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Production of antinuclei and hypernuclei in a relativistic Hagedorn resonance gas model
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We study the production of light nuclei, hypernuclei, and their antiparticles in relativistic energy heavy ion
collisions from sequential decay of massive resonance states within a Hagedorn resonance gas model. The
production yield of these clusters and of the multistrange hypernuclear objects are presented over a wide range
of collision energies.
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I. INTRODUCTION

The recent observation of antihelium-4 nucleus and the
lightest (anti)hypernucleus and (anti)hypertitron [1,2] at the
Relativistic Heavy Ion Collider (RHIC) has provided
the exciting possibility of creating and studying the properties
of massive antimatter nuclei and the exotic multistrange
hypernuclei [3]. While the antimatter nuclei allow one to
explore the negative sector of the conventional periodic table
in the (N,Z) plane, the hypernuclei that consist of at least
one hyperon along with the nucleons could provide additional
information into the strangeness sector of the (N,Z, S)
chart [4].

Studies of the production mechanism of antinuclei and
hypernuclei have been mostly confined to the coalescence
[5–8] and thermodynamical [9,10] models. In the microscopic
coalescence calculations, (anti)nuclei are created by the
overlap of the phase-space densities ρi of the constituent B
(anti)baryons at the final stages of the dynamical evolution
where the yield, n ∼ (ρi)|B| ∼ exp(−|B|), is exponentially
suppressed [11]. Whereas, in thermal models, the yield
of nuclei with energy E = ∑

i=1,B mi is reduced by the
Boltzmann factor exp(−E/T ) with addition of each baryon
[9]. The more massive and less abundant strange hyperons
invoke an additional suppression factor as compared to the
nucleons.

Although a large fraction of the hadrons is generated from
the decay of heavy resonances, limited knowledge of the
features of heavier resonances has forced one, in the thermal
and transport models [8,10–12], to restrict the maximum mass
of hadrons only up to the measured value of m < 2 GeV.
Thus the growing contribution of the massive resonances to
the cluster formation from direct decay or via phase-space
coalescence of light hadrons has been entirely neglected.

On the other hand, Hagedorn [13] proposed that the density
of hadronic states grows exponentially with resonance mass m,
ρHS(m) ∼ m−α exp(m/TH ), where the Hagedorn temperature
TH ∼ 150–200 MeV. In fact, the Hagedorn states (HS: m �
2 GeV) were demonstrated to be abundantly produced in rel-
ativistic heavy ion collisions [14,15] that may lead to copious
production of heavy antimatter nuclei and (multi)hypernuclei.

The massive Hagedorn states have extremely short lifetimes
and these could decay rapidly into hypernuclei and antinuclei
during dynamical evolution. This production mechanism is
distinct to the formation at the chemical freeze-out stage

in the statistical model and the kinetic freeze-out in the
coalescence prescription. The produced clusters in the hot
and dense medium may either decay into (anti)nuclei and
hyperons with a typical lifetime of ∼10–300 ps [1] or may
recombine with another particle to produce a HS which in turn
can decay into (anti)clusters. Noteworthy is that the successive
emission of strange hadrons in the decay chain may lead to
the formation of Hagedorn states with extreme strangeness
which may serve as an efficient source for the production of
multistrange hypernuclear objects [3].

In this paper, we study the production of light nuclei,
hypernuclei, multistrange nuclei, and their antiparticles in cen-
tral heavy ion collisions from the BNL Alternating Gradient
Synchrotron (AGS) center-of-mass energy

√
sNN = 2.70 GeV

to the Large Hadron Collider (LHC) energy of
√

sNN =
2.76 TeV in the relativistic Hagedorn resonance gas (HRG)
model [14,15].

The paper is organized as follows: In Sec. II, the Hagedorn
resonance gas model is outlined that has been extended
to include clusters. Section III contains the results and
discussions. Concluding remarks are given in Sec. IV.

II. HAGEDORN RESONANCE GAS MODEL

In the HRG cascade model, a massive resonance fireball
is assumed to be formed in the geometrical overlapping
zone in high energy heavy ion collisions. This Hagedorn
state undergoes successive binary emission relativistically into
channels composed of lighter resonances (or HS), clusters,
and stable hadrons. The decay chain continues till all stable
particles are formed. All the low-lying measured hadrons
available in the Particle Data Book have been included. During
dynamic evolution, binary collisions between the particles in
the HRG may regenerate the resonance thereby maintaining
detailed balance. All possible 2 ↔ 2 elastic and inelastic
collision channels involving the (non)strange hadrons have
been included [15]. The HRG cascade model has been ex-
tended here to include clusters. Their properties, characterized
by baryon, strangeness, spin, and isospin quantum numbers
q ≡ (B, S, J, I, Iz), are obtained from their quark content [8].
The total mass of a hypernucleus is taken to be the sum of the
masses of the constituent hadrons.

Based on the Hagedorn hypothesis [13] the density of
massive states are assumed to grow exponentially with
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resonance mass as

ρ(m, q) = A
exp[{m − mgf (m − mg)}/TH ]
[{m − mgf (m − mg)}2 + m2

r

]α , (1)

in the usual notation [14,15] with mr = 0.5 GeV. For a mass m
characterized by its quantum number q, its ground-state mass
is parametrized by mg(q) = aQ(max|3B + S|, 2I ) + aS |S|,
where the parameters aQ = 0.387 GeV and aS = 0.459 GeV
are determined empirically from the measured smallest
masses.

In absence of hadronic interaction, the asymptotic
(m/T → ∞) behavior of Eq. (1) entails divergence of energy,
pressure, entropy for the exponent α � 7/4, and specific heat
cV for α � 9/4 at T < TH [16]. All these quantities diverge
at any T > TH . For the present study we consider TH =
170 MeV which is consistent with the critical temperature Tc

in the lattice QCD prediction of a crossover transition [17]. By
comparing the theoretical and experimental cumulants of the
spectrum [14,18] a resulting exponent α = 2.85 has been esti-
mated. This value suggests that the present HRG system pre-
vents critical behavior at T < TH ≈ Tc and predicts power law
divergence at T > TH similar to that observed in lattice QCD
studies. As T → TH we thus encounter a regime whereby
increasing the initial energy density can result in the formation
of more massive hadronic resonances. Assuming that the
hadronic phase is reached at τ ≈ 2–4 fm/c [19], then for a typ-
ical starting mass of m ∼ 100 GeV with radius R [see Eq. (2)]
[14], the initial energy density ε = m/V ≈ m/(πR2τ ) ≈
0.4–0.7 GeV/fm3 corresponds to T < Tc in the lattice [17]. It
may be noted that the presence of massive HSs and the near
critical behavior of cV cause the speed of sound c2

s = s/cV and
shear viscosity to entropy density ratio η/s to decrease with
increasing T and reach a minima at TH ≈ Tc [20,21].

Detailed descriptions of the decay widths of HS and other
resonances and their formation cross section in binary colli-
sions during dynamical evolution of the system can be found in
Refs. [14,15]. We note that in the present study, which includes
the (hyper)nuclei and their antiparticles, a HS (depending on its
mass) may undergo decay into one of the six possible channels:
(Ia) two observed discrete hadrons (DHs) of m < 2 GeV, (Ib)
a DH and a cluster, (Ic) two clusters, (IIa) a DH and a HS, (IIb)
a cluster and a HS, and (III) two HSs. For the cases (Ia–Ic),
the decay width for q → q1 + q2 is found to be [14]

�(I ) = CI

(2J1 + 1)(2J2 + 1)p	2(m1,m2)R2

2πρ(m, q)
, (2)

where p∗ is the c.m. momentum, and CI = 〈I1Iz1I2Iz2 ||IIz〉
refers to the Clebsch-Gordan coefficients for the isospins.
For the parent HS of mass m, its characteristic radius is
taken as R ≈ r0(m/md )1/3 with r0 = 1 fm for a md = 1 GeV
hadron [14]. For the decay channel (IIa–IIb), assuming q1 to
be the discrete particle or cluster, the decay width is [14]

�(II ) = CI

(2J1 + 1) mR2 T 2
2 (T2 + m1)

π m2

ρ(m2, q2)

ρ(m, q)
. (3)

Here the mass of the daughter HS is m2 = m − m1 and the
effective emission temperature is T2 ≈ THm2/m. It may be
noted that this relativistic model conserves explicitly the
energy momentum and quantum numbers q ≡ (B, S, J, I, Iz)

in each of the successive decay. Moreover, a resonance can
travel relativistically with an average lifetime of 〈τ 〉 = γ /�,
where γ and � are, respectively, the Lorentz factor and total
decay width of the resonance [14].

We have found [14] that the binary decay is dominated
by the emission of a HS along with a light particle (or a
cluster) via channel (3). The binary cascade model reproduces
the measured hadron yield ratios at various energies from
AGS to CERN Super Proton Synchrotron (SPS) energies
[14,15] and also at RHIC and LHC energies (shown below).
The fact that the yield ratios are also consistent with the
thermal model [10,12] suggests that the hadrons in HRG
may have reached chemical equilibrium. Albeit, within a
rate equation approach, multimesonic collisions, nπ ↔ HS ↔
n′π + (pp̄,KK̄,��̄,��̄) were shown to drive the strange
(anti)baryons into chemical equilibrium more rapidly; the
massive HS opens up the phase space for these decays [19].
The final hadron yield ratios in this model matches those in
the sequential binary emission prediction. The multihadronic
channels could thus influence the chemical equilibrium times
and values, especially of the (multi)strange clusters. A con-
sistent calculation of the decay widths and formation cross
sections for these multimesonic reactions and their inclusion
in the HRG model simulation are potentially involved and are
postponed to future studies.

It is clear from Eqs. (1) and (3), that emission of a heavier
mass m1 causes an explicit Boltzmann-like suppression of
ρ(m2, q2)/ρ(m, q) ∼ exp{−[m1 + mg(q2)]/TH }. Thus addi-
tion of each nucleon to a nucleus invokes a penalty factor
due to reduction of the available density of states ρ(m2, q2)
of the daughter HS on account of its enhanced ground state
mass mg . The strange baryons in hypernuclei may entail an
additional suppression from the increased mg .

Because the yield of multistrange hypernuclei is very small,
we treat them perturbatively [22–24] by neglecting the effects
of their production and annihilation on the underlying collision
dynamics which is dominated by the hadrons. In this approach,
the multistrange hypernuclei are produced from the decay of
massive HSs whenever it is energetically allowed. They are
given a probability determined by the ratio of their respective
partial decay widths � to the total decay widths of the HS. The
annihilation of these nuclei by binary collisions are treated in
a similar fashion by reducing their probabilities.

III. RESULTS AND DISCUSSIONS

For the Monte Carlo sequential emission of hadrons, we
consider one fixed starting Hagedorn state (m0, B0) with
strangeness S0=0. Though the HRG model is well suited for
hadron yield ratio studies, it predicts a rather narrow rapidity
distribution and soft spectra for particles. Collective transverse
flow effects are incorporated by considering a uniform trans-
verse velocity distribution d2N/dβ2

T = �(βT − βmax). In fact,
the transverse mass spectra of stable (non)strange particles and
antiparticles can be well reproduced for central Pb + Pb/Au
and Au + Au collisions at

√
sNN = 17.2 and 200 GeV with

an average transverse velocity of 〈βT 〉 ∼ 0.14c and 0.28c,
respectively [14]. A broad rapidity distribution for particles
consistent with data can be obtained [25,26] by assuming a
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FIG. 1. (Color online) Hadron yield ratios from the HRG cal-
culations at TH = 170 MeV in central heavy ion collisions at√

sNN = 200 GeV and
√

sNN = 2.76 TeV compared to the data at
RHIC [29–33] and LHC [34,35].

superposition of multiple boosted individual sources
within a rapidity interval [−ymin, ymax] so that dN/dy =∫ ymax

−ymin
dy ′ dNHRG(y − y ′)/dy. Averaging over |y ′| corresponds

to a mean longitudinal flow velocity of 〈βL〉 = tanh(ymax/2).
It may be mentioned that the HRG results for various hadron
yield ratios is not very sensitive to the choice of TH = 165–
175 MeV and/or m0 once the ratio B0/m0 of the initial HS is
adjusted to reproduce the measured final p/π+ or p̄/p ratios
[14]. Further, the particle yield ratios have been shown to be in-
sensitive to the collective motion (flow) [27] that could be gen-
erated if one considers multiple starting massive fireballs [28].

In Fig. 1, the measured particle yield ratios for central
collisions in Au + Au at

√
sNN = 200 GeV and in Pb + Pb

at
√

sNN = 2.76 TeV are compared with HRG calculations
for B0/m0 = 0.028 and 0.005 GeV−1, respectively. It is seen
that the model calculations reproduce quite well the particle
ratios involving (non)strange hadrons at the RHIC and LHC
energies. As the fireball tends to be net-baryon free at the higher
LHC energy, the B̄/B yields approach unity. The remarkable
agreement for the ratios involving the lightest cluster deuteron,
d/p and d̄/p̄, at the top RHIC energy suggests that this
production mechanism may be extended over a wide collision
energy range and for heavy clusters as well.

The inset of Fig. 2 shows the B0/m0 ratio of the initial
fireball as estimated from the fits to p/π+ or p̄/p data
for central heavy ion collisions at AGS to LHC energies
[14]. As expected, decrease of collision energy causes the
net baryon content of the system (thus B0/m0) to increase
appreciably. With only one such adjusted parameter B0/m0

and TH = 170 MeV, good overall agreement with the available
data for various hadron yield ratios can be obtained over this
wide energy range.

Figure 2 shows the antiparticle to particle ratios over this
energy range. At larger energies, near net-baryon free system

101 102 103

√sNN  (GeV)

10-11

10-9

10-7

10-5

10-3

10-1

R
at

io

p- / p
Λ− /Λ
d-/d
3He

⎯
 / 3He

4He
⎯

 / 4He

100 101 102 103

√sNN  (GeV)

0.0

0.4

0.8

B
0/m

0 (G
eV

-1
)

FIG. 2. (Color online) Energy dependence of the antibaryon to
baryon yield ratios and B0/m0 ratio of the initial Hagedorn state
(inset) in the HRG model at TH = 170 MeV.

induces the formation rate of antiparticles to approach that
for particles. The suppression of strange particle production,
especially at the lower energies, stems from phase-space reduc-
tion due to energy-momentum and event-by-event strangeness
conservations invoked in the HRG model. This is in contrast to
the grand canonical model where strangeness is conserved on
the average [12]. It is important to note that the measured d̄/d
ratio of ≈0.46 at the top RHIC energy [33] and ∼6.2 × 10−8 at
the AGS energy of

√
sNN = 4.85 GeV [36] can be reproduced

in the HRG, which suggests that the model may well be
extended to explore large size cluster production.

The HRG results for the energy dependence of the ratios
3He/3He and 4He/4He are shown in Fig. 2. As seen from
Table I, the calculated 3He/3He is in excellent agreement with
the STAR data at

√
sNN = 200 GeV. Compared to the d̄/d

abundance, an additional (anti)nucleon reduces 3He/3He by a
factor of about 1.2 at RHIC energy and the suppression could
be as large as 250 times at

√
sNN = 4.85 GeV. Addition of each

(anti)nucleon to (anti)nucleus reduces the density of available
states resulting in calculated yield ratios for 4He/3He and
4He/3He that are consistent with the RHIC data (see Table I).
At the AGS energy, the large baryon content of the system gives
lower (higher) penalty factor for nuclei (antinuclei) resulting
in 4He/3He ≈ 5.0 × 10−2 and 4He/3He ≈ 2.5 × 10−5. The

TABLE I. Comparison of the particle ratios in the HRG model
at TH = 170 MeV with the STAR data [1,2] for central Au + Au
collisions at

√
sNN = 200 GeV.

Ratio Data Model

3He/3He 0.45 ± 0.02 ± 0.04 0.44 ± 0.01
4He/3He (3.0 ± 1.3+0.5

−0.3) × 10−3 2.9 × 10−3

4He/3He (3.2 ± 2.3+0.7
−0.2) × 10−3 2.7 × 10−3

3
�

H/3
�H 0.49 ± 0.18 ± 0.07 0.45 ± 0.01

3
�H/3He 0.82 ± 0.16 ± 0.12 0.43 ± 0.002
3
�

H/3He 0.89 ± 0.28 ± 0.13 0.48 ± 0.002
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FIG. 3. (Color online) Energy dependence of the ratios K+/π+,
�/π+, and �/p in the HRG model at midrapidity as compared
to experimental data at AGS [37], SPS [38], RHIC [29,31], and
LHC [34,35].

monotonous increase of antinuclei abundance with
√

sNN

clearly suggests that at RHIC and LHC energies reconstruction
of more massive antinuclei may become feasible.

Before we present HRG estimates of the hypernuclei
yield ratios, we first compare with data the model prediction
for the K+/π+ ratio in Fig. 3(a). A maximum is seen at√

sNN  7 GeV, which can be understood as follows. While
at the lower energies the sharp rise in B0/m0 (see the inset
of Fig. 2) and strangeness conservation enforces strangeness
suppression, at

√
sNN  10–200 GeV the dominant emission

of π (over K and K∗) from the Hagedorn states lowers the
K+/π+ ratio. However, a careful examination reveals that
HRG somewhat underpredicts the measured K+/π+ peak
value. In fact, absence of sharp peaks in the thermal models
without the HS [12,28,38,39] has led to the prediction of
“the horn” as an experimental evidence for the onset of the
deconfinement quark-gluon plasma transition [38,40].

As seen in Fig. 3(b), the pronounced peak in the �/π−
ratio and gradual increase in the �/p ratio are consequences
of decreasing baryon density with energy and the assumption
of strangeness neutrality imposed for each event in the model.
The reasonable reproduction of the strange hadron yield data
over a wide energy range indicates that the HRG model can be
also employed to study strange cluster production.

In Fig. 4 we show the energy dependence of various cluster
yield ratios in the HRG model. The lightest cluster d/p ratio is
found to be in remarkable agreement with the data [33,36,41];
its steep decrease with energy reflects enhanced nucleon
produced from the decay of abundant light baryon resonances.
At the RHIC energy, though the HRG prediction for 3

�
H/3

�H
ratio is consistent with the STAR data [2] (see Table I),
the 3

�H/3He and 3
�

H/3He are, however, underpredicted by
about a factor of 2. In contrast, at the AGS energy, the HRG
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FIG. 4. (Color online) Energy dependence of hypernuclei yield
ratios at midrapidity in the HRG model. Also shown is the d/p ratio
in the model as compared with the data (solid squares).

predictions are seen (in Fig. 4) to be essentially similar to the
measured values of 3

�H/3He ≈ 0.05 and 4
�H/4He < 0.13 [42].

The discrepancy for these ratios at RHIC energy, also observed
in the thermal model [10], may suggest a different production
mechanism beyond the hadron resonance degrees of freedom.
Measurements at SPS and LHC energies is thus required to
pin down the possible production scenario. At

√
sNN  8 GeV

the predicted broad peaks in 3
�

H/3He and 4
�

H/4He are due to
enhanced baryon content and strangeness neutrality that led to
peaks in K+/π+ and �/π−. The yield of baryon rich cluster
ratios, such as 4

�H/4He, are found to be systematically larger
than 3

�H/3He. This can be explained by considering Eq. (1):
the penalty [via enhanced mg(q2)] for replacing a nucleon
with a hyperon decreases with increasing baryon number of
the hypernuclei.

Finally, in Fig. 5 we show the HRG predictions for the
energy dependence of the yield of (multi)strange hypernuclei
with respect to the � hyperon. The multistrange cluster yield
is reduced both at the lower AGS energies due to strangeness
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FIG. 5. (Color online) Energy dependence of the yield of hyper-
nuclei relative to � at midrapidity in the HRG model.
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conservation as well as at the high RHIC and LHC energies
due to the small net baryon number of the fireball in spite
of considerable � production there. At the GSI Facility for
Antiproton and Ion Research (FAIR) energies,

√
sNN ≈ 8A–

20A GeV, most of the (multi)strange hypernuclei yield exhibits
a pronounced maximum. Thus the FAIR energy seems to be the
ideal regime where the search for multistrange hypernuclear
objects can be focused. It may, however, be noted that due to
relatively small hyperon production at this energy, the yield
of doubly strange 4

��He/� is comparable even to the baryon
richer but singly strange 5

�He/�. Therefore, detection of exotic
multistrange hypernuclei will become increasingly difficult
with larger strangeness content of the particles.

IV. CONCLUSION

We have presented the production yield of antinuclei and
hypernuclei in relativistic heavy ion collisions over a wide
range of beam energies within a Hagedorn resonance gas
model. With a Hagedorn temperature TH ≈ Tc = 170 MeV,
the predicted hadron yield ratios from AGS to LHC energies

match the data. We find abundant antinuclei production, and
their reconstruction becomes feasible at the RHIC and LHC
energies where the net baryon densities are relatively small.
The model agrees remarkably well with the measured yield
ratios for d/p from AGS to RHIC energies and 3He/3He
and 3

�
H/3

�H at
√

sNN = 200 GeV. We find, however, that
though the measured ratios 3

�H/3He and 4
�H/4He are well

described by HRG at AGS energy, the model underpredicts
these ratios by about a factor of 2 at RHIC energy, which may
signify a new production mechanism. We have further shown
that at

√
sNN ≈ 8–20 GeV, which is covered by the beam

energy scan program at RHIC and will be also available at
the FAIR facility, relatively large baryon density and moderate
strangeness provide the ideal energy regime for the observation
of multistrange hypernuclear objects.
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[40] M. Gaździcki and M. I. Gorenstein, Acta Phys. Polon. B30, 2705

(1999).
[41] T. Anticic et al. (NA49 Collaboration), Phys. Rev. C 69, 024902

(2004).
[42] T. A. Armstrong et al. (E864 Collaboration), Phys. Rev. C 70,

024902 (2004).

054905-5

http://dx.doi.org/10.1126/science.1183980
http://dx.doi.org/10.1126/science.1183980
http://dx.doi.org/10.1038/nature10079
http://dx.doi.org/10.1038/nature10079
http://dx.doi.org/10.1103/PhysRevLett.71.1328
http://dx.doi.org/10.1103/PhysRevC.46.322
http://dx.doi.org/10.1142/S0218301396000025
http://dx.doi.org/10.1103/PhysRevLett.7.69
http://dx.doi.org/10.1103/PhysRevC.59.1585
http://dx.doi.org/10.1103/PhysRevLett.84.4305
http://dx.doi.org/10.1103/PhysRevLett.84.4305
http://dx.doi.org/10.1016/j.physletb.2009.04.062
http://dx.doi.org/10.1103/PhysRevLett.43.1486
http://dx.doi.org/10.1016/j.physletb.2011.01.053
http://dx.doi.org/10.1016/j.physletb.2010.01.034
http://dx.doi.org/10.1016/j.nuclphysa.2006.03.012
http://dx.doi.org/10.1016/j.nuclphysa.2006.03.012
http://dx.doi.org/10.1016/0370-2693(80)90566-3
http://dx.doi.org/10.1016/j.physletb.2005.08.121
http://dx.doi.org/10.1103/PhysRevC.78.011901
http://dx.doi.org/10.1140/epjc/s10052-009-1231-8
http://dx.doi.org/10.1140/epjc/s10052-009-1231-8
http://dx.doi.org/10.1016/S0550-3213(01)00200-0
http://dx.doi.org/10.1016/S0550-3213(01)00200-0
http://dx.doi.org/10.1103/PhysRevD.80.014504
http://dx.doi.org/10.1016/S0370-2693(00)00992-8
http://dx.doi.org/10.1016/S0370-2693(00)00992-8
http://dx.doi.org/10.1103/PhysRevC.81.054909
http://dx.doi.org/10.1103/PhysRevLett.103.172302
http://dx.doi.org/10.1103/PhysRevLett.103.172302
http://dx.doi.org/10.1016/j.physletb.2010.01.017
http://dx.doi.org/10.1016/0375-9474(80)90668-5
http://dx.doi.org/10.1016/j.nuclphysa.2003.10.013
http://dx.doi.org/10.1103/PhysRevC.65.054909
http://dx.doi.org/10.1103/PhysRevC.65.054909
http://dx.doi.org/10.1103/PhysRevC.48.2462
http://dx.doi.org/10.1103/PhysRevC.48.2462
http://dx.doi.org/10.1103/PhysRevC.85.011901
http://dx.doi.org/10.1088/0954-3899/25/2/016
http://dx.doi.org/10.1088/0954-3899/25/2/016
http://dx.doi.org/10.1103/PhysRevC.73.044905
http://dx.doi.org/10.1103/PhysRevC.73.044905
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://dx.doi.org/10.1103/PhysRevLett.98.062301
http://dx.doi.org/10.1103/PhysRevLett.98.062301
http://dx.doi.org/10.1103/PhysRevC.79.034909
http://dx.doi.org/10.1103/PhysRevC.79.034909
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.086
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.086
http://dx.doi.org/10.1103/PhysRevLett.94.122302
http://dx.doi.org/10.1103/PhysRevLett.94.122302
http://dx.doi.org/10.1063/1.3692201
http://dx.doi.org/10.1063/1.3692201
http://dx.doi.org/10.5506/APhysPolB.43.555
http://dx.doi.org/10.5506/APhysPolB.43.555
http://dx.doi.org/10.1103/PhysRevLett.83.5431
http://dx.doi.org/10.1103/PhysRevLett.83.5431
http://dx.doi.org/10.1103/PhysRevLett.85.2685
http://dx.doi.org/10.1016/S0370-2693(00)00037-X
http://dx.doi.org/10.1103/PhysRevC.77.024903
http://dx.doi.org/10.1103/PhysRevC.77.024903
http://dx.doi.org/10.1103/PhysRevC.78.034918
http://dx.doi.org/10.1103/PhysRevC.78.044908
http://dx.doi.org/10.1140/epja/i2007-10546-7
http://dx.doi.org/10.1103/PhysRevC.69.024902
http://dx.doi.org/10.1103/PhysRevC.69.024902
http://dx.doi.org/10.1103/PhysRevC.70.024902
http://dx.doi.org/10.1103/PhysRevC.70.024902



