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Background: The triple-α reaction is the key to our understanding about the nucleosynthesis and the observed
abundance of 12C in stars. The theory of this process is well established at high temperatures but rather ambiguous
in the low temperature regime where measurements are impossible.
Purpose: Develop a new three-body method, which tackles properly the scattering boundary condition for three
charged particles and takes into account both the resonant and the nonresonant reaction mechanisms on the same
footing, to compute the triple-α reaction rate at low temperatures.
Methods: We combine the R-matrix expansion, the R-matrix propagation method, and the screening technique
in the hyperspherical harmonics basis.
Results: Both the 21

+ bound state and the 02
+ resonant state in 12C are well reproduced. We also study the cluster

structure of these states. We calculate the triple-α reaction rate for T = 0.01–0.1 GK.
Conclusions: We obtain the same rate as NACRE for temperatures above 0.07 GK, but the new rate is largely
enhanced at lower temperatures (≈1012 at 0.02 GK). The differences are caused by the direct capture contribution
to the reaction when three α particles cannot reach the resonant energies.
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I. INTRODUCTION

The formation of 12C through the triple-α reaction was
first suggested by Salpeter to explain the synthesis of heavy
nuclei since stable isotopes of mass number 5 and 8 can not be
found in nature [1]. However, this reaction rate was too small
to account for the observed abundance of 12C in stars. Later
on, Hoyle predicted the existence of a 0+ resonance near the
three-α threshold which significantly increased the reaction
rate [2]. This resonant state and its properties were confirmed
by experimentalists [3,4] shortly thereafter. Then, the two-step
(sequential) mechanism of the triple-α capture,

α + α → 8Be(01
+), (1)

8Be(01
+) + α → 12C(02

+), (2)

was accepted to explain the mystery of nucleosynthesis and
the abundance of 12C in helium burning stars.

The first evaluation of the sequential (resonant) triple-α
reaction rate was credited to Caughlan and Fowler [5] in which
only the Hoyle resonance was considered and a Breit-Wigner
shape for the resonant cross sections of α − α and α−8Be
was used. Ten years later, this reaction rate was improved
by Angulo [6] when taking into account the contribution
of the 22

+ resonance. This rate is included in NACRE:
Nuclear Astrophysics Compilation of REaction Rates. At low
temperatures, three α particles do not have access to the
intermediate resonances, so one expects the three-α direct
capture to be dominant. The nonresonant triple-α rate tabulated
in NACRE is obtained by a simple extrapolation of the
sequential model to low energies. Since at low temperatures
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the measurements are impossible, a well founded theory for
the three-α direct (nonresonant) capture is crucial.

Ogata et al. [7] was the first group who attempted to
tackle this problem without using an ambiguous extrapolation.
In their studies, the continuum discretized coupled channel
(CDCC) method [8] was employed to solve a three-body
scattering equation, offering an opportunity for the inclusion
of both resonant and nonresonant mechanisms in the triple-α
reaction. However, the CDCC results [7] drastically differ from
NACRE at low temperatures (20 orders of magnitude at T =
0.02 GK) which significantly affects astrophysical studies and
produces results that are incompatible with observation [9–13].
Applying the CDCC method to the triple-α problem can be
challenging because the CDCC wave function which is usually
truncated cannot reproduce the correct scattering behavior of
three charged particles in the asymptotic region [14].

Another attempt using the hyperspherical adiabatic expan-
sion method to solve the triple-α problem was made by the
Madrid-Aarhus Collaboration [15,16]. However, they were
unable to perform the numerical calculation at temperatures
below T ≈ 0.1 GK. Therefore, in order to estimate the non-
resonant triple-α rate at low temperatures, they extrapolated a
three-body Breit-Wigner cross section for the three-α capture
to low energies [17] in a similar manner as done in the
sequential process [6]. The reaction rate from this work [named
BW(3B)] shows an increase of 7 orders of magnitude at T =
0.02 GK compared to NACRE. There are large discrepancies in
the results of [6], [7], and [17], demonstrating uncertainties and
ambiguities in our understanding of the low temperature triple-
α reaction. The aim of our work is to resolve this problem.

At low temperature, the triple-α reaction proceeds through
the 0+ continuum states to the 21

+ bound state of 12C. In
order to construct a reliable nonresonant reaction rate, we
need a good description of both 12C bound and continuum
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states. Recent microscopic theories such as the no-core shell
model [18] and the Green’s function Monte Carlo method
[19] failed to reproduce the Hoyle state of 12C by solving a
true 12-body problem. Even though the fermionic molecular
dynamics method produces both the 21

+ bound state as well
as the 02

+ resonance with significant triple-α configurations
[20], a microscopic description for the nonresonant continuum
states is currently not available. Given the dominant triple-α
structure in both 12C(21

+) and 12C(02
+), it is reasonable to

construct this as a three-body problem as done in [7,15,16].
Theories for the three charged particle problem have made

significant progress over the last few decades. An accurate so-
lution for a three-body bound state system can now be obtained
(e.g., [21]). However, there are still difficulties remaining for a
three charged particle scattering problem because no standard
boundary condition for this system exists when considering the
long-range effects of the Coulomb interaction. Some efforts
have been made to solve this scattering problem but the
results are limited to cases where only one pair of particles
have charge [22,23]. Our triple-α problem is more difficult
since all three particles are charged. In this work we employ
the hyperspherical harmonics (HH) method in combination
with the R-matrix expansion and the R-matrix propagation
technique to provide a good description of the α + α + α
system at low relative energies with the correct Coulomb
asymptotic behavior, thereby enabling us to compute the
reaction rate at very low temperatures without extrapolation.
Our new three-body method is named here HHR. This article
is an extended version of the letter in [24], in which more
details on the theoretical methods are presented and a more
comprehensive analysis of the results is performed.

We have organized this article in the following way:
Detailed theory on the method is presented in Sec. II; the main
results are shown in Sec. III. In Sec. IV we discuss in depth the
reaction dynamics, and the conclusions are drawn in Sec. V.

II. THEORY

A. Hyperspherical formalism

The hyperspherical harmonics (HH) method originated in
atomic and molecular physics [25,26]. Later, it was extended
to few-body systems in nuclear physics by Delves [27,28]. The
theory of the HH method was well developed for Borromean
systems [29–31]. Borromean nuclei are defined as systems of
three particles which are loosely bound and have no bound
states in any of the two-body subsystems. 11Li and 6He, which
have two neutrons weakly coupled to the core, are typical
examples of Borromean nuclei. In this work, we formulate our
problem as a Borromean system of three α particles.

Let us consider a system of three nuclei with masses mi .
For each Jacobi set i, we define the scaled coordinates xi =√

Aj Ak

Aj +Ak
ri and yi =

√
Ai (Aj +Ak)
Ai+Aj +Ak

Ri . Here, ri is the relative

radius vector from particle j to particle k and Ri is the radius
vector from particle i to the center of mass of the two-body
subsystem (jk). The ratios Ai = mi/m are dimensionless and
the scaled mass m is usually taken as the nucleon mass. The
hyperspherical coordinates are then defined as functions of xi

and yi ,

ρ2 = x2
i + y2

i ,
(3)

θi = arctan
xi

yi

.

The hyper-radius ρ is invariant under translations, rotations,
and permutations while the hyperangle θi depends on the
selected Jacobi set. For the triple-α problem in which three
particles are identical, all the Jacobi coordinate sets are
equivalent, so we choose to work with Jacobi set i = 3 and
drop the index i in our equations from now on for convenience.

Because our problem involves only spin-zero particles, all
the equations in HH coordinates are written for this simpler
form. The general case of nonzero spin particles is presented
with details in [32,33]. The hyperspherical expansion separates
the radial and angular dependence of the three-body wave
function,

�LM = ρ−5/2
∑
Klx ly

χKlx ly (ρ) ϕ
lx ly
K (θ )

[
Ylx ⊗ Yly

]
LM

. (4)

In Eq. (4) χKlx ly (ρ) are the hyper-radial functions, solutions
of the coupled channels equations (5). The hyperangular
functions ϕ

lx ly
K (θ ) are the eigensolutions of the hyperangle

equation and are defined by Jacobi polynomials [32]. This
expansion introduces a new quantum number, the hypermo-
mentum K , an extended concept of angular momentum for a
three-body system. lx and ly are the orbital angular momenta
corresponding to the Jacobi coordinates x and y.

Using the HH expansion above, we arrive at a set of coupled
channels equations in the hyper-radius coordinate:(

h̄2

2m

[
d2

dρ2
−�(�+1)

ρ2

]
+E

)
χγ (ρ) =

∑
γ ′

Vγγ ′(ρ) χγ ′(ρ),

(5)

where � = K + 3/2 and γ = {K, lx, ly}. The coupling poten-
tials Vγγ ′(ρ) are defined as the sum of three pairwise interac-
tions Vjk(ρ, θ ) plus a three-body force V3b(ρ), integrated over
all variables but ρ:

Vγγ ′ (ρ) = 〈
γ (θ, x̂, ŷ)|
3∑

k>j=1

Vjk + V3b|
γ ′(θ, x̂, ŷ)〉, (6)

where 
γ (θ, x̂, ŷ) = ϕ
lx ly
K (θ ) [Ylx ⊗ Yly ] are the hyperhar-

monic basis functions containing all the angular dependence
in Eq. (4). In the HH representation, both the diagonal and the
off-diagonal couplings decay slowly as Zeff

γ γ ′/ρ for a system
of three charged particles [14], demonstrating the difficulty of
our problem in the asymptotic region. Zeff

γ γ ′ is constant for any
given channel γ and γ ′ and has a nontrivial expression:

Zeff
γ γ ′ = Z2e2

√
A

2

[ 〈
γ, 3

∣∣∣∣ 1

sinθ3

∣∣∣∣ γ ′, 3

〉

+
∑
αα′

RR32
γαRR23

α′γ ′

〈
α, 2

∣∣∣∣ 1

sinθ2

∣∣∣∣α′, 2

〉

+
∑
ββ ′

RR31
γβRR13

β ′γ ′

〈
β, 1

∣∣∣∣ 1

sinθ1

∣∣∣∣β ′, 1

〉 ]
, (7)
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where Z and A are the charge number and the atomic number
of an α particle; RRij

βγ is the Raynal-Revai coefficient [34];
i = 1, 2, 3 represent three Jacobi coordinates (xi, yi) and |γ, i〉
is the hyperharmonic basis function 
γ (θi, x̂i , ŷi) in Jacobi i.
Each matrix element is integrated over all angular variables.

For neutral Borromean systems, the three-body bound
state wave function decays exponentially at large distance
[35]. When introducing Coulomb interactions the problem
becomes more difficult because a simple analytic expression
for the asymptotic bound state wave function of three charged
particles does not exist. However, for a well-bound system, im-
posing the boundary condition χγ (ρ → ∞) → 0 is sufficient
for the numerical calculation [32].

Solving Eq. (5) for positive energies E, to obtain continuum
states for a system of three charged particles, is numerically
challenging since it requires an exact boundary condition.
Fortunately, there are techniques (which will be discussed
in detail later) that enable us to neglect the off-diagonal
potential couplings at large distances. This results in analytic
solutions for the asymptotic version of Eq. (5) corresponding
to the regular F�(ηγ , κρ) and irregular G�(ηγ , κρ) three-body
Coulomb functions. We can thus write down the asymptotic
three-body continuum wave function for a charged system in
hyper-radius:

χHHR
γ γ ′ (ρ)

ρ→∞−→ H−
� (ηγ , κρ)δγ γ ′ − H+

� (ηγ , κρ)Sγγ ′ . (8)

H± = G ± iF are the Coulomb functions describing the
outgoing and incoming spherical waves and Sγγ ′ is the
scattering matrix [33]. Due to the nature of the scattering
boundary condition, each partial wave χγγ ′ requires two
subscripts γ and γ ′ to describe the outgoing and incoming
channels respectively. The hyper-radial momentum κ is given
as a function of the three-body kinetic energy κ =

√
2mE/h̄2,

where h̄ is the Planck constant. The variable ηγ is an equivalent
of the Sommerfeld parameter in two-body systems but is
more complex and hyper-momentum K dependent. ηγ is
obtained from the parameter Zeff

γ γ through a relationship
ηγ = mZeff

γ γ /h̄2κ .

B. R-matrix expansion

Wigner and Eisenbud [36] were the first to introduce the
R-matrix method into nuclear physics to study resonances in
nuclear scattering. Later on, this method was developed and
extended in detail by Lane and Thomas [37]. The general
idea of this method is to use an orthonormal basis expansion
inside an R-matrix box. An R matrix is then constructed to
match to the asymptotic wave function outside the box [33].
Even though the R-matrix method was originally developed
for a two-body scattering problem, it has been generalized for
a three-body system in HH coordinates by Thompson et al.
[38]. Typically the R-matrix expansion provides a method that
is numerically more stable than direct integration methods
for solving coupled channels equations with strong repulsive
couplings [33].

By imposing a constant logarithmic derivative β =
dlnφ

p
γ (ρ)/dρ at a fixed radius ρm, the so called R-matrix

radius, the eigensolutions φ
p
γ (ρ) of Eq. (5) will form an

orthonormal basis over a finite range [0, ρm]. The scattering
wave functions at energy E are expanded in terms of φ

p
γ (ρ) at

eigenenergies ep:

χγγ ′ =
∑

p

A
p
γγ ′ φp

γ . (9)

In our calculation, the logarithmic derivative β is chosen to be
zero. This option may lead to the discontinuity of the derivative
of the wave function at the R-matrix boundary when using a
truncated basis as discussed in [39]. However, a sufficiently
large basis is employed in our calculation to ensure a smooth
behavior of the wave function at all energies. In addition, the
zero logarithmic derivative highly reduces the complexity of
the R-matrix propagation method (Sec. II C). All the equations
presented in this paper consider β = 0 while more general
formulas can be found in [33]. The R matrix at energy E
relates the wave function χγγ ′(ρ) and its derivative:

χγγ ′(ρ) =
∑
γ ′′

ρ Rγγ ′′ (E) χ ′
γ ′′γ ′(ρ). (10)

The constant logarithmic derivative enables us to calculate the
R matrix Rγγ ′′(E) from the known eigenfunctions φ

p
γ at radius

ρm:

Rγγ ′′(E) = h̄2

2mρm

P∑
p=1

φ
p
γ (ρm) φ

p
γ ′′(ρm)

ep − E
, (11)

where P is the number of poles used in our calculation. If we
substitute Eqs. (9) and (11) into Eq. (10), the only missing
quantities to calculate the scattering wave function are the
expansion coefficients A

p
γγ ′ . As discussed in Sec. II A, Eq. (8)

is the asymptotic form of a continuum wave function for
three charged particles when the off-diagonal couplings can
be neglected. For sufficiently large ρm the wave function will
be in the asymptotic regime. Inserting Eqs. (9) and (11) in
Eq. (10) and combining with Eq. (8) we obtain the unknown
coefficients A

p
γγ ′ :

A
p
γγ ′ = h̄2

2m

1

ep − E

∑
γ ′′

φ
p
γ ′′[δγ ′′γ ′H ′−

γ ′′ − Sγ ′′γ ′H ′+
γ ′′ ]. (12)

All functions in Eq. (12) are evaluated at the R-matrix
boundary ρm. The scattering matrix Sγ ′′γ ′ and the R matrix
are directly related [33].

C. R-matrix propagation

The triple-α system is driven by strong, long-range pairwise
Coulomb interactions. Therefore, the R-matrix radius ρm

has to be very large to fully capture the physics of the
problem. Solving the coupled channels equations in a large
R-matrix box will lead to numerical instability. In order to
overcome this difficulty, we employ the R-matrix propagation
technique originally developed by Light and Walker for the
atom-molecule scattering problem [40,41]. First, the set of
coupled channels equations (5) is solved in a small R-matrix
box with a radius of ρm. Then the R matrix at ρm is propagated
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to ρa 	 ρm where matching to known Coulomb functions can
be performed. This propagation method is well known for its
fast convergence and high numerical stability.

We rewrite Eq. (5) as

d2χγγ ′(ρ)

dρ2
=

∑
γ ′′

Ṽγ γ ′′ χγ ′′γ ′(ρ). (13)

The interval from the R-matrix radius ρm to the matching
radius of the three-body asymptotic wave function ρa is divided
into sectors. We choose the size hp of sector p to be sufficiently
small that the interaction within is considered to be constant
λγ (p) in each channel γ . We diagonalize Ṽγ γ ′′ by solving the
equation

(T̃p)T Ṽ(ρp) Tp = λ(p)2, (14)

where ρp is taken at the center of sector p. The wave function
and its derivative at the left and right boundary of sector p
can be related through a local diagonal representation of the
propagating functions Gp:[

χ
p
R

χ
p
L

]
=

[
Gp

1 Gp
2

Gp
3 Gp

4

] [
−χ

p
R

′

χ
p
L

′

]
. (15)

The subscripts R and L imply evaluations at the right and
left side of the sector boundary, respectively. The propagating
functions are expressed as Gi

p = Tpgi
pT̃p, where gp is a

simple function of λγ (p):

(
g

p
1

)
γ γ ′ = (

g
p
4

)
γ γ ′ = δγ γ ′

{− 1
|λγ | coth|hpλγ |, λ2

γ > 0,
1

|λγ | cot|hpλγ |, λ2
γ � 0,

(
g

p
2

)
γ γ ′ = (

g
p
3

)
γ γ ′ = δγ γ ′

{− 1
|λγ | csch|hpλγ |, λ2

γ > 0,
1

|λγ | csc|hpλγ |, λ2
γ � 0.

(16)

The R matrix is then propagated from sector p−1 to the next
by

Rp = 1

ρ
p
R

(
G2

p
[
G4

p − ρ
p−1
R Rp−1

]−1
G3

p − G1
p
)
. (17)

Equation (17) enables us to propagate the R matrix from a
small radius ρm to a distance ρa large enough such that the
asymptotic matching can be performed and hence the wave
function at the R-matrix boundary can be calculated. Then
the propagating functions Gp are used again to reconstruct
the continuum wave functions to the desired radius,

χ
p
L = G1

p−1
[
G3

p−1
]−1

χ
p−1
L

+ (
G2

p−1 − G1
p−1

[
G3

p−1
]−1

G4
p−1

)
χ

p−1
L

′
. (18)

In our calculations, the logarithmic derivative β is always
kept at zero so that Eqs. (17) and (18) remains valid.

D. Screening

The presence of very narrow two-body and three-body
resonances in addition to the strong, long-range Coulomb
interaction in our problem creates numerical instabilities in

FIG. 1. (Color online) Our three-body method is divided into
four steps in which we employ the R-matrix expansion, R-matrix
propagation, and screening technique in the hyperspherical harmonics
coordinates.

the propagated three-body scattering wave functions. We
overcome these difficulties by introducing a Woods-Saxon
screening factor {1 + exp[(ρ − ρscreen)/ascreen]}−1 in the off-
diagonal potentials of Eq. (6). The screening radius ρscreen is
chosen sufficiently large to gain convergence, yet small enough
to ensure numerical stability.

Figure 1 summarizes the different steps in our method.
We divide the hyper-radial space into four regions. The
hyperspherical harmonics R-matrix expansion (HHR) is first
applied in a small box of radius ρm (∼50 fm). We then use
the R-matrix propagation method to much larger distances. All
Coulomb couplings are included from ρm to ρscreen (∼800 fm).
After that, the off-diagonal couplings are screened up to
ρa (∼3000 fm) where it is safe to perform the asymptotic
matching.

E. Three-body reaction rate

For a given three-body radiative capture reaction a + b +
c → D + γ , the reaction rate Rabc at a given energy E is
calculated through the photodissociation cross section σγ ,

Rabc(E) = p! N2
A Gabc,D

h̄3

c2

8π

(μabμab,c)3/2

E2
γ

E2
σγ (Eγ ).

(19)

The photon energy Eγ and the three-body kinetic energy
E are related by Eγ = E + |ED|. Here ED indicates the
bound state energy of the final nucleus D relative to the
three incident-particle a, b, c threshold. μab and μab,c are
the reduced masses of the a + b and (ab) + c systems,
respectively. p is the number of identical particles and NA

is Avogadro’s number. The statistical factor Gabc,D depends
on the spins of the nuclei a, b, c, and D through the relationship
Gabc,D = 2(2JD+1)

(2Ja+1)(2Jb+1)(2Jc+1) .
The energy averaged reaction rate 〈Rabc〉(T ) (a function

of temperature) is an important quantity in astrophysics. It is
obtained by integrating Rabc(E) over the three-body Maxwell-
Boltzmann distribution which differs from the two-body case:

〈Rabc〉 = 1

2

1

(kBT )3

∫ ∞

0
Rabc E2 e−E/kBT dE, (20)

where kB is the Boltzmann constant. Throughout this paper,
we will refer to the energy averaged reaction rate 〈Rabc〉(T )
as the triple-α rate.

The photodissociation cross section σγ in Eq. (19) de-
pends on the electromagnetic transition strength dB(Eλ)/dE
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through which the reaction occurs:

σγ = (2π )3(λ+1)

λ[(2λ+1)!!]2

(
Eγ

h̄c

)2λ−1
dB(Eλ)

dE
. (21)

At low energies, the triple-α reaction proceeds through a
quadrupole transition from the 0+ continuum to the 21

+ bound
state in 12C. The formula in the hyperspherical basis for
the transition strength function dB(E2)/dE is given in the
Appendix. A detailed derivation of the three-body quadrupole
transition and reaction rate is presented in [42].

III. RESULTS

A new code named HHR3a is generated to solve Eq. (5) for
bound states and continuum states of the triple-α system. It is
developed from the program FaCE [21] and STURMXX [43]
which were originally designed by Thompson et al. for a
core + n + n system. Our current problem, involving three
identical α particles, has different symmetries and is more
difficult because of the long-range Coulomb interaction. An α
particle is considered as a boson of spin zero, thus the wave
function must be unchanged for any permutation of these two
particles. Only partial waves with lx = even will contribute
to the total wave function. Here, lx is the relative angular
momentum of the two identical α particles being interchanged.
This constraint is applied for the wave function in each of the
three Jacobi sets. Because the wave function is symmetric for
any pair of interchanged particles, we are able to reduce three
Faddeev components to a set of coupled channel equations in
the hyper-radius formed from one pair of Jacobi coordinates.
We thus highly increase the computational efficiency and
fully take into account the symmetrization of the system. The
new code HHR3a is corrected for the symmetry properties
introduced by the three identical bosons. In addition, the
correct Coulomb asymptotic wave functions are used instead
of plane waves in STURMXX [43] since our problem involves
charged particles. We implement the screening technique in
this new version of the code and considerable modifications
are also introduced in the R-matrix propagation method.

A. Interactions

In our study, the triple-α problem is reduced to an effective
three-body problem in which the two-body α-α interactions are
phenomenological and a three-body force is needed to account
for the fact that the α particle is not a fundamental particle.
We use the Ali-Bodmer potential for the α-α interaction [44]
as modified by Fedorov et al. [45]:

Vαα = (125P̂l=0 + 20P̂l=2)e−r2/1.532 − 30.18e−r2/2.852
. (22)

The l-dependent potential has a very strong repulsive core in
the s wave to simulate the Pauli exclusion principle in the
α-α system. This interaction reproduces successfully the low
energy phase shifts as well as the 01

+ resonant state of 8Be at
0.093 MeV.

A three-body force is defined by V3b(ρ) = V0e
−ρ2/ρ2

0 and
added to the Hamiltonian to reproduce the experimental bound

TABLE I. The three-body interactions to reproduce the experi-
mental energies [46] of the 21

+ bound state and 02
+ resonant state in

12C.

J � V0 (MeV) ρ0 (fm) E (MeV)

21
+ −15.94 6 −2.875

02
+ −19.46 6 0.380

state energy of the 21
+ state as well as the Hoyle resonant state

02
+ in 12C. We take ρ0 = 6 fm as it corresponds to the position

where the three α particles touch each other. We adjust V0 to
the value of −15.94 MeV (−19.46 MeV) to generate the 21

+
bound state (the 02

+ Hoyle resonance) at the correct binding
energy. V0 = −19.46 MeV is then used to calculate all the 0+
continuum states.

In addition to the nuclear interaction we include the
Coulomb potential:

V Coul
αα (r) = Z2e2 ×

{(
3
2 − r2

2r2
Coul

)
1

rCoul
r � rCoul

1
r

r � rCoul.
(23)

Here, Z is the charge of an α particle, r is the distance between
two α particles, and rCoul is the Coulomb radius which is taken
as twice the α-particle radius rCoul = 2.94 fm.

In Table I, we summarize the parameters for the three-
body interactions used in our calculations to reproduce the
experimental binding energy for the 21

+ bound state and the
resonant energy for the Hoyle state 02

+ of 12C [46].

B. The 21
+ bound state

A three-body bound state is obtained by solving the set
of coupled channels equations (5) with a boundary condition
that the wave function goes to zero at large ρ. These coupled
equations are solved by expanding the hyper-radial wave
function in terms of the Laguerre basis [47] which forms a
complete and orthogonal set. We use a large basis to obtain
an accurate description at large distances (nlag = 180). The
matrix diagonalization is then applied to obtain eigenenergies
and eigenvectors. For the hyperangular part we use njac = 70
Jacobi polynomials in the expansion. We use the modified Ali-
Bodmer interaction [44,45] in combination with a three-body
force as discussed in Sec. III A to obtain the 21

+ bound state
for 12C in agreement with experiment.

Figures 2 and 3 show the convergence of the three-body
binding energy and the rms radius of the 21

+ bound state of
12C with the size of the model space represented here by the
maximum hypermomentum Kmax. A given Kmax determines
how many channels are included in the wave function
expansion Eq. (4), e.g., Kmax = 20 produces 36 channels in the
expansion. From Fig. 2 (square-solid curve), we see that the
bound state energy starts converging at Kmax = 12. Therefore,
energy convergence is guaranteed by choosing Kmax = 20.
The bound state energy of the 21

+ state of 12C converges to
the experimental value E = −2.875 MeV [46] with respect
to the three-α threshold. Our final value for the rms radius is
2.459 fm (see Fig. 3, square-solid curve) which is close to the
result obtained in a microscopic calculation done by Chernykh
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FIG. 2. (Color online) Dependence of the three-body binding
energy of the 12C(21

+) bound state and the 12C(02
+) Hoyle resonant

state on the maximum hypermomentum Kmax which determines the
size of the model space. Any K � Kmax will be included in the wave
function expansion Eq. (4).

et al. (2.50 fm) [20]. This agreement validates the three-body
approximation for the 21

+ bound state. In support of this is
also the fact that in [20], the triple-α configuration is dominant
for this 12C state.

In Fig. 3 (dashed curve), we plot the rrms radius as a function
of the maximum radius ρmax of the calculated 21

+ bound state
wave function. As can be seen, the rrms no longer depends
on the maximum radius of the bound state wave function for
ρmax > 20 fm. However this is not generally the case when
considering capture rates. All the calculations throughout this
work employ a bound state wave function up to 200 fm, which
ensure the correct description of the long-range part of the
wave function important for the rate at low temperatures.
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FIG. 3. (Color online) Dependence of the rrms radius of the
12C(21

+) bound state on the maximum hyper-momentum Kmax

(square-solid) and the maximum radius of the calculated 12C(21
+)

wave function (dashed).
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FIG. 4. (Color online) The density distribution for the 21
+ bound

state of 12C. The brighter color corresponds to the higher density
distribution.

We next construct the density distribution function from the
2+ bound state wave function to study its structure:

P (r, R) =
∫

|�(r, R)|2d r̂dR̂. (24)

Here r is the radius between two α particles and R is the
distance from their center of mass to the third α. In Fig. 4
we present the density distribution P (r, R) for the 21

+ bound
state of 12C. The dominant configuration for this state is an
equilateral triangle in which each pair of particles is ∼3 fm
apart. This configuration is represented in Fig. 7(c).

C. The 02
+ Hoyle state

The three α particle system is driven by a strong Coulomb
interaction of which the off-diagonal couplings are long-range
in the HH representation. Therefore, solving the coupled
channels equations (5) for positive energies E is not a
trivial task. The HHR method which combines the R-matrix
expansion and the R-matrix propagation in the HH basis
is employed to overcome this difficulty. We again use the
modified α-α Ali-Bodmer potential [44,45] and adjust the
three-body force to reproduce the experimental Hoyle resonant
state (details of interactions are shown in Sec. III A). The same
three-body force is then used to calculate all the 0+ continuum
states of 12C. The quadrupole transition strength Eq. (A1)
is constructed using the 21

+ bound state wave function and
the 0+ resonant and nonresonant continuum states. Therefore,
in our calculations we treat the resonant and nonresonant
process on the same footing. Figure 5 plots the quadrupole
transition strength as a function of the kinetic energy for the
three interacting α particles. The curve peaks at the measured
Hoyle resonant energy (E = 0.38 MeV). As we expect, the
strength function decreases as it approaches the lower energy
regime. Around 0.05 MeV there is a sharp reduction of the
transition strength below which the formation of 12C becomes
unlikely.

We repeated the calculation in Fig. 5 for different values
of Kmax. For each Kmax, the resonant energy is obtained from
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FIG. 5. The quadrupole transition strength dB(E2)/dE as a
function of the three-α kinetic energy E.

the maximum of the transition strength function and plotted
in Fig. 2 (diamond-dashed curve). As expected, we find that
the convergence for the Hoyle state is slower than for the
bound state. The result begins to converge at Kmax = 26 and
this is the point we choose to fit the three-body force to
reproduce the experimental energy of 0.38 MeV [46] with
respect to the three-α threshold. The resonant energy in
Fig. 2 has a typical exponential convergence pattern with the
maximum hypermomentum Kmax in the HH coordinates. In
order to estimate the uncertainly in extracting this resonant
energy, the data in Fig. 2 is fitted to an exponential function
y = A + Be−Cx . When Kmax goes to infinity this function
approaches its converged value which is then compared to the
value of energy at Kmax = 26 to obtain an uncertainty of 4%.

By using the wave function at the resonant energy we are
able to construct a density distribution function as in Eq. (24).
This quantity illustrates the spatial structure of the Hoyle state,
a topic of tremendous interest for many years [20,48–51].
Figure 6 depicts the density distribution in a color contour plot
where the brighter color corresponds to a denser distribution.
The dominant configuration for the Hoyle state is the prolate
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FIG. 6. (Color online) The density distribution for the 02
+ Hoyle

resonant state of 12C. The brighter color corresponds to the higher
density distribution.

FIG. 7. (Color online) Different configurations of the triple-α
system: the prolate triangle (a), the oblate triangle (b), and the
equilateral triangle (c).

triangle in which two α particles are near each other (∼3.7 fm)
and further away from the third α (∼5.2 fm), in agreement with
the findings in [45,51] [presented in Fig. 7(a)]. We also observe
two smaller maxima for the density distribution function. One
of them supports an oblate triangle configuration of three α
particles [Fig. 7(b)], where two α particles are ∼7 fm apart
and their center of mass is ∼1.5 fm from the third α. The other
small maximum indicates an almost equilateral triangle with a
distance of ∼3 fm between any pair of α particles [Fig. 7(c)].
The weights of these two configurations are about half of that of
the prolate triangle configuration. In conclusion, we find three
different configurations in the Hoyle state: the prolate triangle
is dominant, but the oblate triangle (almost chainlike) and
the equilateral triangle also contribute significantly. Figure 7
portrays accurately the configuration of three α clusters only in
relative magnitudes of r and R, and the average angle between
these two vectors requires further investigation.

D. Convergence and uncertainty

It is important for us to carefully study the convergence
properties of our method, given the well known difficulty
of the problem. With the help of the R-matrix propaga-
tion method we are able to perform calculations out to a
very large radius and obtain stable results with Coulomb
interactions only. When nuclear interactions are introduced,
the very narrow resonances occur in both the two-body
and three-body systems, and lead to a degradation of our
propagation technique and increasing numerical instabilities,
especially in the turning point region. As mentioned in the
Theory section, we tackled this problem by screening the
off-diagonal couplings by a Woods-Saxon multiplying factor
{1 + exp[(ρ − ρscreen)/ascreen]}−1. However, it is necessary for
us to ensure that important physics is not left out.

In Fig. 8, we compare between screening and no screening
calculations for a scattering system of three α particles when
only Coulomb interactions are included. The 21

+ bound state is
taken from Sec. III B. For this case, there are no resonances in
either the two-body or three-body system, thus the propagation
technique is stable and we are able to determine the impact of
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and no screening calculations for the fictitious three-α scattering
system in which only Coulomb interactions are introduced. The
screening calculation is performed for Kmax = 26 and ρscreen =
800 fm. Calculations without screening are performed for Kmax = 20
(solid) and Kmax = 26 (dashed).

introducing screening potentials. We perform a calculation
using the screening technique with ρscreen = 800 fm. This
calculation fully converges at Kmax = 26. This result is then
compared to two calculations with no screening at all. One is
done with Kmax = 20 (solid) and the other with Kmax = 26
(dashed) to ensure generality and the convergence of the
method. Uncertainty of the reaction rate due to the screening
technique ranges from 35% to 39% for temperatures within
0.02–1 GK. These are very small numbers given the many
orders of magnitude involved in the problem.

For our realistic problem of the triple α where both nuclear
and Coulomb interactions are included, we need to use the
screening technique to obtain stable results. The convergence
study of our triple-α rate with varying ρscreen and Kmax is
performed carefully. We use an R-matrix box size of 50 fm,
with P = 50 poles included in the R-matrix expansion. For
the hyperangular part we use njac = 100 Jacobi polynomials,
which provide converged values for the hyperangular integrals.
Several values of the screening diffuseness are used and
no dependence has been found, we thus fix the screening
diffuseness to 10 fm throughout this paper. The R matrix is then
propagated out to 3000 fm, sufficiently large to perform the
Coulomb asymptotic matching. Figure 9 presents the results
using three different screening radii: 600, 800, and 1000 fm.
These results are plotted in comparison with the converged
rate in Table II. The triple-α reaction rate converges for
ρscreen � 800 fm with an uncertainty of 5%.

Figure 10 shows the convergence of the triple-α reaction
rate with hypermomentum Kmax. We perform four calculations
of the rate as a function of temperature by varying Kmax

from 20 to 26. The results are plotted in comparison with the
converged rate in Table II. Kmax = 20 is not large enough to
reproduce the experimental 02

+ Hoyle resonant state, therefore
the reaction rate for this case is larger than other curves for
T > 0.1 GK. The uncertainty of the triple-α rate is larger at
high temperatures due to the sensitivity of the Hoyle resonant
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FIG. 9. (Color online) Relative differences between the triple-α
rate calculated at several screening radii and its converged value.
The reaction rates calculated using ρscreen = 600 fm (solid), ρscreen =
800 fm (dashed), ρscreen = 1000 fm (dot-dashed) are compared with
the converged rate in Table II.

energy with Kmax. The uncertainty is less than 15% for
Kmax = 26.

In Fig. 11 we look at the quadrupole strength function,
which is a principal ingredient for calculating the reaction
rate, at a specific energy of E = 0.01 MeV. If dB(E2)/dE
converges, then the cross section and the reaction rate will also
converge. Since the dB(E2)/dE has an exponential behavior,
namely y = A − Be−Cx as a function of hypermomentum
Kmax, we are able to extrapolate to the converged value of
dB(E2)/dE when Kmax → ∞. For this very low energy
(E = 0.01 MeV), the extrapolated value of the rate differs
from that at Kmax = 26 by only 4%.

In order to study the sensitivity of the triple-α rate to
the nuclear interaction and the three-body force, we consider
employing the same Hamiltonian as [7] to calculate the 0+
continuum. In [7] the α-α interaction is given as

Vαα(r) = 100.0e−r2/1.002 − 30.35e−r2/2.132
. (25)

TABLE II. Our triple-α reaction rate (in cm6 s−1 mol−2) after
being normalized to NACRE for T � 0.5 GK.

T (GK) 〈Rααα〉 T (GK) 〈Rααα〉
0.010 8.47 × 10−53 0.15 1.53 × 10−18

0.015 2.11 × 10−47 0.20 9.90 × 10−16

0.020 2.86 × 10−44 0.25 4.13 × 10−14

0.025 4.44 × 10−42 0.30 4.50 × 10−13

0.030 2.08 × 10−40 0.35 2.31 × 10−12

0.04 5.72 × 10−38 0.4 7.44 × 10−12

0.05 3.11 × 10−36 0.5 3.44 × 10−11

0.06 6.79 × 10−35 0.6 8.63 × 10−11

0.07 4.18 × 10−32 0.7 1.55 × 10−10

0.08 7.12 × 10−29 0.8 2.28 × 10−10

0.09 2.26 × 10−26 0.9 2.95 × 10−10

0.10 2.19 × 10−24 1.0 3.51 × 10−10
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FIG. 10. (Color online) Relative differences between the triple-α
rate calculated at several maximum hypermomentum Kmax and its
converged value. The reaction rates calculated using Kmax = 20
(solid), Kmax = 22 (dashed), Kmax = 24 (dot-dashed), Kmax = 26
(dot-dot-dashed) are compared with the converged rate in Table II.
The calculation for Kmax = 20 is rescaled by a factor of 100 for
T > 0.06 GK.

Unlike in [7], we find that a three-body interaction is needed
to reproduce the relevant Hoyle state. As seen from Fig. 12,
the new interaction produces a triple-α reaction rate at
low temperatures four orders of magnitude higher than that
obtained with the Ali-Bodmer interaction [44,45]. While the
Ali-Bodmer potential reproduces the α-α phase shifts, the
interaction in [7] does not. It therefore provides an upper limit
for the error associated with Vαα ambiguities.

As an additional check of our method, we have reproduced
the results in [52] (Table 4, second column). The aim of [52]
was the study of 3α resonant structures up to 6 MeV, comparing
results using shallow and deep αα potentials. This is very
different from our goal, which is to calculate the scattering
at very low energies, below 0.3 MeV, where no resonances
exist. Nevertheless, it is critical to ensure that our method
does reproduce previous results. Using the same Ali-Bodmer
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FIG. 11. (Color online) Convergence of the quadrupole transition
strength dB(E2)/dE with hypermomentum Kmax at E = 0.01 MeV.
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FIG. 12. (Color online) The sensitivity of the triple-α rate to
the interactions: comparison between α-α Ali-Bodmer + three-body
force (solid) and α-α interaction as in [7] + three-body force (dashed).

interaction and the same three-body force, we reproduce the
bound states exactly, and obtain three resonances: one at
1 MeV, another at 1.4 MeV, and the last one at 3.3 MeV.
The first and last correspond to the resonances at 0.93 and
3.1 MeV in [52], while our 1.4 MeV is a broad resonance
which is likely to correspond to the overlap of the three states
identified in [52]. We should point out that these resonances do
not exhibit the typical Breit-Wigner shape, and therefore the
estimate of their widths is not very reliable. This is in contrast
to the Hoyle state in our present work, where an isolated very
narrow resonance is obtained.

Our final rate is normalized to the standard rate from
NACRE for temperatures T � 0.5 GK, where the Hoyle
resonance completely dominates. At this high temperature,
the triple-α reaction proceeds through the very narrow Hoyle
resonance and its rate is proportional to a γ decay width �.
In NACRE, � = 3.7 × 10−9 MeV is taken from experimental
data [46]. We fit our calculated cross sections to a Breit-Wigner
shape and obtain a value of ∼10−9 MeV for the partial decay
width, which is the same order of magnitude as experiment. In
practice, a factor of 2 is needed for normalizing to the NACRE
rate. We consider this factor of 2 to be our conservative error
counting for both the uncertainty of the decay width and the
convergence of the problem.

E. Rate

With the 21
+ bound state and the 0+ continuum states of 12C

obtained above, we are able to compute the triple-α reaction
rate at different temperatures. Our method enables us to treat
the resonant and nonresonant processes on the same footing.
We present our new triple-α rate in Table II for temperatures
ranging from 0.01 to 1.0 GK, beyond which we would need to
consider other high lying resonances.

The triple-α reaction proceeds primarily through either the
resonant or the nonresonant path depending on the temperature
of the stellar environment. In order to have a full description of
the triple-α reaction mechanism, we estimate the energy range
relevant for the reaction rate at a given temperature. These
ranges of energies contribute significantly to the integral of
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FIG. 13. Range of energies relevant for the triple-α reaction rate
at a given temperature.

Eq. (20). As shown in Fig. 13, the resonant energy at 0.38 MeV
completely dominates the integration for T � 0.07 GK.
For T = 0.06–0.07 GK, there is competition between the
resonant and nonresonant processes. This marks the transition
region between the two processes. The nonresonant capture
mechanism dominates for T < 0.06 GK.

IV. DISCUSSION

A. Comparison with other methods

Figure 14 presents our results (solid line) in comparison
with other studies: NACRE, CDCC, and BW(3B). The new
rate resulting from the HHR method (after being rescaled as
discussed in Sec. III D) agrees with NACRE (dotted line) for
temperatures above 0.07 GK. Although the reaction rate is
slightly reduced below 0.07 GK, it is significantly enhanced for
T < 0.06 GK. We also obtained a very different temperature
dependence in this region [24]. The results assuming an
extrapolation of a three-body Breit-Wigner cross section to
low energies BW(3B) (dot-dashed line) [17] have a similar
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FIG. 14. (Color online) Different evaluations of the triple-α
reaction rate: comparing the hyperspherical harmonic R-matrix
method (solid) with NACRE (dotted), CDCC (dashed), and the
three-body Breit Wigner (dot-dashed).

behavior but the reaction rate increases to a lesser extent. The
CDCC results of [7] (long-dashed) largely enhance the triple-α
rate for temperatures as large as 0.1 GK when comparing with
NACRE. This effect is much stronger than what is seen in our
studies. The fact that the HHR result agrees with NACRE for
T > 0.07 GK leads to a negligible change in the evolution of
stars around one solar mass [24]. This cannot be reproduced
when using the CDCC rates.

There exists a kink in the HHR curve around T ≈ 0.06 GK
as seen in Fig. 14. This marks the transition between
the resonant and the nonresonant processes for which the
temperature dependencies are different. Above T ≈ 0.06 GK
the sequential (resonant) process dominates, while below there
is mostly nonsequential (direct) capture. This agrees with the
finding in Fig. 13. The calculations in [17] exhibits this same
feature.

It was suggested in [52] that the enhancement seen in the
rate obtained with CDCC [7] is due to additional resonances
in the spectrum. We have repeated the HHR calculations using
a scattering wave function obtained from the interactions
quoted in [7]. This interaction holds only one 0+ state at
− 1.686 MeV and the converged dB(E2)/dE results show no
sign of additional resonances up to 1 MeV. We also repeat the
HHR calculation in a truncated the model space as indicated
in [7] (s waves only). With such a truncated model space, the
bound state becomes unbound and a resonance appears close
to threshold (around 0.2 MeV). The resulting rate increases by
many orders of magnitude. Keeping in mind that the CDCC and
the HHR methods are based on very different expansions, and
the direct comparisons of intermediate steps in the calculation
is not possible, our results do suggest that at least in part, the
reason for the large increase in the rate seen in [7] is due to
model space truncation.

B. Long-range Coulomb effects

Since we obtain a large enhancement for the triple-α
reaction rate at low temperatures, it is important to isolate
the source of this effect. We therefore perform calculations
of the 12C(0+) continuum states for cases in which only
the diagonal Coulomb couplings V C

γγ (dotted) and the full
Coulomb couplings V C

γγ ′ (dot-dashed) are included. The results
are then compared to calculations including both nuclear and
Coulomb interactions (V C + V N )γ γ ′ with the off-diagonal
Coulomb couplings up to 30 fm (dashed) and 800 fm (solid).
The reaction rate for each case is then constructed by using
those scattering wave functions and fixing the 12C(21

+) bound
state. Figure 15 shows the results of these calculations. When
only the diagonal Coulomb couplings are present, we are
able to obtain an analytic solution of Eq. (5) (Sec. II A). Our
numerical calculation for this case agrees well with the analytic
solution allowing us to test our implementation. The inclusion
of the off-diagonal Coulomb couplings (dot-dashed curve)
significantly increases the reaction rate at low temperatures.
When both nuclear and Coulomb couplings are fully included
in our calculation, we observe an increase in the reaction
rate at high temperatures due to the resonant contribution.
Comparison between the solid and the dashed curves confirms
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FIG. 15. (Color online) The long-range Coulomb effects are
shown in four different calculations: only diagonal Coulomb cou-
plings (dotted), only Coulomb couplings (dot-dashed), both nuclear
and Coulomb interactions with off-diagonal Coulomb couplings up
to 30 fm (dashed), and a fully converged calculation with off-diagonal
Coulomb couplings up to 800 fm (solid).

that off-diagonal Coulomb couplings drive the increase in
the triple-α reaction rate at low temperatures. Figure 15
indicates that the effect of off-diagonal long-range couplings
are relatively small at high temperatures but very important in
the low temperature regime. About ten orders of magnitude
enhancement in the rate is found at T = 0.01 GK due to these
effects, demonstrating the importance of including Coulomb
correctly.

C. Reaction dynamics

In order to understand the mechanism for 12C production
in more detail, we rewrite Eq. (A1) as

dB(E2)

dE
∼

∑
γ i

∣∣∣∣
∫

fγ i (r, R)drdR

∣∣∣∣
2

, (26)

where r is the radius between two α particles and R
is the distance from their center of mass to the third α
particle. γ i = {Ki, lix, l

i
y} indicates an incoming channel in

the hyperspherical wave expansion for a scattering state. The
spatial distribution of function fγ i (r, R) at different three-body
kinetic energies E contains information about the dynamics
of the triple-α reaction. Figures 16–18 illustrate the spatial
distributions of fγ i (r, R) at a very low energy E = 0.05 MeV,
at the resonant energy E = 0.38 MeV, and at an energy
well above the resonance E = 0.5 MeV, respectively. We
just present here the distribution functions corresponding
to the first incoming channel (Ki = 0, lix = 0, and liy = 0)
which is the dominant contribution to the quadrupole strength
function dB(E2)/dE. Other channels exhibit the same
trends.

At low energy E = 0.05 MeV, the spatial distribution of
function fγ i (r, R) shown in Fig. 16 has a different symmetry
in comparison with the higher energies (Figs. 17 and 18). We
observe comparable contributions coming from two different
triple-α configurations: the prolate triangle and the oblate
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FIG. 16. (Color online) Spatial distribution of function fγ i (r, R)
for E = 0.05 MeV and γ i = {0, 0, 0}.

triangle as shown in Figs. 7(a) and 7(b), respectively. There is
a large cancellation between these two contributions resulting
in a small value of dB(E2)/dE at low energies (for example,
the two contributions are ∼10−12 but their sum is ∼10−16).
Nevertheless these cancellations are well within the numerical
accuracy of our computations.

Figures 17 and 18 illustrate the spatial distribution of
function fγ i (r, R) at the resonant energy E = 0.38 MeV
and higher E = 0.5 MeV. These two cases share the same
symmetry. The dominant contribution to the quadrupole
strength function dB(E2)/dE comes from the region within
the smallest contour in Figs. 17 and 18 that contains both
maxima B and C. The maximum C in the spatial distribution
of function fγ i (r, R) is caused by the triple-α equilateral
triangle configuration in both the 21

+ bound state and the
Hoyle resonant state (see the density distribution for each
state in Figs. 4 and 6). The contribution to the maximum B
mostly comes from the three-α oblate configuration which only
appears in the Hoyle resonant state. Even though the three-α
prolate configuration dominates the Hoyle state’s structure,
it does not contribute significantly to the strength function
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FIG. 17. (Color online) Spatial distribution of function fγ i (r, R)
for E = 0.38 MeV and γ i = {0, 0, 0}.
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FIG. 18. (Color online) Spatial distribution of function fγ i (r, R)
for E = 0.5 MeV γ i = {0, 0, 0}.

because the 21
+ bound state wave function is zero in that

region.

V. CONCLUSION

We have successfully produced the triple-α reaction rate
in the low temperature regime T < 0.1 GK where many
numerical attempts have failed before. In this paper, the triple-
α is modeled as a three-body Borromean system. We employ
the hyperspherical harmonics (HH) method to tackle this
problem. In the low temperature region, the triple α proceeds
through a quadrupole transition from the 0+ continuum to
the 21

+ bound state in 12C. The 21
+ bound state is obtained

by solving a set of coupled channels equations in hyper-radius
coordinates for negative energy and the condition that the wave
function goes to zero at large distances. Naturally the same
approach cannot be applied to the 0+ continuum states. We
combine the R-matrix expansion and R-matrix propagation
method in the hyperspherical harmonics basis to obtain the
solutions for the continuum states. We also implement a
technique of screening the off-diagonal Coulomb couplings
to ensure numerical stability at very low energies.

The HHR method enables us to treat the resonant
and the nonresonant process on the same footing. We construct
the triple-α reaction rate from the quadrupole transition from
the 0+ continuum states to the 21

+ bound state of 12C. A
thorough convergence study is performed. Our reaction rate
converges well with screening radius and the size of our
model space. We estimate an overall uncertainty of a factor
of 2 for our triple-α rate. The new rate agrees with NACRE
above 0.07 GK. However we find a large enhancement of
the rate at temperatures below 0.06 GK which marks the
transition between the resonant and the nonresonant process.
Although we obtain a significant increase of the rate at low
temperatures, it does not drastically change the evolution of
low-mass stars [24] as was the case for the CDCC rates
[9]. Our rate preserves the red giant phase and is therefore
consistent with observations [24]. We expect our new rate
to have larger impact on some astrophysical scenarios that
burn helium at lower temperatures, such as helium-accreting

white dwarfs and neutron stars with small accretion rate. The
astrophysics implications are not presented in this paper. A
separate publication with more details of astrophysical impacts
will appear in the near future.

We also explore the importance of long-range effects in our
problem by performing four calculations in which only the
diagonal Coulomb couplings, the full Coulomb couplings, and
both nuclear and Coulomb interactions with the off-diagonal
Coulomb couplings up to 30 and 800 fm are included. The
results emphasize the necessity to include Coulomb effects
correctly, especially at low temperatures.

The presence of very narrow two-body and three-body
resonances in addition to the strong, long-range Coulomb
interaction make the triple-α problem very challenging. The
HHR framework which is the combination of various methods
is a new approach to overcome the well known difficulty of
the three charged particle system. This method allows us to
approach the very low energy regime where measurements are
impossible without using extrapolation, resulting in significant
impacts in astrophysics. In addition, it opens new opportunities
in addressing three-body low-energy reactions in other fields
for cases where all particles have charge.
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APPENDIX: QUADRUPOLE TRANSITION FUNCTION

In this Appendix, we present a summary of our derivation of
the three-body quadrupole transition function in hyperspheri-
cal coordinates. Our problem involves only spin-zero particles,
notation L is therefore used to refer to the total angular
momentum and the total spin of the system. A transition from
the initial continuum state of total spin L and momentum κ to
the final bound state of spin L′ is characterized by the strength
function:

dB(E2, L → L′)
dE

= E2

2

(
2m

h̄2

)3

×
∫ ∑

mM ′M

|〈L′M ′|E2m|LM; κ〉|2d
κ
5 .

(A1)

The integration in Eq. (A1) is taken over all angles in momen-
tum space d
κ

5 = sinθκ cosθκ dθκ d
kx
d
ky

. The final bound
state wave function �L′M ′

is expanded in HH coordinates as

�L′M ′ = ρ− 5
2

∑
K ′l′x l′y

χK ′l′x l′y (ρ) ϕ
l′x l

′
y

K ′ (θ )
[
Yl′x ⊗ Yl′y

]
L′M ′ , (A2)
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while the continuum state wave function �LM has the
following formula:

�LM = 1

(κρ)5/2

∑
Kilix l

i
y

Klx ly

χ
Ki lix l

i
y

Klx ly
(κρ)φ

lx ly
K (θ )

[
Ylx ⊗ Yly

]
LM

×φ
lix l

i
y

Ki (θκ )
[
Ylix

⊗ Yliy

]κ

LM
. (A3)

In Eq. (A3), κ is the hyper-radial momentum and relates to the
three-body energy E by a relationship κ =

√
2mE/h̄2; Kilix l

i
y

(Klxly) represents the incoming (outgoing) channel. We first
expand the squared modulus sum in Eq. (A1) using Eqs. (A2)
and (A3). The integration in momentum space d
κ

5 is then
simplified using the following properties:

∫
d
kx

Y ∗
lixm

i
x

(

kx

)
Yli1xm

i
1x

(

kx

) = δlix l
i
1x
δmi

xm
i
1x
, (A4)∫

d
ky
Y ∗

lixm
i
x

(

ky

)
Yli1ym

i
1y

(

ky

) = δliy l
i
1y
δmi

ym
i
1y
, (A5)∫

sin2θκcos2θκdθκ

[
φ

lix l
i
y

Ki (θκ )
]∗

φ
lix l

i
y

Ki
1

(θκ ) = δKi,Ki
1
. (A6)

We arrive at a simpler expression for Eq. (A1) which no longer
contains the momentum space dependence,

dB(E2, L → L′)
dE

= E2

2

(
2m

h̄2

)3
L̂′2

L̂2

∑
Kilix l

i
y∣∣∣∣∣∣

∑
Klx ly

∑
K ′l′x l′y

〈K ′l′xl
′
yL

′||E2m|∣∣KlxlyK
ilix l

i
yL

〉
s

∣∣∣∣∣∣
2

, (A7)

where the subscript s denotes the radial-space part in the wave
function expansion and L̂2 = 2L + 1.

It is straightforward to obtain the expression for the
quadrupole operator E2m for three-α particles in HH coor-
dinates:

E2m = eZ

A
[(ρ sinθ )2 Y2m(x̂) + (ρ cosθ )2 Y2m(ŷ)]. (A8)

Inserting Eq. (A8) into Eq. (A7) we have

〈K ′l′xl
′
yL

′||E2m|∣∣KlxlyK
ilix l

i
yL

〉
s

= eZ

A
〈K ′l′xl

′
yL

′||(ρ sinθ )2Y2(x̂)|∣∣KlxlyK
ilix l

i
yL

〉
s

+ eZ

A
〈K ′l′xl

′
yL

′||(ρ cosθ )2Y2(ŷ)|∣∣KlxlyK
ilix l

i
yL

〉
s
.

(A9)

We denote M.E.1 and M.E.2 as the first and second term on
the right-hand side (rhs) of Eq. (A9). M.E.1 can be factorized

into two terms of which one contains the hyperspherical
variable dependence and the other is angular momentum
dependent:

M.E.1 = eZ

A
〈K ′l′xl

′
y |(ρ sinθ )2

∣∣KlxlyK
ilix l

i
y

〉
×〈l′xl′yL′||Y2(x̂)||lx lyL〉. (A10)

The first bra-ket term on the rhs of Eq. (A10) is calculated by
taking an integral over the hyper-radial and hyperangular parts
of the wave functions:

〈K ′l′xl
′
y |(ρ sinθ )2

∣∣KlxlyK
ilix l

i
y

〉 =
(

2mE

h̄2

)−5/4

IρI1,θ ,

(A11)

where we define

Iρ =
∫

dρ χ∗
K ′l′x l′y

(ρ) ρ2 χ
Kilix l

i
y

Klx ly
(ρ), (A12)

I1,θ =
∫

sin2θ cos2θ dθ
[
φ

l′x l
′
y

K ′ (θ )
]∗

sin2θ φ
lx ly
K (θ ). (A13)

The second bra-ket term on the rhs of Eq. (A10) can be
explicitly calculated using angular momentum algebra [53]
as

〈l′xl′yL′||Y2(x̂)||lx lyL〉

= δ(ly, l
′
y)

√
5

4π
L̂l̂′x l̂x

× (−1)l
′
y+L

{
L′ L 2

lx l′x l′y

} (
l′x 2 lx

0 0 0

)
. (A14)

Performing a similar calculation for the second term on the
rhs of of Eq. (A9) (M.E.2), we obtain the final result for a
three-body quadrupole transition strength function:

dB(E2, L → L′)
dE

=
√

m

2h̄2

1√
E

L̂′2
(

eZ

A

)2

×
∑

Kilix l
i
y

∣∣∣∣∣∣
∑
Klx ly

∑
K ′l′x l′y

Iρ(I1,θA1 + I2,θA2)

∣∣∣∣∣∣
2

, (A15)

where Iρ and I1,θ are defined in Eqs. (A12) and (A13)
respectively. Other quantities are given as

I2,θ =
∫

sin2θ cos2θ dθ
[
φ

l′x l
′
y

K ′ (θ )
]∗

cos2θ φ
lx ly
K (θ ),

A1 = δ(ly, l
′
y)

√
5

4π
l̂x l̂′x(−1)l

′
y+L

×
{

L′ L 2

lx l′x l′y

}(
l′x 2 lx

0 0 0

)
,

A2 = δ(lx, l
′
x)

√
5

4π
l̂y l̂′y(−1)l

′
x+L′+l′y+ly

×
{

L′ L 2

ly l′y l′x

}(
l′y 2 ly

0 0 0

)
.
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