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Determination of the coexistence curve, critical temperature, density, and pressure of bulk nuclear
matter from fragment emission data
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An analysis of six different sets of experimental data indicates that infinite, neutron-proton symmetric,
neutral nuclear matter has a critical temperature of Tc = 17.9 ± 0.4 MeV, a critical density of ρc =
0.06 ± 0.01 nucleons/fm3, and a critical pressure of pc = 0.31 ± 0.07 MeV/fm3. These values have been
obtained by analyzing data from six different reactions studied in three experiments: two “compound nuclear”
reactions, 58Ni +12 C →70Se and 64Ni +12 C →76Se (both performed at the LBNL 88-in. cyclotron); and four
“multifragmentation” reactions, 1 GeV/c π+197Au (performed by the Indiana Silicon Sphere Collaboration),
1 GeV/nucleon 197Au+12C, 1 GeV/nucleon 139La+12C, and 1 GeV/nucleon 84Kr+12C (all performed by the
Equation of State Collaboration). The charge yields of all reactions as a function of the excitation energy were fit
with a version of Fisher’s droplet model modified to account for the dual components of the fluid (i.e., protons
and neutrons), Coulomb effects, finite-size effects, and angular momentum arising from the nuclear collisions.
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I. INTRODUCTION

In the long history of the study of the liquid-to-vapor
phase transition of nuclear matter [1–14] various investigations
have sought to determine one or more critical exponents
[1,4,10–12,14], other studies have examined caloric curves
[5], and others have reported the observation of negative
heat capacities [9]. All of these efforts suffer from the lack
of knowledge of the systems location in pressure-density-
temperature (p, ρ, T ) space. Specifically, interpretations
of caloric curves and negative heat capacities depend on
assumptions of either constant pressure or constant density
[15,16]. In determining critical exponents, it was assumed that
the systems were at coexistence and that the surface energy
was the single, dominant factor. Furthermore, in those efforts,
finite-size effects were not considered.

The analysis presented here makes no assumptions about
the location of the system in (p, ρ, T ) space and accounts
specifically for effects such as Coulomb, angular momentum
and finite size. Our approach begins by considering nuclei
as drops of an hypothetical nuclear fluid. The liquid drop
model [17] takes up this idea quantitatively. The approximately
constant binding energy per particle in heavier nuclei suggests
that this fluid is bound together by a saturating short-range
force similar to that acting between the molecules of simple
fluids (i.e., van der Waals like).

Present-day formulations of the liquid drop model [18,19]
express the binding energy in terms of a volume term
proportional to the number of nucleons A and corrected for
finiteness by means of an expansion in terms of A−1/3 of
which only the first (surface energy) order term is kept.
Additional corrections are added to account for neutron/proton
asymmetry, Coulomb interactions, and pairing effects.

Global fits to nuclear masses lead, on the one hand, to a
reproduction of binding energies to within 1% (�10 MeV)
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and, on the other, to the characterization of the hypothetical
fluid mentioned above, where finiteness, neutron/proton asym-
metry, and Coulomb interactions have been removed. This is
the “bulk nuclear matter” which has been studied theoretically
over the history of nuclear physics.

Van der Waals fluids admit various phases, among which are
the vapor and the liquid. Thermodynamically, the equilibrium
coexistence of these phases and the associated liquid-vapor
phase transition are well understood. The van der Waals
aspects of the nuclear binding energy lead naturally to the
question: Does nuclear matter sustain a vapor phase as well
as the condensed liquid phase? In the phase diagram is there a
(first-order) coexistence line terminating at a critical point [1]?
and if so, how can one obtain such information experimentally?
We answer these questions (in the affirmative) and determine
the coexistence curve and critical point of bulk nuclear matter
from data obtained in three experiments and six different
reactions.

In this paper, we first describe a physical picture of the
nuclear reactions in question in Sec. II. Then we provide a
brief description of the experiments in Sec. III. Greater detail
about the experiments can be found in the references provided.
Next, in Sec. IV, we give a detailed description of the theory
and analysis used on the experimental data. Finally, in Sec. V,
we use the results of that analysis to determine the coexistence
curve and critical point of bulk nuclear matter.

II. THE PHYSICAL PICTURE

Thermal nuclear sources (compound nuclei and higher
energy nuclear aggregates) emit particles such as neutrons,
protons, and heavier charged fragments into vacuum in a
process that is very similar to evaporation [20]. This type of
emission from thermal, equilibrated systems is in contrast to
the direct, or prompt, particle emission from excited nuclear
systems that are out of equilibrium.
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For fluid systems like water, evaporation rates allow one
to recover the properties of the saturated vapor in equilibrium
[21]. However, in nuclear systems, finiteness and the presence
of Coulomb effects prevent such a simple approach to the
characterization of the phase diagram.

It has been shown previously how it is possible to “reduce”
the nuclear evaporation rate to that of an infinite, uncharged
symmetric fluid: finiteness is accounted for in terms of the
“complement” approach [22], Coulomb effects can similarly
be factored out [23], and the corrected rates can then be related
to the properties of the hypothetical nuclear matter vapor [21].

We demonstrate explicitly how properties of the bulk
nuclear matter such as its phase diagram can be ascertained
from experimental measurements of fragment distributions
starting with a physical picture of fragment production
from excited nuclei. This will illustrate how one can talk
about coexistence without the vapor being present and how
an equilibrium description, such as Fisher’s theory [24,25]
(described in Sec. IV A), is relevant to the free vacuum decay
of an evaporating, nuclear system [22].

Thermodynamicians would determine a phase diagram via
direct measurements of the pressure, density, and temperature
of their fluid. Unfortunately, such direct measurements of the
temperature, density, and pressure for a nuclear fluid are not
sensible. However, the measurement of clusters in nuclear
reactions has been easily achieved and has a long tradition.
Thus, we believe that in nuclear physics, this is the royal
avenue toward the extraction of the phase diagram.

Let us consider a liquid in equilibrium with its saturated
vapor. At equilibrium, any particle evaporated by the liquid
is restored on average by the vapor bombarding it. In other
words, the outward evaporation flux from the liquid to the
vapor is matched by the inward condensation flux. This is true
for any kind of evaporated particle. The vapor acts as a mirror
that reflects the evaporated particles back into the liquid.

One could probe the saturated vapor by putting a detector
in contact with it. However, because the outward and inward
fluxes are identically the same at equilibrium, putting the
detector in contact with the liquid also probes the vapor.
Therefore, we do not need the vapor to be physically present
in order to characterize it completely. We can study the
evaporation of the liquid and dispense with the surrounding
saturated vapor. In these situations one thinks of a virtual
vapor, realizing that first-order phase transitions depend
exclusively on the intrinsic properties of the two phases, and
not on their interaction. Of course, if the vapor is not there
to restore the emitting system with its return flux, evaporation
will proceed and the system will cool.

An excited nucleus is a small drop of equilibrated nuclear
matter that emits neutrons, protons, and higher charged
fragments into vacuum according to statistical decay rate
theory. In this picture there is no surrounding vapor, no
confining box, and no need for either. As described in the
preceding paragraph, by studying the outward flux of the first
fragments emitted from a thermal source at equilibrium, we
can study the nature of the vapor even when it is absent (the
virtual vapor).

Quantitatively, the concentration nAf (T ) of any species with
Af constituents at temperature T in the vapor is related to

the corresponding decay rate RAf (T ) [or to the decay width
�Af (T )] from the nucleus by matching the evaporation and
condensation fluxes,

RAf (T ) = �Af (T )

h̄
≈ nAf (T )〈vAf (T )4σinv(vAf )〉, (1)

where vAf (T ) is the thermal velocity of species Af (of order√
T/Af) crossing the nuclear interface represented by the cross

section σinv (of order A
2/3
s , where As is the mass number of the

evaporating nucleus); T is the temperature of the equilibrated,
excited nucleus when the first fragment is emitted; h̄ is Planck’s
constant; and Coulomb effects have been, for the time being,
neglected (they are dealt with below).

Equation (1) shows the fundamental and simple connection
between the (compound nucleus) decay rate and the fragment
concentration in the vapor. Thus, the vapor phase in
equilibrium can be completely characterized in terms of the
decay rate.

The physical picture described above is valid instanta-
neously. The result of successive evaporation in vacuum leads
to abundances of various species of emitted fragments that
arise from a continuum of systems at different temperatures
[26]. This leads to complications in various thermometers:
kinetic energy, isotope ratios, etc.

Our way of avoiding this complication is to consider only
fragments that are emitted very rarely so that, if they are not
emitted first, they are effectively not emitted at all. In other
words, we consider only fragments that, by virtue of their high
surface energy (and high charge), have a high emission barrier.
The rapidly increasing Coulomb barrier with fragment charge
Z strongly enhances this effect. Thus the lower cutoff of about
Z ≈ 6 is used in the analysis that follows.

III. EXPERIMENTS

The above physical picture is used here to analyze the data
from two kinds of experiments: compound nuclear decay and
multifragmentation. Both types of experiments measure the
total yield or number of fragments emitted from a thermal
nuclear source, YZf (E

∗
s ), as a function of the excitation energy

of the source, E∗
s , and charge of the fragment, Zf. For both

types of experiments it is assumed that the collisions produce
an excited, equilibrated thermal source of radius rs consisting
of As nucleons (Zs protons and Ns neutrons) at excitation
energy E∗

s and with angular momentum �I . This is the initial
state of the system: an excited, thermal nucleus which emits
neutrons, protons, and heavier charged fragments.

A. Compound-nucleus experiments

The first kind of experiment gives rise to a compound
nucleus. A compound nucleus is formed when one nucleus
impacts another nucleus and the two combine to form a single,
compound system. The nucleon number and charge of the
compound nucleus are just the sum of the nucleon number and
charge of the two colliding nucleii. Its excitation energy can
be determined from the energy of the bombarding nuclei and
the masses of the target and projectile. The excited compound

054622-2



DETERMINATION OF THE COEXISTENCE CURVE, . . . PHYSICAL REVIEW C 87, 054622 (2013)

nucleus is a thermal source that emits protons, neutrons, and
other heavier charged fragments.

The compound nucleus experiments analyzed here were
performed at the 88-in. cyclotron of the Lawrence Berkeley
National Laboratory [27]. An advanced electron-cyclotron-
resonance (AECR) ion source [28] was utilized to produce
highly charged 58Ni and 64Ni ions, which, after injection
into the cyclotron and acceleration to the desired energy,
impinged on a high-purity [29,38] carbon target (1.0 mg/cm2).
The fragments emitted in the reactions were detected in
two position-sensitive �E − E detector assemblies placed on
either side of the beam. The methods of the energy and position
calibrations of the �E and E detectors have been described
previously [29,30].

B. Nuclear multifragmentation experiments

The second kind of experiment analyzed in this work gives
rise to a phenomenon called multifragmentation [7,31–37]. In
a multifragmentation experiment, one nucleus is accelerated
to a high velocity and impacts another nucleus, and in the
experiments considered here, one of the colliding nuclei is
larger than the other. Typically, the collision between nuclei
in multifragmentation experiments is more violent than that in
compound-nucleus experiments. Either the two nuclei partially
fuse or a “fireball” is generated from the occluded parts of the
target and projectile. The larger of the two nuclei promptly
loses nucleons during the collision, leading to an excited, ther-
mal remnant with a smaller nucleon number and lower charge
than the initial nuclei. In the experiments considered here,
the higher the excitation energy of the remnant, the smaller
the nucleon number and charge of the remnant. Figure 1
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FIG. 1. (a) Nucleon number, As, as a function of excitation
energy, E∗

s , for the thermal sources created by the multifragmentation
experiments. (b) Charge, Zs, of the thermal source as a function of
excitation energy.

shows the nucleon number, As, and charge, Zs, as a function
of the excitation energy, E∗

s , for the remnants created in the
multifragmentation experiments considered here. The excited
remnant is a thermal source that emits protons, neutrons,
and other heavier charged fragments just like an ordinary
compound nucleus. In multifragmentation experiments, the
excitation energy is estimated from measurements of the
kinetic energy of the fragments emitted from the remnant and
other considerations [38,39].

1. Equation of state (EOS) experiments

Three sets of multifragmentation data analyzed here are
from the reactions 1 GeV/nucleon 197Au+12C,
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FIG. 2. (Color online) The critical temperature as a function of
the thermal source mass. Results of the compound-nucleus reactions
are shown by circles and results of multifragmentation reactions are
shown by squares. Colors show results for different experiments. The
solid line shows the average of all the measurements and the dotted
lines show the RMS variation: 17.9 ± 0.4 MeV. There are multiple
points for the multifragmentation reactions owing to the multiple
source sizes in the experiments as shown in Fig. 1.
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FIG. 3. Angular momentum values for all six reactions predicted
by the fitting of the charge yields. Error bars are smaller than the
points for the ISiS experiments. The dashed line shows a thermal
estimate of the angular momentum [83]. See text for details.

1 GeV/nucleon 139La+12C, and 1 GeV/nucleon 84Kr+12C
and were collected by the EOS Collaboration at the Lawrence
Berkeley National Laboratory Bevalac. This experiment
studied the projectile fragmentation and detected nearly
all of the charged reaction products on an event-by-event
basis [4,38–40]. Charged particles with charges of from 1 to
6 were identified using a time projection chamber [41], while
a multiple-sampling ionization chamber detected charged
particles with charges from 7 to 79 [42].

2. Indiana Silicon Sphere (ISiS) experiment

The other multifragmentation data analyzed here are from
the reaction 1 GeV/c π+197Au and were collected by the
ISiS Collaboration at the Alternating Gradient Synchrotron
(AGS) at Brookhaven National Laboratory [37,43–46]. The
AGS provided beams of 1 GeV/c π incident on a gold target.
Particles with charges from 1 to 16 were measured by the ISiS

4π detector array [43], providing a high-statistics, exclusive
data set with finer bins in excitation energy than the EOS
experiment [44].

IV. ANALYSIS

We now provide a derivation of a formula for the average
fragment yields, YZf (E

∗
s ), based on the initial state of the

system (the excited, compound nucleus or remnant) and the
final state of the system (the fragment and its complement).
This has the advantage of explicitly dealing with the effects
of the finite size of the systems we study here. We start
from Fisher’s droplet model [24,25] and modify it to account
for effects that arise from finite size [22], Coulomb [23],
isospin, angular momentum, and secondary decay of excited
fragments. These modifications, coupled with the explicit
treatment of finite-size effects, make it so that the parameters
that are extracted from our analysis (e.g.,Tc) reflect the values
for infinite, neutron-proton-symmetric, neutral nuclear matter.

A. Fisher’s droplet model and the complement

Fisher’s droplet model [24,25] is a physical cluster theory
that has successfully described the cluster distributions in
percolating systems [40] and lattice gas (Ising) systems [47];
reproduced the compressibility factor at the critical point [48];
predicted (within a few percent) the compressibility factor
of real fluids from the triple point to the critical temperature
[49,50]; and been used to describe the nucleation rate of real
fluids [51,52].

Physical cluster theories of nonideal vapors assume that the
monomer-monomer interaction is exhausted in the formation
of clusters and that the resulting clusters behave ideally (i.e.,
they do no interact with each other) [53,54]. Further, clusters
of a given number of constituents Af can be characterized by a
chemical potential (per constituent) μ and a partition function
qAf (T , V ), which depends on the temperature T and volume
V of the fluid and is given by

qAf
(T , V ) = V

(
2πmAf

T

h2

) 3
2

exp

(
−�G

T

)
, (2)

where V is the volume and mAf is the mass of a fragment of
Af constituents. Here the factor before the exponential is the
cube of the fragment’s thermal wavelength:

� =
√

h2

2πmAf
T

. (3)

In Eq. (2) �G is the free-energy cost for the formation of
that cluster [55],

�G = �E − T �S + p�V, (4)

where �E and �S are the energy and entropy cost of the
formation of the cluster, respectively, p is the pressure, and
�V is the change in volume owing to the formation of the
cluster.
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FIG. 4. Fragment yields from the 58Ni+12C →70Se data. Curves show the fit to the data. There are 60 data points fit with three free
parameters. The abscissa is a ratio and dimensionless. All data points have error bars, which are not shown when they are smaller than the
symbols.

Because of the ideality of the fluid of clusters, the pressure
and density are readily determined. The pressure p is

p = T

V

∞∑
Af=1

qAf (T , V )zAf (5)

and the density ρ is

ρ = 1

V

∞∑
Af=1

AqAf (T , V )zAf , (6)

where z is the fugacity z = eμ/T . The concentration of size Af

clusters is then

nAf (T , z) = qAf (T , V )zAf

V

= zAf

(
2πmAf T

h2

) 3
2

exp

(
−�G

T

)

= q0 exp

(
Af�μ

T

)
exp

(
−�G

T

)
, (7)

where �μ is a measure of the distance from coexistence in
terms of the chemical potential which, following Fisher [24],
absorbs the thermal wavelength and q0 is a normalization
constant. At coexistence, �μ = 0, the cluster concentration
is given by

nAf (T ) = q0 exp

(
−�G

T

)
. (8)

There have been many derivations of the form of �G, but
here we follow a general derivation using the complement
method [22] and concentrate on the change in free energy
between the initial state and the final state. Because in
the complement derivation bulk terms (those terms that are
proportional to A) do not survive, they are omitted in the
derivation below.

The initial state consists of an equilibrated liquid drop
consisting of As particles. In the final state the drop has just
emitted a cluster or droplet or fragment with Af particles. Also
in the final state along with the fragment is the complement.
The complement is what is left of the drop after the fragment
has been emitted and thus consists of Ac = As − Af particles.
In determining the free energy of the initial and final state, we
follow Fisher’s contribution to physical cluster theory, which
was to endow clusters with a surface energy and to provide
an estimate for the entropic part of the free energy associated
with the formation of a cluster [24,25].

Because the vapor of clusters is ideal, its internal energy is
given by

E =
A=As∑
A=1

nAEA, (9)

where EA is the binding energy of a cluster and is determined
via a liquid drop expansion

EA = avA + asA
σ , (10)

where av is the bulk or volume energy coefficient, as is the
surface energy coefficient, and σ is an exponent describing
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FIG. 5. Fragment yields from the 64Ni+12C →76Se data. Curves show the fit to the data. There are 40 data points fit with three free
parameters. The abscissa is a ratio and dimensionless. All data points have error bars, which are not shown when they are smaller than the
symbols.

the relationship between the surface and the volume of the
fragment. One expects that σ ≈ 2/3 for three-dimensional
systems.

The only contributions to the change in the energy between
the final and the initial states are those that are associated with
the change in the net surface area. Thus the energy change is
given by

�E = as

[
(As − Af)

σ + Aσ
f − Aσ

s

]
. (11)

Similarly, the entropy of the fluid is given by

S =
A=As∑
A=1

nASA. (12)

Fisher conjectured that the entropy of a cluster could also be
estimated with a liquid-drop-type expansion,

SA = bvA + bsA
σ − τ ln A, (13)

where bv is the bulk or volume entropy coefficient and bs is
the surface entropy coefficient. See Ref. [56] for more on the
origins of the logarithmic term.

As with the energy, the only contributions to the change in
the entropy between the final and the initial states are those
associated with the change in the net surface area. Thus the
entropic contribution is given by

�S = bs

[
(As − Af)

σ + Aσ
f − Aσ

s

] − τ ln

[
(As − Af) Af

As

]
.

(14)

The contribution to the free energy owing to the change in
volume, the p�V term, is negligible compared to the energetic
and entropic contributions and is ignored here.

Equations (9) and (12) combine to show that the change in
free energy is

�G = (as − T bs)
[
(As − Af)

σ + Aσ
f − Aσ

s

]
+ T τ ln

[
(As − Af)Af

As

]
. (15)

At the critical temperature, Tc, the surface’s contribution to
�G vanishes, thus Eq. (15) shows that Tc is

Tc = as

bs

. (16)

Assuming that the coefficients as and bs are independent of
the temperature, the quantity (as − T bs) can be rewritten as
asε, with

ε = Tc − T

Tc

. (17)

Now the fragment concentration becomes

nAf (T ) = q0

[
(As − Af )Af

As

]τ

× exp

{
−asε

[
(As − Af)σ + Aσ

f − Aσ
s

]
T

}
. (18)

This expression explicitly accounts for all the finite-size effects
and thus its parameters are those of the infinite system.
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This equation was shown to accurately determine the critical
temperature of the infinite-system Ising model from cluster
distributions of finite-system calculations [22].

In the limit of a bulk liquid where As → ∞, then As − Af ≈
As, and we obtain

nAf (T ) = q0A
−τ
f exp

(
−asεA

σ
f

T

)
, (19)

which is the expression Fisher derived for the cluster concen-
tration at coexistence [24,25,55].

At the critical point, ε = 0 (the surface free energy
vanishes) and the fragment distribution is given by a power
law. The power law has been explicitly verified in percolation
and Ising systems [6,10,40,47,57–79] and implicitly verified
in a wide variety of physical fluids [48,49].

For the present work, the liquid is not infinite and at most
As ≈ 175, so Eq. (19) cannot be used. Rather, all the terms
in Eq. (18) must be used, in addition to other terms that arise
owing to the nuclear nature of the fluid, e.g., a Coulomb term
and an isospin term. Those other terms are derived below
by examining the initial and final states of the evaporating,
equilibrated, excited nuclear source.

B. Characterization of the initial state: Properties of the
thermal source

The nucleon number of the excited, equilibrated, evaporat-
ing nuclear source is As, with Zs protons and Ns neutrons. For
the compound-nucleus experiments, the source is defined as

the sum of the target and projectile. For the multifragmentation
experiments the source was measured in the experiments and
found to be a nucleus smaller in nucleon number than the larger
of the projectile or target, as shown in Fig. 1.

The temperature of the thermal source T is not measured
directly but is estimated via the Fermi gas model and
the measured excitation energy of the thermal source. The
excitation energy of the source (in units of MeV/nucleon) is
related to the temperature of the source by

E∗
s = 1

k
T 2, (20)

where the level density parameter, k, is modified to account for
the empirically observed change with excitation energy [80]
and is given by [81]

k = 8

[
1 +

(
AsE

∗
s

Ebind
s

)]
. (21)

In Eq. (21) Ebind
s is the binding energy of the thermal source.

Because the fragment yield distributions analyzed below are
measured as a function of the fragment charge (Zf) and because
the fragment mass (Af) is only estimated, pairing and shell
effects are neglected explicitly and the binding energy of a
nucleus of nucleon number A (Z protons and N neutrons) is
found (in MeV) from the liquid drop expansion [17–19]

Ebind
A,Z = −av(1 − kvy

2)A + as(1 − ksy
2)Aσ + κ

3

5

Z(Z − 1)

r0A1/3
,

(22)
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four free parameters. The abscissa is a ratio and dimensionless. All data points have error bars, which are not shown when they are smaller
than the symbols.

where av = 15.7335, kv = 1.6949, as = 17.8048, ks =
1.0884, κ = 1.43997 MeV fm, r0 = 1.2181 fm, and the
asymmetry (or isospin) parameter is

y = A − 2Z

A
. (23)

The values of the parameters are taken from Ref. [19] from a
fit to the experimental nuclear masses that explicitly neglects
pairing and shell effects. Thus the parameter values used here
are themselves affected by pairing and shell effects and can
then be understood to implicitly account for them. When
pairing and shell effects are explicitly taken into account, the
above parameters change by 0.5%, 0.9%, 2.6%, 20%, and
0% for av , kv , as , ks , and r0 respectively. These changes give
some indication of the systematic uncertainty that arises from
neglecting shell and pairing effects. We note that Eq. (22)
already gives us as , one of the parameters needed to determine
the critical temperature as shown in Eq. (16).

In the case of the compound-nucleus experiments, the
angular momentum �I of the thermal source was estimated [27].
However, we multiplied that estimate by a constant, I0, which
was left as a fitting parameter. For the multifragmentation
experiments, we parametrized �I as

| �I | = |I0 + I1E
∗
s |, (24)

where the coefficients I0 and I1 were left as fit parameters

The energy of the thermal source owing to its angular
momentum is (classically)

E
�I
s = | �I |2

4
5msr2

s

. (25)

All radii in this work are taken to be

r = r0A
1/3. (26)

Following Fisher, the entropy of a nucleus is estimated
based on Eq. (13) with σ and τ set to their three-dimensional
Ising class values: σ = 0.63946 ± 0.0008 and τ = 2.209 ±
0.006 [40].

The free energy of the thermal source is the free energy of
the initial state

Ginitial = Ebind
s + E

�I
s − T Ss. (27)

The pV contribution to the free energy is neglected here.

C. Final state: The fragment and complement

The final state considered here is immediately after the
emission (or evaporation) of a neutron, proton, or heavier
charged fragment. The fragment has mass mf, radius rf, and
Af nucleons (Zf protons and Nf neutrons).

After fragment emission the thermal source is reduced in
nucleon number, is labeled the “complement,” and has mass
mc, radius rc, and Ac nucleons (Zc protons and Nc neutrons).
It is assumed that the the fragment and complement are both
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spherical, at normal nuclear density, and that the surface of the
fragment and the surface of the complement are in contact.

Conservation of angular momentum dictates that the
fragment and complement system have the same angular
momentum as the thermal source. The energy associated with
this angular momentum is then (classically)

E
�I
f+c = | �I |2

4
5

(
mcr2

c + mfr
2
f

) + 2 mcmf
mc+mf

(rc + rf)2
. (28)

The Coulomb energy between the fragment and the comple-
ment is

ECoulomb
f+c = κ

ZfZc

rf + rc
. (29)

The free energy of the final state is

Gfinal = Ebind
f + Ebind

c + E
�I
f+c + ECoulomb

f+c − T (Sf + Sc).

(30)

The determination of quantities associated with the fragment
and complement are discussed below.

1. Properties of the fragment

The charge of the fragment Zf is measured by the detectors
in the experiments. The nucleon number of the observed
fragment Aobs

f is estimated via the EPAX parametrization [82],

Aobs
f = −0.10167 + 1.9638Zf + 0.0057221Z2

f . (31)

The excitation energy of the fragment (in MeV) is estimated
with the Fermi gas relation,

E∗
f = 1

k
AfT

2 = 1

k

(
Aobs

f + Nevap
)
T 2, (32)

where Af is the nucleon number of the fragment prior to any
secondary decay or evaporation (under the approximation that
only neutrons are evaporated from the fragments).

The number of neutrons Nevap that can be evaporated from
a nucleus (Aobs

f , Zf) is approximately

Nevap ≈ E∗
f

Bn + 2T
, (33)

where Bn is the neutron binding energy of the nucleus in
question. This is estimated as

Bn ≈ mAobs
f −1,Zf

+ mn − mAobs
f ,Zf

≈ Ebind
Aobs

f −1,Zf
− Ebind

Aobs
f ,Zf

.

(34)

Combining Eqs. (32) and (33) gives

Nevap ≈ d2

(
1
k
T 2Aobs

f

Bn + 2T − 1
k
T 2

)
, (35)

where d2 is a fit parameter to account for the crude nature of
this approximation.

The fragment’s initial nucleon number Af is

Af = Aobs
f + Nevap. (36)

As mentioned above, this estimate assumes that only neutrons
are emitted during the secondary decay. The fragment’s
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binding energy (Ebind
f ), radius (rf), and entropy (Sf) are

determined using Eqs. (22), (23), and (13), respectively, with
Af and Zf.

2. Properties of the complement

Conservation of mass and charge give the mass Ac, charge
Zc, and neutron number Nc of the complement. The binding
energy (Ebind

c ), radius (rc), and entropy (Sc) of the complement
are determined using Eqs. (22), (23), and (13), respectively,
with Ac and Zc.

D. Average fragment yields

All of the experiments discussed here measure the average
yield of fragments with a given charge as a function of the
excitation energy of the thermal source YZf (E

∗
s ), where

YZf (E
∗
s ) = number of Zf fragments in events with E∗

s

total number of events with E∗
s

,

and its associated error in the mean δYZf (E
∗
s ).

It is assumed that there is a one-to-one relationship between
the excitation energy of the thermal source and the temperature
and a one-to-one relationship between the charge of a fragment
and its nucleon number. Thus the fragment charge yields as a
function of the excitation energy are equivalent to the fragment
mass yields as a function of temperature, which is written
YAf,Zf (T ).

For the first fragments emitted their yield is given by

YAf,Zf (T ) = �tRAf,Zf (T ) = Y, (37)

where �t is the time duration of the measurement of the decay
of the thermal source and RAf,Zf (T ) is the rate of fragment
emission.

Equation (1) shows that the fragment emission rate from
the thermal source is related to the concentration nAf,Zf (T ) of
any species (Af, Zf, ) in the “virtual” vapor which matches the
evaporation (or emission) flux out of the thermal source with
the condensation flux into the thermal source [21]:

RAf,Zf (T ) ≈ 〈vAfσinv〉nAf,Zf (T ). (38)

The mean thermal velocity of the fragment normal to the plane
of emission is given as

〈vAf〉 =
√

T

2πmAf

, (39)

where an ideal vapor has been assumed. The inverse cross
section for fragment emission is

σinv = 4π (rf + rc)2, (40)

where only the geometric cross section is considered, as the
Coulomb effects are explicitly dealt with below [23].

Equation (8) shows that the concentration of the virtual
vapor depends on the free-energy cost of cluster formation
�G. For a fragment emitted from an excited nucleus, �G is

given by Eqs. (27) and (30) and is

�G = Ebind
f + Ebind

c + E
�I
f+c + ECoulomb

f+c − Ebind
s − E

�I
s

− T

{
bs

(
Aσ

f + Aσ
c − Aσ

s

) − τ ln

(
AfAc

As

)}
. (41)

This can be simplified and written as

�G = Gfinal − Ginitial = asA
σ
f − T

(
bsA

σ
f − τ ln Af

)
+�μnfs = �G∞ + �μnfs, (42)

where �μnfs absorbs all the terms in Eq. (41) (and is divided
by Af) not explicitly written in Eq. (42). �μnfs is an “effective
chemical potential” that arises owing to the nuclear nature
and finite size of the thermal source. The factors not absorbed
in �μnfs describe the free-energy cost of the formation of a
fragment from the bulk nuclear matter, which is written as
�G∞.

E. Fitting the experimental charge yields

The fragment charge yields are given by

YAf,Zf (T ) = �t〈vfσinv〉q0 exp

(
−�G

T

)

= �t〈vfσinv〉 exp

(
−�μnfs

T

)

× q0A
−τ
f exp

(
−asA

σ
f ε

T
,

)
(43)

a formula that depends on several unknown quantities, e.g., �t
and q0. However, the ratio of the yield of a fragment of a given
charge at a given excitation energy YAf,Zf (T ) to some reference
yield of a fragment with another charge at the same excitation
energy YA′

f,Z
′
f
(T ) cancels all the constants of proportionality

and several unknown quantities. Therefore, the ratio of charge
yields was fitted with the reference yield taken as the yield of
fragments with the charge equal to the lower limit of the Zf fit
range listed in Table I. The ratio of the charge yields is given
by

YAf,Zf (T )

YA′
f,Z

′
f
(T )

= 〈vfσinv〉
〈v′

fσ
′
inv〉

exp

(
�μ′

nfs − �μnfs

T

)

× exp

(
�G′

∞
T

)
A−τ

f exp

(
−aAσ

f ε

T

)

= �A−τ
f exp

(
−asA

σ
f ε

T

)
, (44)

TABLE I. Fit details.

Reaction No. of No. of Zf E∗
s range

points fit parameters range (MeV/nucleon)

58Ni+12C →70Se 60 3 [6, 16] [1.13, 2.02]
64Ni+12C →76Se 40 3 [7, 15] [1.08, 1.82]
84Kr+12C 32 4 [6, 13] [1.75, 4.75]
139La+12C 53 4 [6, 18] [1.75, 4.75]
197Au+12C 96 4 [6, 25] [1.75, 4.75]
π+197Au 234 4 [6, 15] [1.50, 4.00]
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where � absorbs all factors other than those in Fisher’s model
for the bulk fluid. The only free parameters in Eq. (44) are
d2, the secondary decay coefficient; I0 (and I1 for the multi-
fragmentation data), the angular momentum parameter(s); and
bs , the surface entropy coefficient. For most of the fragments
considered here, secondary decay results in the evaporation of
three or fewer neutrons.

Previous attempts similar to the fitting of data suggested
by Eq. (44) have been made. Reference [3] fit inclusive
fragment yields with a form of Fisher’s model that used
the liquid drop model to parametrize the energy cost of
fragment formation. However, that work did not account for
finite-size effects, the fragment-complement Coulomb energy
or the effects of angular momentum. In Refs. [11] and [40]
the multifragmentation data presented here were fit with a
version of Fisher’s model that included an ad hoc Coulomb
energy parametrization but did not account for the effects of
finite size or angular momentum. In Ref. [21] some of the
compound-nucleus reaction data presented here were fit with
Fisher’s model where all the effects of finite size, Coulomb
energy, and angular momentum were absorbed into a chemical
potential, which yielded much less physical insight than the
present analysis.

Table I lists the fragment charge and excitation energy range
over which the fits were performed. The lower limit in the fit
range of Zf for the reactions 64Ni+12C →76Se was set by the
available data, while for the other data sets it was for fragments
sufficiently large to ensure that they were emitted first, or not
at all. The upper limit in the fit range of Zf for the reactions
58Ni+12C →70Se and π+197Au is determined by the available

TABLE II. Fitting results. Based on these results the critical
temperature of bulk nuclear matter is Tc = 17.9 ± 0.4 MeV. The
average χ 2

ν is 1.8, with a root mean square deviation of 1.1.

Reaction χ 2
ν d2 bs Tc (MeV)

58Ni+12C →70Se 1.3 0.1 ± 0.1 0.97 ± 0.02 18.4 ± 0.3
64Ni+12C →76Se 0.4 0.5 ± 0.2 0.99 ± 0.01 18.0 ± 0.2
84Kr+12C 3.3 0.0 ± 5 × 10−5 1.02 ± 0.01 17.5 ± 0.2
139La+12C 1.1 1.8 ± 0.1 0.973 ± 0.008 18.3 ± 0.2
197Au+12C 1.3 1.1 ± 0.1 1.007 ± 0.007 17.7 ± 0.1
π+197Au 3.2 0.0 ± 3 × 10−4 1.032 ± 0.001 17.26 ± 0.02

data, while for the other data sets it is determined by the
largest fragment for which the fragment-complement scheme
is appropriate, i.e., Zf < Zs/2, or the largest value of Zf present
in the data, whichever is smaller. The range in excitation energy
is determined by starting at excitation-energy values where
shell effects cease and where there are one or fewer fragments
in the Zf fit range. Coupling Table I and Eqs. (20) and (21)
shows that the range in temperature considered by the analysis
in this paper is 2.75 MeV � T � 7.2 MeV.

For the compound-nucleus data, there are three fit parame-
ters for each data set: b, d2, and I0. For the multifragmentation
data, there are four fit parameters for each data set: b, d2, I0,
and I1. On average, there are ∼23 points per fit parameter.

The results for b and d2 are listed in Table II. Figure 2
shows the results for the critical temperature of the bulk nuclear
matter determined from these experiments as a function of the
mass of the thermal source. The multiple points shown in
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FIG. 11. Arrhenius plots from the 64Ni+12C →76Se data. Curves show the fit to the data. There are 40 data points fit with three free
parameters. The abscissa is a ratio and dimensionless. All data points have error bars, which are not shown when they are smaller than the
symbols.
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Fig. 2 for the EOS and ISiS experiments are caused by the
differing mass and charge of the excited thermal sources; the
masses and charges of the excited thermal sources are shown
in Fig. 1.

Figure 3 shows the result for the angular momentum from
the fits. Also shown in that figure is an estimate of the angular
momentum that is thermal in nature and is based on the
angular momentum that would be imparted by the evaporation
of a source beginning with �I = 0 [83]. This estimate serves
as a lower limit on the estimate of the angular momentum.
The results for the angular momentum from the fits to the
compound-nucleus data and the EOS multifragmentation data
are of the same order of magnitude of the thermal estimate.
However, the results for the angular momentum from the fits
of the ISiS data are approximately three times the thermal
estimate. It is not clear why the ISiS data indicate such a large
angular momentum, however, that is the only experiment with
a lighter projectile and a heavier target.

The results of the surface entropy coefficient bs from all
the experiments agree to within 3%. Combining this estimate
of bs with the value of as [given below Eq. (22)] gives an
estimate of the critical temperature of the bulk nuclear matter
as Tc = 17.9 ± 0.4 MeV via Eq. (16). This value is the result of
averaging the results of our analysis applied to all six different
reactions. The error quoted here is the root mean square (RMS)
variation of those values. That error then gives some estimate
of the systematic uncertainties of our analysis.

We note that because of the use of the complement
correction [22], and because of the effects of Coulomb, isospin,
angular momentum, etc., the value of Tc given above is
the critical temperature of infinite bulk nuclear matter. The

complement correction has accounted for the effects of finite
size. Another type of analysis of other multifragmentation data
using a different method of accounting for finite-size effects
leads to an estimate of Tc that is within 10% of the value given
in this work [84].

The value of Tc given above agrees with some theoretical
predictions [85–91]. There is more discussion, with compar-
ison to theory, below. Figure 2 shows the value of Tc as a
function of the mass of the thermal sources in the experiments.

Figures 4 through 9 show the fragment charge yield ratios
as a function of the fragment charge. Figures 10 through 15
show Arrhenius plots in the form of the fragment charge yield
ratios as a function of the inverse temperature. In all these
figures, the data are shown by open circles with error bars
and the fits are shown by solid lines. Solid lines are segments
drawn (to guide the eye) between the fit values at each Zf or
1/T . In the plots shown in Figs. 4 through 16 all of the data
(all fragments of all charges and all excitation energies) for a
given experiment were fit simultaneously.

Alternatively, one can combine the results for a given
data set shown in Figs. 4 through 15 by plotting
YAf,Zf (T ) /YA′

f,Z
′
f
(T ) divided by �A−τ

f as a function of
aAσε/T , also called a “Fisher plot.” This collapses all the
measured fragment yield ratios for any Af, Zf, and E∗

s onto a
single curve. This is shown for all the data sets in Fig. 16.

Figures 16(a)–16(f) show the fragment yields from the
(a) 64Ni+12C →76Se data (40 data points fit with three free
parameters); (b) 58Ni+12C →70Se data (60 data points fit
with three free parameters); (c) 1 GeV/c π+197Au ISiS
data (234 data points fit with four free parameters); (d)
1 GeV/nucleon 179Au+12C EOS data (96 data points fit with
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FIG. 15. Arrhenius plots from the 1 GeV/c π+197Au data. Curves show the fit to the data. There are 234 data points fit with four free
parameters. The abscissa is a ratio and dimensionless. All data points have error bars, which are not shown when they are smaller than the symbols.

four free parameters); (e) 1 GeV/nucleon 139La+12C EOS
data (53 data points fit with four free parameters.); and (f)
1 GeV/nucleon 84Kr+12C EOS data (32 data points fit with
four fit parameters). In total, 515 data points were fit with just
22 free parameters, nearly 23 data points per free parameter.
The number of free parameters could be reduced further, to
17, by using a common parameter for bs for all the data sets
(Table II shows that the value of bs varies less than 3% between
data sets).

Because the finite-size effects, Coulomb effects, etc., have
been scaled away (by dividing the yield ratios by �), the plots
in Fig. 16 show the coexistence curve of bulk nuclear matter in
terms of the concentration of droplets of the bulk nuclear fluid
that would comprise a saturated vapor in equilibrium with an
infinite, bulk nuclear liquid.

F. Systematic errors

In order to make some estimate of the systematic errors
the analysis above was repeated two more times. One of these
analyses removed the energy dependence of the level density
parameter in Eq. (21) so that k = 8 is constant. The critical
temperature resulting from those fits was 16.5 ± 0.7 MeV, with
the average χ2

ν = 1.6 and an RMS deviation of 1.0.
The other of these analyses removed any secondary decay

by fixing d2 = 0. The critical temperature resulting from those
fits was 15.0 ± 0.3 MeV, with the average χ2

ν = 1.9 and an
RMS deviation of 1.0. The result of these analyses suggests
that the systematic error associated with the estimate of the
critical temperature of bulk nuclear matter measured here is
approximately 3 MeV.

V. CONSTRUCTING THE PHASE DIAGRAM

Fitting of the data as illustrated above gave the critical
temperature of the bulk nuclear matter. Once Tc is determined,
it is possible to determine the entire coexistence curve of the
bulk nuclear matter which completely maps the liquid-vapor
phase diagram.

The first step is to determine the coexistence curve in
reduced units:

p

pc

,
ρ

ρc

, and
T

Tc

. (45)

where p is the pressure, ρ is the density, and the subscript “c”
denotes values of the quantities at the critical point.

It is assumed that the formation of fragments exhausts all
nonidealities, so that the pressure and density can be obtained
by simple sums. The pressure is

p = T
∑
A

nA(T ) = T
∑
A

q0A
−τ exp

(
−asA

σ ε

T

)
, (46)

and at the critical point

pc = Tc

∑
A

nA(Tc) = Tcq0

∑
A

A−τ . (47)

The density is given by

ρ =
∑
A

AnA(T ) =
∑
A

q0A
1−τ exp

(
−asA

σ ε

T

)
, (48)
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FIG. 16. (Color online) Scaled charge yields for all six reactions, also called “Fisher plots.” Solid lines show the fits to the data. All data
points have error bars, which are not shown when they are smaller than the symbols. Both axes show ratios that are dimensionless. The
charge of a fragment is given by the color (online) of the point as indicated by the color (online) scale. Plots show the scaled fragment yields
from the (a) 64Ni+12C →76Se data; (b) 58Ni+12C →70Se data; (c) 1 GeV/c π+197Au ISiS data; (d) 1 GeV/nucleon 179Au+12C EOS data;
(e) 1 GeV/nucleon 139La+12C EOS data; and (f) 1 GeV/nucleon 84Kr+12C EOS data. Not all plots have a fragment with every charge between
Zf = 7 and Zf = 25. See Table I for the fragment charge range for all data sets. There is further discussion in the text.

and at the critical point

ρc =
∑
A

AnA(Tc) = q0

∑
A

A1−τ . (49)

Using the reduced quantities removes the unknown normaliza-
tion q0. All other quantities in the above sums are known. The
errors associated with Tc, τ , and σ are propagated to generate
errors in the reduced quantities.
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FIG. 17. Reduced density-reduced temperature coexistence curve
for bulk nuclear matter. Open squares show the vapor branch. Open
circles show the liquid branch. Solid curves show the results of the
fit to the vapor branch. Dashed curves show the extrapolation of that
fit. The dashed line shows the extrapolation of the law of rectilinear
diameter. Both axes show ratios and are dimensionless. See text for
details.

A. Reduced density

The open squares in Fig. 17 show the vapor branch of the
ρ-T coexistence curve of the phase diagram of the nuclear
matter, albeit in reduced form. These points were constructed
by performing the sums in Eqs. (48) and (49).

The open circles in Fig. 17 show the liquid branch, which
was determined as follows. First, the vapor branch (open
squares in Fig. 17) was fit to Guggenheim’s universal function
describing the reduced ρl,v/ρc–T/Tc coexistence curve [92],

ρl,v

ρc

= 1 + d1ε ± dβεβ, (50)

where ε is given by Eq. (17). The fit was performed for
0.55Tc � T � Tc, which is roughly the range over which
Guggenheim’s function describes dozens of fluids (roughly
from the triple point to the critical point for those fluids) [92].
The coefficients d1 and dβ were left as fit parameters and β is
a critical exponent and was taken to be [24,93]

β = τ − 2

σ
= 0.3265 ± 0.0001. (51)

The vapor branch is described by Eq. (50) with the minus sign
and the liquid branch is described by Eq. (50) with the plus
sign.

The solid curve in Fig. 17 shows the result when the open
squares (vapor branch) were fit with Eq. (50), which resulted
in d1 = 0.04315 ± 0.00001 and dβ = 1.15714 ± 0.00001; the
errors quoted are those resulting from the fitting procedure.
These values are different from those that Guggenheim found,
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T 
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18
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FIG. 18. Temperature-density coexistence curve for bulk nuclear
matter. Errors are shown for selected points to give an idea of the
error in the entire coexistence curve.

but that is true for other fluids as well, e.g., helium and mercury
[94]. However, Eq. (50) still describes the coexistence curve
of those fluids, albeit with different values for d1 and dβ .

For all of the fluids that Guggenheim examined, the liquid
branch (for the range 0.55Tc � T � Tc) was described by
Eq. (50) with the sign of dβ changed. The solid curve shown
with T/Tc > 1 in Fig. 17 shows the result.

Dashed curves in Fig. 17 show extrapolations for T <
0.55Tc. The extrapolation for the vapor branch shows unphys-
ical behavior with ρv/ρc < 0 for T/Tc < 0.25, thus some care
must be taken when determining the ρl/ρc–T/Tc coexistence
curve at low temperatures.

The ρv/ρc–T/Tc coexistence curve at low temperatures has
already been determined from Eqs. (48) and (49). To determine
the liquid branch of the coexistence curve for low temperatures
we start with the the law of rectilinear diameter [92], which is

ρl + ρv

2ρc

= 1 + d1ε. (52)

We extrapolated this linear function in ε from T = 0.55Tc to
T = 0. This is shown by the dashed line in Fig. 17. We then
used that extrapolation and the values of ρv/ρc computed via
the sums in Eqs. (48) and (49) (open squares in Fig. 17) to
solve for ρl/ρc at low temperatures by “reflecting” them about
the line defined by Eq. (52). Thus

ρl

ρc

= 2 + 2d1ε − ρv

ρc

. (53)

The results are shown by open squares in Fig. 17. The error
bars on ρl/ρc are equal to the error bars on ρv/ρc.
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FIG. 19. Pressure-temperature coexistence curve for bulk nuclear
matter. Errors are shown for selected points to give an idea of the error
in the entire coexistence curve.

B. Density

To obtain a ρl,v-T coexistence curve in a nonreduced form
(e.g., temperature in units of MeV and density in units of

nucleons/fm3) we first multiplied the temperature axis by Tc.
Errors in the temperature scale are then given by

δT = δTc

(
T

Tc

)
. (54)

To determine the density (in units of nucleons/fm)3, we
note that at T = 0 the density of nuclear matter should
be the density observed in unexcited nuclei. Using the same
value of r0 = 1.2181 fm as in Eq. (22), which is within 2% of
the leading order of other estimates [18], the density of nuclear
matter at T = 0 is

ρl (T = 0) = 3

4πr3
0

≈ 0.132 nucleons/fm3. (55)

That value sets the scale on the density axis. The results are
shown in Fig. 18. Different choices for the value of nuclear
matter at T = 0 lead to different estimates of the critical
density of the bulk nuclear matter.

The error bars shown in Fig. 18 are not the same as
the error bars shown in Fig. 17. Simply translating the
errors from Fig. 17 would give no estimate of the error
of the critical density, as, by definition, there is no error
associated with ρc/ρc. Therefore, we did the following:
the error in a density value at a given temperature value
ρ(T ) is

δρ(T ) = |ρ(T + δT ) − ρ(T − δT )|
2

. (56)

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

0.02 0.04 0.06
ρc (nucleons/fm3)

T c (
M

eV
)

(a)

This work

Theoretical estimates

pc (MeV/fm3)

(b)

This work

Theoretical estimates

0.1 0.2 0.3 0.4

FIG. 20. Estimates for the critical point of bulk nuclear matter taken from Table III: (a) critical temperature, Tc, as a function of critical
density, ρc; (b) critical temperature as a function of critical pressure, pc. Open circles show the theoretical estimates listed in Table III. Filled
squares show the estimates from this work.
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Then we have a critical density value of ρc = 0.06 ±
0.02 nucleons/fm3, which agrees with some of the theoretical
efforts [86–90]. There is more discussion with comparison to
theory below.

Figure 18 suggests that the nuclei in the experiments
analyzed in this work undergo little expansion. Table I
shows that the highest excitation energy considered is E∗

s =
4.75 MeV/nucleon, which leads to a temperature of ap-
proximately 7.2 MeV when using Eqs. (20) and (21). This
suggests that the lowest density for the nuclei considered here
is approximately 96% of the density of nuclear matter at T = 0.
This is consistent with the use of the parameters in Eq. (22)
for nuclear matter at normal density and the radii used in
the Coulomb interaction energy and estimates of the angular
momentum.

C. Pressure

To determine the coexistence curve for pressure as a
function of temperature, we again started with the reduced
quantities and obtained p/pc as a function of T/Tc by
performing the sums in Eqs. (46) and (47). We then determined
the value of pc from the compressibility at the critical point,
which is defined as

Zc = pc

ρcTc

. (57)

For fluids this is a universal quantity and is Zc = 0.277 ±
0.004.

Combing Eqs. (47), (49), and (57) shows that the com-
pressibility at the critical point is just a ratio of two Riemann
ζ functions [48]:

Zc = ζ (τ − 1)

ζ (τ )
= 0.276. (58)

However, using the error in τ [given below Eq. (26)] gives
Zc = 0.28 ± 0.01. We used this value of Zc in combination
with the values of Tc and ρc determined above to obtain a value
for the pressure at the critical point of 0.31 ± 0.07 MeV/fm3,
which agrees with some of the theoretical results [87,88].
There is more discussion of comparison with theory below.
Here the error arise from the errors in Tc and ρc.

To obtain the pressure (in units of MeV/fm3) we multiplied
p/pc by the value of pc obtained above. The error in the
pressure is given by

δp = δpc

p

pc

. (59)

Figure 19 shows these results.

VI. COMPARISON WITH THEORY

There are numerous theoretical efforts that make predic-
tions for the critical point and the liquid-vapor coexistence
curve of nuclear matter [85–91]. Some, but certainly not all, of
the results of these numerous theoretical efforts are compiled
in Table III and shown in Fig. 20.

TABLE III. Estimates for the critical point of bulk nuclear matter
in order of Tc value. The name of the model used is also given when
applicable. Where no estimate was provided there is no entry in the
table.

Reference Tc ρc pc

model (MeV) (nucleons/fm3) (MeV/fm3)

[90] ZR1 22.98 0.068
[90] ZR2 20.69 0.064
[89] PRC45 20.59 0.0561
[89] SIII 20.47 0.0563
[90] SI 20.20 0.060
[88] NL2 18.63 0.0562 0.3616
[88] Walecka 18.34 0.0651 0.4317
[90] SIII 17.96 0.056

This work 17.9 ± 0.4 0.06 ± 0.01 0.31 ± 0.07
[85] 17.5 ± 1
[90] SJ1 17.34 0.058
[86] 17.3 0.052
[90] SV 17.24 0.070
[90] D250 17.16 0.061
[90] T6 17.04 0.054
[90] SkT4 16.98 0.054
[90] D300 16.80 0.058
[89] SLy230a 16.52 0.0535
[90] ZR3 15.96 0.055
[88] NLSH 15.96 0.0526 0.2644
[90] D1M 15.95 0.058
[90] D1 15.90 0.060
[91] 15.9
[90] D1S 15.89 0.060
[90] D1P 15.88 0.063
[90] SkT5 15.74 0.053
[90] SkP 15.67 0.052
[89] TM1 15.62 0.0486
[90] SkO 15.57 0.052
[90] SkOp 15.56 0.052
[90] BSk17 15.53 0.053
[90] D260 15.48 0.059
[90] Gs 15.21 0.053
[90] Rs 15.21 0.053
[90] SkI1 15.20 0.056
[89] TW 15.18 0.0509
[90] SkI4 15.08 0.057
[90] SGI 15.05 0.056
[90] SkI3 14.97 0.058
[90] LNS 14.92 0.057
[90] SkI6 14.85 0.056
[90] SkI5 14.83 0.057
[90] SkI2 14.74 0.054
[90] RATP 14.72 0.055
[88] NL3 14.64 0.0463 0.2020
[90] SkM? 14.61 0.052
[90] SLy0 14.58 0.054
[90] SLy1 14.55 0.054
[90] SLy3 14.55 0.054
[90] SLy5 14.55 0.054
[89] NL3 14.55 0.0463
[90] SLy230a 14.54 0.054
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TABLE III. (Continued).

Reference Tc ρc pc

model (MeV) (nucleons/fm3) (MeV/fm3)

[90] SLy8 14.54 0.054
[90] SLy4 14.52 0.054
[90] SLy6 14.48 0.054
[90] SLy7 14.44 0.054
[87] 14.4 0.04661 0.2010
[90] SLy2 14.37 0.053
[90] SkMP 14.29 0.054
[90] SLy9 14.16 0.052
[88] NL1 13.74 0.0413 0.1644

There are two theoretical estimates of Tc that agree with
our estimate to within error bars: the SIII model in Refs. [85]
and [90]. There are 13 other theoretical estimates within 10%
of our measurement. All but five theoretical estimates of ρc

agree to within error bars with our estimate. There are two
theoretical estimates of pc that agree with our estimate: the
NL2 model [88] and the NLSH model [88].

Figure 2 in Ref. [88] and Fig. 8 in Ref. [90] show
reduced density-reduced temperature coexistence curves such
as the one shown in Fig. 17 here. A visual inspection
of the figures in those references shows that only the
curves from the Walecka model [88] and the ZR1 and
SV models [90] have the symmetry observed in the re-
duced density-reduced temperature coexistence curve shown
in Fig. 17.

Based on the above-mentioned agreement of the values of
the critical point and the shape of the reduced density-reduced
temperature coexistence curve, it is clear that the results
presented in this work agree best with the results of the
SV model [90], though many other models and theories do
well.

VII. SUMMARY

The aim of this paper was to extract that liquid-vapor phase
diagram of infinite, uncharged, symmetric nuclear matter from
the data measured in various nuclear reaction experiments
using finite, charged, asymmetric nuclear matter, i.e., atomic
nuclei. Because the usual thermodynamical methods are
obviously not accessible in this case, we concentrated on the
fragment charge distributions at various excitation energies
and analyzed them according to Fisher’s droplet model
modified to account for the finite size of the system and the
nuclear nature of the fluid (e.g., isospin and Coulomb effects).

By fitting the charge yields observed in six different reac-
tions studied in three experiments, the critical point was found
to be Tc = 17.9 ± 0.4 MeV, ρc = 0.06 ± 0.02 nucleons/fm3,
and pc = 0.31 ± 0.07 MeV/fm3. Using the critical tempera-
ture and assuming that the formation of fragments exhausts
all nonidealities, the entire coexistence curve of bulk nuclear
matter was determined from T = 0 to the critical point. This
represents the first experimental measure of the phase diagram
of bulk nuclear matter. It is likely that the ideas and techniques
outlined in this work would be useful in mapping other areas of
the phase diagram of nuclear matter such as the phase transition
between hadronic matter and the quark gluon plasma.
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