nucleus B [11]:

Q2
sB = 	p2

⊥. (31)
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This picture of broadening strictly applies only when
we consider nucleus-nucleus collisions as a superposition
of proton-nucleus collisions. In nuclear collisions, however,
multiple interactions enhance the higher Fock components
in the wave functions of the participating nucleons, thereby
increasing the saturation scale compared with nucleon-nucleus
collisions [12]. The saturation scales both in the target and
projectile nucleus are boosted to higher values. Intuitively, a
nucleon Fock state distribution in the nucleus B is affected
by multiple interactions, which enhances the contribution of
multiparton components. Thus, the gluon density in the bound
nucleons in B increases at small x, which in turn leads to a more
intensive interactions of these nucleons with partons from the
nucleus A, i.e., enhances broadening of partons propagating
through B. This effect of mutual boosting of saturation scales
has been described first in [12] and was subsequently discussed
in Refs. [13,14]. On the other hand, multiple interactions at
high energies are subject to shadowing, which works in the
opposite direction, suppressing the magnitude of broadening
and saturation scales [11].

For high energies the dipole-nucleon interaction is domi-
nantly given by two-gluon exchange. The transport parameter
derived in the previous section can then be related to the
gluon structure function at a certain Bjorken x̄ and scale Q2

0.
In order to make this perturbative picture coincide with the
nonperturbative model based on the dipole cross section of
Sec. III, we determine the infrared scale in such a way that
the two-gluon exchange picture on the proton reproduces the
nonperturbative result [12],

2

9
〈σp2

⊥〉g = π2

3
αs

(
Q2

0

)
x̄gN

(
x̄,Q2

0

)
, (32)

with

x̄ = Q2
0

ŝ
= Q2

0

p⊥
√

sNN

. (33)

Notice that both sides of the above equation depend on the
transverse momentum of the gluon after its liberation on mass
shell. We average the left- and right-hand sides of this equation
over all possible p⊥ values using the light-cone distribution
npp(x, p⊥) generated in pp collisions with the parameters
of Table I to be consistent with Eq. (24). For scale setting
we need a next-to-leading order (NLO) distribution. Most
distribution functions, such as the MSTW distribution [15],
in NLO are defined for Q2 > 1 GeV2 and do not allow low
enough virtualities to set the infrared scale Q2

0. The NLO-GRV
parametrization [16], however, extends to low virtualities
Q2 ≈ 0.4 GeV2 and low x. We can use this distribution
to determine the infrared scale Q2

0. We find the following
solutions of the selfconsistency equations for RHIC and LHC
energies:

Q2
0(0.2 TeV) = 0.35 GeV2, (34)

Q2
0(2.76 TeV) = 0.41 GeV2. (35)

The effective temperature and the softness parameters given
in Table I influence the infrared scale. It is therefore not
unreasonable that the infrared scales obtained in this way are
close to the p2

⊥-scales of the multiplicity distributions at the

same energies; see Table I. Our values for the infrared scales
may in principle differ from the pp saturation scale associated
with the color glass parametrizations; see Ref. [17]. We obtain
a slightly smaller infrared scale Q2

0 = 0.35 GeV2 than the
saturation scale Q2

s = 0.462 GeV2 at RHIC energy. Obviously,
the sizes of the infrared scales only marginally justify the use of
perturbative QCD. It may be useful to consider the saturation of
the nonintegrated gluon structure function in a nonperturbative
formulation (see Ref. [18]) based on string-string interactions.
We will reserve such a work to further studies.

The boosting effect alone overestimates the magnitude
of broadening. It must be considered together with the
effect of nuclear shadowing which reduces the nuclear gluon
distribution compared with the pure sum of nucleonic gluon
distributions at small x. The nuclear gluon distribution does not
linearly increase with the nuclear profile function. A simple
parametrization of the results in Fig. 2 of Ref. [11] has the
following form:

gB(x) = gN (x)τB(b){1 − α ln[τB(b)/τ0]}, (36)

= gN (x)τ̃B(b). (37)

The parameter α is only weakly dependent on energy. In
the above reference the authors find for RHIC α ≈ 0.15 and
for LHC α ≈ 0.17 with τ0 = 0.1 fm−2. This reduction enters
the differential equations for the the saturation scale and p⊥
broadening. The increase dQ2

sB of the saturation scale in
nucleus B given by the p⊥ broadening of a parton of nucleus A
going through nucleus B rises with the increase of the modified
profile function dτ̃B(b). A similar equation holds for dQ2

sA:

dQ2
sB

dτ̃B (b)
= 3π2

2
αs

(
Q2

sA + Q2
0

)
x̄AgN

(
x̄A,Q2

sA + Q2
0

)
, (38)

dQ2
sA

dτ̃A(b)
= 3π2

2
αs

(
Q2

sB + Q2
0

)
x̄BgN

(
x̄B,Q2

sB + Q2
0

)
. (39)

Since the saturation scale Q2
sB of nucleus B increases with

the saturation scale Q2
sA of nucleus A, the authors of Ref. [12]

have called this phenomenon mutual boosting. With increasing
saturation scale also the associated Bjorken variable x̄A in the
gluon structure functions changes (x̄B is defined in the same
way with index A → B):

x̄A = Q2
0 + Q2

sA

ŝ
. (40)

The right-hand sides of the differential equations depend
on the x̄ values of the gluon structure functions. Since the
structure functions become larger at smaller x̄, the increase
of broadening is linked with increasing p⊥ of the incoming
gluon in the same way as the dipole cross where increasing p⊥
means higher dipole energy and larger transport parameter.

These differential equations have to be calculated with the
initial conditions that Q2

sA = Q2
sB = 0 for τA(b) = τB(b) = τ0

[see Eq. (36)], which guarantee that the results for peripheral
nuclear collisions coincide with the results of Sec. III obtained
without boosting. We prefer these differential equations to
the equivalent bootstrap equations of Ref. [12], because they
allow us to include the averaging in an easier way. In the case
of symmetric AA collisions both equations coincide, because
τB(b) = τA(b) and Q2

sA = Q2
sB . In Figs. 2 and 3 the dashed
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lines show the dependence of the perturbative saturation scale
Q2

sA on centrality expressed by the number of participants.
Comparing these values with the corresponding values for
	p2

⊥ from the calculation in Sec. III, one sees that for at RHIC
and at the LHC the mutual boosting of saturation scales gives
approximately the same results. Shadowing is very important
to control the amount of mutual boosting, which otherwise
would overshoot the calculation from multiple scattering by a
factor of 2.

V. d N/dη DISTRIBUTIONS IN AA COLLISIONS

Having a theoretical calculation of gluon p⊥ broadening
or equivalently of the saturation scales in nucleus-nucleus
collisions, we can calculate the change of the transverse
temperature λ and the softness as a function of centrality.
Because of the well defined shape of the LCP distributions we
can relate the calculated mean p⊥ values in AA collisions to
dN/dη distributions.

To describe the momentum broadening of pions one
has to convert the information about gluons obtained in
Secs. III and IV into pion spectra. Since the transverse
momentum broadening of gluons described in the nuclear
multiple scattering picture is intrinsically higher than for
pions, one cannot use here parton-hadron duality. To take into
account the fragmentation of the gluons into pions, we use
the fragmentation function of Ref. [19] at the starting scale of
Q2

0 = 2 GeV2. The mean 〈z2〉π/g relates the pion momentum
broadening to the gluon broadening:

Dπ/g(z) = 429z2(1 − z)5.82, (41)

〈z2〉π/g = 0.11. (42)

We use the result of Eq. (25) of Sec. III:

	p2
⊥,π = 〈σp2

⊥〉gτB(b)〈z2〉π/g. (43)

Mutual boosting explained in Sec. IV gives saturation scales
which have been identified with gluon momentum broadening.
The saturation scales Q2

sA obtained from the solution of the
differential equation Eqs. (38) and (39) can also be converted
into pion momentum broadening:

	p2
⊥,π = Q2

sA〈z2〉π/g. (44)

The total mean pion transverse momentum is given by the sum
of the intrinsic pp mean transverse momentum 〈p2

⊥〉 given in

TABLE II. For different centralities related to the number of
participants in Pb + Pb collisions at

√
sNN = 2760 GeV the table

gives the LCP parameters. Given fixed sizes L⊥, increasing effective
temperatures λAA from momentum broadening make the softness
parameters wAA increase. (K = 0.35.)

Centrality Npart L⊥ λAA wAA

(fm) (GeV)

20%–30% 186 1.28 0.299 9.99
10%–20% 260 1.28 0.306 10.55
0%–5% 383 1.28 0.316 11.30

Table I and the acquired 〈	p2
⊥〉π above:〈

p2
⊥,tot

〉 = 〈p2
⊥〉 + 	p2

⊥,π . (45)

The universal form of the LCP distributions has been shown
in Ref. [1] to describe well the rapidity and p⊥ distributions in
AA collisions. Since the shape of the distribution is fixed by
the maximum-entropy principle, one only has to modify the
effective transverse temperature and softness parameters of
the pp light-cone distributions to obtain the nuclear light-cone
distributions. The effective transverse temperatures λAA are
related to the mean transverse momenta of gluons averaged
over all rapidities as in Table I:

λAA ≈ 0.53
√

〈p2
⊥,tot〉 (46)
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FIG. 4. (Color online) Preliminary charged particle pseudora-
pidity distributions from ALICE [20] in Pb + Pb collisions at√

sNN = 2.76 TeV for the following centrality classes: (a) 20%–30%,
(b) 10%–20%, and (c) 0%–5%. Data are compared with the theoretical
curves obtained from the light-cone plasma distributions (K = 0.35).
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FIG. 5. (Color online) The multiplicity dNch/dη at η = 0 for
Au + Au at

√
sNN = 0.2 TeV is shown as a function of the number

of participants. The number of participants increases for more central
collisions. The solid line represents the result from the multiple
scattering calculation. The dashed line is the result from mutual
boosting and shadowing. Data points represent an average of results
from the BRAHMS, PHENIX, PHOBOS, and STAR experiments
[10].

We use the x sum rule for fixed L⊥ = 1.28 fm taken from pp
data (see Table I) and the values of λAA modified by momentum
broadening; see Eqs. (45) and (46). Then we can calculate the
resulting softness parameters wAA for centralities from 0%
to 30%. One finds the following residual parameters wAA for
Pb-Pb collisions at

√
sNN = 2760 GeV, see Table II.

The form of the inclusive cross sections is given by the
universal LCP distributions with these parameters.:

dNAA
ch

dη d2p⊥
= Npart

2

2

3

√
1 − m2

π

m2
⊥ cosh2 y

dN(λAA,wAA)

dy d2p⊥
(47)

with

dN

dy d2p⊥
= gL2

⊥
(2π )2

1

exp
[
m⊥

(
1

λAA
+ wAAe|y|

K
√

sNN

)] − 1
. (48)

In Fig. 4 we show a comparison of the full pseudorapidity
distributions for the Pb-Pb collisions with preliminary ALICE
data [20]. The theoretical curves are predictions based on the
calculated effective temperatures λAA obtained from transverse
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FIG. 6. (Color online) The multiplicity dNch/dη at η = 0 for
Pb + Pb at

√
sNN = 2.76 TeV is shown as a function of the number

of participants. The number of participants increases for more central
collisions. The solid line represents the result from the multiple
scattering calculation. The dashed line is the result from mutual
boosting and shadowing. Data points were taken from [10].

0 50 100 150 200 250 300 350
1.0

1.2

1.4

1.6

1.8

Npart

re
l.
in
cr
ea
se
R

FIG. 7. Relative increase factor R of the charged-particle
multiplicity in AA collisions with respect to the mul-
tiplicity in pp collisions as a function of Npart (R =
[(dNA+A

ch /dη)/(Npart/2)]/(dN
p+p
ch /dη)). The universal increase of the

data (gray = RHIC, black = LHC) is reasonably well reproduced by
the corresponding calculations (solid lines: multiple scattering only;
dashed lines: mutual boosting and shadowing).

momentum broadening. If one would fit the measured data,
one would obtain a slightly larger L⊥ for central collisions
L⊥ ≈ 1.31 fm which corrects the normalization. The width
of the rapidity distribution is influenced by the K factor
which decreases with increasing energies. The K factor
K = 0.7 for 200 GeV collisions decreases to K = 0.35 for
2760 GeV collisions, a decrease similar to that already seen
in pp collisions. For 200 GeV Au-Au collisions we obtain
results very similar to the already published pseudorapidity
distributions in [1].

In Figs. 5 and 6 we show the resulting pseudorapidity
densities per (Npart/2) at η = 0 as functions of the number
of participants. Recall that the number of participants has been
related to the average profile function. Figure 7 shows that the
universal, i.e.,

√
sNN independent, relative increase of the mea-

sured charged-particle multiplicity [(dNA+A
ch /dη)/(Npart/2)]

with centrality is reasonably well reproduced by the calcula-
tions. This universal feature is of geometrical origin.

VI. DISCUSSION OF THE RESULTS

We found in Ref. [1] that pp and AA collisions can be
described by light-cone distributions which are derived from
the maximum-entropy principle and contain as parameters
a mean transverse temperature and a softness. Our picture
underlying this description is very simple: After an exchange
of small transverse momenta the parton content of the proton is
liberated, and parton-hadron duality relates the produced pions
to this light-cone distribution. One can generalize this picture
to AA collisions letting the semi-inclusive cross sections
scale with the number of participant nucleons; see Eq. (47).
However, this was not sufficient to explain the experimental
data. In addition, it was necessary to use the increased mean
transverse momentum observed experimentally in order to
describe nuclear collisions. We have demonstrated in this
paper that one can derive the parameters of the statistical
model of nucleus-nucleus collisions from the parameters of
pp collisions with the geometry and the dynamics of parton
rescattering as input.
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Let us review our assumptions. The derivation of the
average path length of a parton in the target nucleus uses the
number of participants as weight factor. This number depends
weakly on the inelastic pp cross section and therefore induces
small differences in the centrality dependences of the average
profile functions of Au-Au and Pb-Pb collisions at RHIC and
LHC energies; see Fig. 1. Only a minor variation is observed
in experiment. Perhaps here an improvement is possible.

Cosmic ray physicists have speculated for a long time
that the inelasticity parameter K may strongly decrease with
increasing cm energy; see, e.g., [21]. We observe such a
behavior rather clearly. Here a theoretical explanation is
necessary.

We consider the intrinsic momenta of the gluons to
be described by the LCP distribution in order to average
the dipole cross section and the gluon structure function.
The LCP distribution comes from a statistical model for the
nonequilibrium distribution of the gluons. It is an assumption
that the intrinsic gluons have the same transverse momenta as
the liberated gluons.

For the mutual boosting estimate the shadowing effect is
taken into account very crudely. Furthermore, it is subtle that
these two effects are counteracting each other leading to the
same result as the crude calculation from parton multiple
scattering. This is not expected at all energies and should be
explored in more detail.

The simple features of the presented calculation are the
most convincing: The multiplicity at pseudorapidity η = 0 is
roughly proportional to the product L2

⊥〈p2
⊥,tot〉 [1]. Therefore,

the geometrical dependence of transverse momentum broad-
ening is clearly visible in the behavior of the rapidity distri-
butions. The same dependence of the rapidity distributions on
centrality in Au-Au at RHIC and Pb-Pb at the LHC confirms
this finding. There is a clear increase of the magnitude of the
rapidity distribution at η = 0 for the different energies. At the
LHC (

√
sNN = 2.76 TeV) one obtains roughly a twice larger

value for all centralities than at RHIC (
√

sNN = 0.2 TeV).
This factor arises from the twice as large intrinsic mean 〈p2

⊥〉
in pp collisions (see Table I) and from the twice as large
momentum broadening 	p2

⊥ from multiple scattering reflected
in the energy dependence of the transport parameter 〈σp2

⊥〉.
So our presentation has been able to separate the geomet-

rical from the dynamical effects. Very recently we received
a preprint [22] simulating rapidity distribution at η = 0
including event-to-event fluctuations. On average, the above
authors reproduce the same geometrical picture and saturation,
including a microscopic picture of the initial gluon plasma
fields.
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