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Effect of spin-spin interactions on nucleon-nucleus scattering
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We report on a model for determining spin-spin terms in the optical potential for elastic scattering of a
nucleon from a target with nonzero spin. These terms are constructed microscopically by folding a realistic
effective nucleon-nucleon interaction, which includes both direct and exchange parts, over the ground state of
the target nucleus wave function to generate a nucleon-nucleus potential. The resulting spin-spin tensors are
evaluated within DWBA. This general model has been used for the specific calculation of polarization transfer
coefficient DNN , which is unity if there are no spin-spin terms in the optical potential. We have calculated
DNN for the elastic scattering of 200 MeV protons from 10B, for which relevant experimental data exist. In
our model, the folding formalism leads to both local and nonlocal spin-spin tensor interactions, with higher
order couplings in the projectile and target spin that have not been explicitly considered before. We have found
that the spin-spin interactions derived from this model have a significant effect on the deviation of DNN from
unity, particularly those derived from the tensor exchange term in the NN interaction. The calculation of DNN

has also been shown to be particularly sensitive to the parameters of the model used to describe the nuclear
structure.

DOI: 10.1103/PhysRevC.87.054601 PACS number(s): 25.40.Cm, 21.30.Fe, 24.70.+s, 24.10.Eq

I. INTRODUCTION

Optical models are extensively used to examine nuclear
structure, but terms in the optical potential that depend on
the spin of the target nucleus have not been fully explored.
As radioactive beam facilities produce more exotic nuclear
species, there is a need to determine accurate optical models
that describe the interactions between nucleons and target
nuclei with nonzero spin. In many scattering experiments
random orientations of the target and projectile spin mean spin-
spin effects are averaged out. However, experimental evidence
for the dependence of proton-nucleus elastic scattering on
the spin of the target nucleus has been sought through the
measurement of the polarization observable, DNN , [1]. There
is a vital need for nuclear reaction theory calculations to
make predictions of this and other polarization observables
relevant to the proposed experiments in the next generation
of radioactive beam facilities. In order to meet this need, we
re-examine the microscopic foundation of the nucleon optical
model for target nuclei with nonzero spin.

The polarization transfer coefficient, DNN (or Dyy as it is
sometimes called, where the direction of the y-axis is normal
to the scattering plane), measures the extent to which the y-
component of the incident proton polarization is transferred to
the outgoing proton polarization. It is a very useful observable
when investigating the existence of spin-spin interactions. This
is because DNN is rigorously unity when the nucleon-nucleus
optical potential contains no spin-spin terms. Only terms in
the optical potential which depend on the orientation of the
nucleus target-spin, I , lead to a deviation of DNN from unity.
It therefore provides a unique test of the spin dependence in

*e.cunningham@surrey.ac.uk

the optical potential. The observable, DNN , is related to the
nucleon-nucleus scattering amplitude F and the y-component
σ0y , of the projectile nucleon spin operator σ 0, by the following
relation [3]:

DNN = Tr[Fσ0yF
†σ0y]

Tr[FF †]
, (1)

where the trace is taken over the projectile and target spin
projections.

The experimental measurement of DNN analyzed in this
work is detailed in Betker et al. [2]. They measure DNN

for 200 MeV protons elastically scattering from 10B at the
Indiana University Cyclotron Facility (IUCF). They observed
a significant deviation of DNN from unity at large angles
and attempted to explain this result using a coupled-channel
distorted wave impulse approximation (DWIA) calculation.
Their model does well for cross section and analyzing power
data and for DNN at forward angles where its deviation from
unity is small. However, at larger angles it deviated from
unity by only about 5%—an order of magnitude smaller
than the observed data. Here we address this issue through
a microscopic folding model to establish if the different
types of spin-spin interactions have a significant effect
on DNN .

Some aspects of this work have already been reported in [4],
which focuses specifically on the role of spin-spin exchange
terms arising from the nucleon-nucleon tensor interaction.
As we noted in this earlier work, we do not attempt to
give a complete microscopic description of the proton optical
potential as very extensive fully microscopic calculations have
already been performed [5] for proton scattering by 10B at
197 MeV. However, such calculations still fail to give the
large deviation of DNN from unity at large angles observed
experimentally [2]. Our goal is to explicitly consider the terms
in the optical potential known to cause the deviation of DNN
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from unity, spin-spin interactions, and to treat the remaining
components of the optical potential nonmicroscopically. In this
paper we present our model in more detail and examine our
findings in greater depth, including the influence of exchange
terms on DNN at large angles and the role of nuclear structure
in the calculation. The possibility of using other polariza-
tion observables to probe spin-spin interactions is discussed
briefly.

In Sec. II we introduce spin-spin interactions and Sec. III
describe the calculation of the scattering amplitude. In Sec. IV
we describe the nucleon-nucleon interaction, (detailing the
direct and exchange components) and in Sec. V the folding
model and how it generates the spin-spin interactions used in
the final calculations, shown in Sec. VI.

II. SPIN-SPIN INTERACTIONS

A. Previous work

The two-body nucleon-nucleon (NN ) interaction contains
a component which depends on the relative orientation of
the spins of the two nucleons. For a nucleus with spin, a
similar component in the nucleon-nucleus interaction may
also be expected. Inclusion of terms in the optical potential
that depend on the spin operator, I , of the target nucleus,
were first proposed by Feshbach over 50 years ago [6,7].
Initially, many attempts were made to describe these spin-
spin interactions using a central, or so-called ‘spherical’,
spin-spin term of the form, −VSSF0(R)σ 0 · I , where R is
the projectile target separation, VSS is the strength of the
potential, F0(R) is the form factor, and σ 0 is the Pauli spin
operator for the scattered nucleon. Some early work [8–11]
used a phenomenological optical model potential in which the
spin-spin interactions were added and determined by a fit to
experimental data. Others evaluated the spherical spin-spin
potential microscopically from appropriate terms in the NN
interaction [1,12–15].

Later works [16–18] included a rank-2 ‘tensor’, spin-
spin term of the form, −VST FT (R)[3(σ 0 · R̂)(I · R̂) − σ 0 · I],
which is analogous to the tensor force in the NN interaction.
In each case, the strength of the tensor spin-spin potential
was estimated phenomenologically. Most of these works were
restricted by the limited amount of experimental data available
for observables sensitive to these spin-spin terms and all found
the strengths of these potentials to be small.

Two main types of optical model calculations, which
include these spin-spin terms, have been carried out. The
first of these treats the spin-spin potentials to first order
in the framework of distorted wave Born approximation
(DWBA) [8,12,16–18] and, more recently, in [19,20]. These
take advantage of the supposed weakness of the spin-spin
interactions relative to the conventional optical potential terms
such as central and spin-orbit. The second type are coupled
channel calculations in which the scattering amplitude is
handled in the channel spin framework [1,9,11] and, more
recently, in [21,22].

A good review of the early work on spin-spin interactions
has been written by Sherif [23]. The author ends by stating
that “improved microscopic calculations of the spin-spin

potentials, particularly the tensor term, will certainly be of
great help in tracking down this ever evasive part of the nuclear
optical potential”.

The work of McAbee [24,25] first attempted to derive a
generalised spin-spin operator of the form shown in the next
section. Microscopic calculations of the spin-spin potentials
were performed using a valence-nucleon model for the target
nucleus and an effective NN interaction. The formalism was
developed for the folding of the direct central, spin-orbit,
and tensor two body interaction terms over the nuclear wave
function. A central exchange term was also included. The
spin-spin amplitudes were calculated in DWBA, although
not all contributions were included in the final calculation
of the observables and no attempts were made to calculate
exchange terms for the spin-orbit or tensor NN interactions.
McAbee found that in many cases the spin-spin interactions
should not be neglected, especially for high spin nuclei, as
will be produced in the next generation of radioactive beam
facilities.

In this work, due to the 3+ ground state of 10B, new spin-spin
interactions that have higher order couplings of the target and
projectile spins are included in our calculations. Our spin-spin
potentials therefore go beyond the work of McAbee and other
authors described here, as we include higher order spin-spin
tensors explicitly for the first time.

B. Spin-spin operator

In this work the spin-spin operator will be denoted by
SkI k , where kI is the rank of the spin operator constructed
from the components of the target spin I , and k is the
rank of the spherical harmonic Yk(R̂) of the unit vector of
the projectile-target separation. The spherical spin-spin term
(discussed in the previous section) contains the operator, S10,
which is proportional to σ 0 · I , while the second-rank tensor
term, S12, is proportional to [3(σ 0 · R̂)(I · R̂) − σ 0 · I]. If the
projectile and target both have spin- 1

2 these are the only local
spin-spin operators allowed by parity, time reversal and angular
momentum conservation. For target nuclei with higher spin,
we will show that spin-spin interactions of higher ranks are
also allowed.

McAbee [24,25] was the first to discuss a general spin-spin
operator and did not limit his calculation of spin-spin interac-
tions to just the spherical and tensor terms. The generalized
local spin-spin operator used in this work is given by

SkI k(σ 0, I, R̂) = [
τ1(σ 0) × τkI

(I)
]
k
· Yk(R̂), (2)

which is analogous to that of Eq. 2.2 in McAbee [24]. The
components of Eq. (2) are a spherical harmonic Yk(R̂) as
described in [26] and the standard spin operators, τ1q0 (σ 0)
and τkI qI

(I) [26,27] for the projectile and target spins,
respectively. These general spin operators are discussed further
in Appendix A.

In Eq. (2), angular momentum coupling requires that for
the general spin-spin operator SkI k , kI = k, |k ± 1|, because
the projectile spin operator σ 0 is rank 1. In order for the
generalised spin-spin operator to be invariant under parity and
time-reversal, kI must be odd and k must be even. This is a
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useful check for all the local potentials considered in this work.
Nonlocal interactions will be discussed later when considering
the tensor NN -interaction exchange terms.

The generalized spin-spin operator SkI k , can be reduced to
give the spherical spin-spin operator. Taking kI = 1 and k = 0
and using standard angular momentum recoupling techniques
[26] leads to

S10(σ 0, I) = −σ 0 · I√
4π

√
I (I + 1)

. (3)

Various authors have used different normalizations when
dealing with the spin-spin interactions so caution must be taken
when comparing the strengths of the potentials.

Using the same techniques, the tensor spin-spin operator
can be obtained from Eq. (2) by taking kI = 1 and k = 2 to
give

S12(σ 0, I, R̂) =
√

5√
8π

√
I (I + 1)

[3(σ 0 · R̂)(I · R̂) − σ 0 · I].

(4)

In both cases the transition from the τ1μ0 (σ 0) and τkI qI
(I) to

the σ 0 and I spin operators was made using Wigner-Eckart
theorem [26]. The use of the generalized spin-spin operator
defined in Eq. (2) will enable the calculation of a general
scattering amplitude for each allowed combination of kI and
k. This will be discussed in Sec. III B.

III. SCATTERING AMPLITUDES

A. Total scattering amplitude

The non-spin-spin components of the interaction between
the projectile and target are included through a target spin-
independent phenomenological optical potential. This poten-
tial is taken from [2] and is of the form

V0 = VCoul(R) + Vf (R, rV , aV ) + iWf (R, rW , aW )

+VGg(R, rG, aG) + 2

[
VSO

1

R

d

dR
f (R, rSOR, aSOR)

+ iWSO
1

R

d

dR
f (R, rSOI, aSOI)

]
� · σ 0, (5)

for 200 MeV protons scattering from 10B. The Woods-Saxon
f (R, ri, ai), and Gaussian g(R, ri, ai) form factors in Eq. (5)
are given by

f (R, ri, ai) = (1 + exp[(R − riA
1/3)/ai])

−1, (6)

g(R, ri, ai) = exp

[
−

(
R − riA

1/3

ai

)2]
, (7)

and VCoul(R) is the Coulomb potential generated by a uni-
formly charged sphere with a Coulomb radius of RCoul =
1.46 A1/3fm [2]. This target spin-independent potential was
fitted to differential cross section and analyzing power
measurements described in Ref. [2]. These observables are
insensitive to the effects of spin-spin interactions and so will
not be plotted here. The parameters for this phenomenological

potential are given in Table III in Ref. [2] and fit the
differential cross section and analyzing power data as well
as the microscopic calculations of Ref. [5].

The scattering amplitude from the nucleon-nucleus inter-
actions (not including spin-spin) is calculated exactly (for full
details see Appendix A2 of [28]). The total nucleon-nucleus
scattering amplitude is calculated using the standard central
and spin-orbit amplitudes discussed above, plus the spin-spin
amplitudes discussed in the next section.

B. Spin-spin amplitudes

Following on from previous work [23,24] we shall consider
spin-spin terms in the optical potential of the form

UkI k(σ 0, I, R) = FkI k(R)SkI k(σ 0, I, R̂), (8)

where UkI k(σ 0, I, R) are the spin-spin optical potentials and
FkI k(R) are the radial from factors. At this point we will
assume that the strengths of the spin-spin interactions are small
when compared to the conventional I-independent terms in
the optical potential, so that the former can be treated in the
DWBA.

The DWBA is a first-order approximation in which the
interaction, V (a,A), between the projectile, a, and target, A,
is split into an auxiliary potential, V0, which includes a large
part of the effects of V (a,A), and a residual interaction, U ,
that is much weaker and can be treated as a perturbation.
Previous work indicates that the strength of the central
spin-spin interaction U10(R) is of the order 1 MeV [22] and
that a large tensor spin-spin potential U12(R) has a strength
of 2 MeV [29]. The treatment of the spin-spin interactions
as a residual interaction in the DWBA therefore seems a
sensible starting point for the analysis of these spin-spin
terms.

In DWBA, the scattering amplitudes for the nucleon elastic
scattering into polar angles (θ, φ) caused by the spin-spin
potentials can be written as [28]

fkI k(μ′,M ′
I ; μ,MI ; θ, φ)

= −μpt

2πh̄2 〈χ (−)
μ′ , IM ′

I |UkI k(σ 0, I, R)|χ (+)
μ , IMI 〉, (9)

where χ
(−)
μ′ (R, k′) and χ (+)

μ (R, k) are the final and initial
distorted waves, respectively, with a final, μ′, and initial, μ,
incident nucleon spin projection. The final and initial spin
projections of the nucleus are M ′

I and MI , respectively. The
scattered and incident wave vectors are k′ and k and μpt is the
reduced mass of the projectile-target system. The distorted
wave function χ (+)

μ (R, k) is a solution of the Schrödinger
equation for the elastic scattering of the projectile on the target
by the auxiliary potential, i.e., they are wave functions distorted
from plane waves by the Coulomb and nuclear potentials other
than spin-spin.

Following the prescription in Ref. [28] and standard
angular momentum recoupling techniques, gives the following
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equation for the DWBA spin-spin amplitude:

fkI k(μ′,M ′
I ; μ,MI ; θ, φ) =

√
6

Ec.m.

(−)kI +k−2μ+qI k̂I k̂
2

∑
�,�′,j,j ′

�̂2ĵ ı�−�′
eı(σ�+σ�′ )

(
�′μ − qI − μ′ 1

2μ′∣∣j ′μ − qI

)

× (
�0 1

2μ
∣∣jμ

)
Y�′,μ−qI −μ′(k̂′)(k0�0|�′0)(IMIkI qI |IM ′

I )
∫ ∞

0
u�′,j ′ (kc.m., R)FkI k(R)

× u�,j (kc.m., R)dR(jμ kI − qI |j ′μ − qI )

⎧⎨
⎩

�′ 1
2 j ′

� 1
2 j

k 1 kI

⎫⎬
⎭, (10)

where �̂ is used to denote
√

2� + 1, σ� are the Coulomb
partial-wave phase shifts, u�,j (kc.m., R) are the distorted radial
wave functions, qI = M ′

I − MI , and the center of mass
projectile-target energy is Ec.m. = k2

c.m.h̄
2/2μpt with kc.m. as

the magnitude of the wave number in the center of mass system.
To simplify the calculation of the scattering amplitude again,
the y-axis is chosen to be perpendicular to the scattering plane,
along k × k′, so that φ = 0.

In the final calculation for 200 MeV protons elastically
scattering from 10B a relativistic energy momentum rela-
tion was used. The prescription used to describe potential
scattering of relativistic particles is taken from Section 6.8

of [30] and discussed for elastic deuteron-nucleus scattering
in [31,32].

Evaluating Eq. (10) when the spin-orbit term in the main
optical potential is set to zero, provides a useful check of
the calculation of the scattering amplitude. This simplification
means there is no interaction in the distorting potential that
depends on the projectile spin. In this case, the distorted radial
wave functions in Eq. (10) no longer depend on j and the sums
over j and j ′ may be performed using the orthogonality of the
Clebsch-Gordon coefficients. For a full discussion see [25,33].

It is also useful to evaluate this amplitude for the central
spin-spin potential only, i.e., kI = 1 and k = 0. This simplifi-
cation gives

f no LS
10 (σ 0, I, θ ) = 1√

4πEc.m.

∑
�

�̂2eı2σ�P�(cos θ )
∫ ∞

0
u�(kc.m., R)2F10(R)dR

σ 0 · I√
I (I + 1)

, (11)

where θ is the scattering angle between the vectors k and k′ and
P�(cos θ ) is a Legendre Polynomial as described in [26]. With
this simplified spin-spin amplitude the whole nucleon-nucleus
elastic scattering amplitude can now be written as

F (σ 0, I, θ ) = g(θ )1 + h10(θ )
σ 0 · I√
I (I + 1)

, (12)

where g(θ ) is the scattering amplitude for a spin-zero projectile
and target, taken from [28] and h10(θ ) is taken from Eq. (11).
This amplitude can be substituted into Eq. (1) for DNN to give

DNN = Tr[Fσ0yF
†σ0y]

Tr[FF †]
= |g(θ )|2 − 1

3 |h10(θ )|2
|g(θ )|2 + |h10(θ )|2 ,

= 1 −
4
3 |h10(θ )|2

|g(θ )|2 + |h10(θ )|2 , (13)

where σ0y is the y-component of the projectile spin operator
σ 0 and the trace is taken over the projectile and target spin
projections.

Expressing DNN in this way shows that, DNN = 1, if there
is no σ 0 · I term in the scattering amplitude in Eq. (12) and
that the presence of this spin-spin term means DNN < 1. It
reveals that not only is the dependence of the spin-spin term
on I required for DNN �= 1, but I must be coupled to σ 0.

If there is no dependence on σ 0 in the scattering amplitude,
Tr[Fσ0yF

†σ0y] = Tr[FF †] and DNN = 1. Equation (13) also
shows that DNN has a second-order dependence on the strength
of the central spin-spin interaction. This expression for DNN

also provides another useful check: when the I -dependent term
is much larger than the I-independent term, i.e., |h10(θ )|2 �
|g(θ )|2, the observable DNN → −1/3.

IV. THE NUCLEON-NUCLEON INTERACTION

The effective nucleon-nucleon (NN ) interaction VNN (a, b)
between nucleon a and nucleon b, with separation, r , can be
written as

VNN (a, b) = vcen
NN (r) + vσσ

NN (r)σ a · σ b+ vls
NN (r)�ab · (σ a + σ b)

+ vtr
NN (r)SNN

12 (σ a, σ b, r̂), (14)

where the relative angular momentum is

�ab = (2h̄)−1r × ( pb − pb), (15)

and p is a nucleon momentum. The NN tensor operator is

SNN
12 (σ a, σ b, r̂) = 3(σ a · r̂)(σ b · r̂) − σ a · σ b. (16)
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We have added the superscript NN to differentiate this
tensor operator from the nucleon-nucleus spin-spin operator,
S12(σ 0, I, R̂). The radial form factors, vcen

NN , vσσ
NN , vls

NN , and
vtr

NN , denote central spin-independent, central spin-spin, spin-
orbit, and tensor interactions, respectively.

Spin-spin interactions were first studied within folding
models using a single valence-nucleon description of the
nucleus by Stamp [1] and then by Nagamine et al. [12]. These
works only included contributions from the vσσ

NN (r)σ 0 · σ i term
in the NN interaction and the central potential U10(σ 0, I, R)
[of the form in Eq. (8)] was the only spin-spin interaction
discussed. Satchler [13,14], went one step further including
both vσσ

NN (r)σ 0 · σ i and vtr
NN (r)SNN

12 (σ a, σ b, r̂) terms from
the NN interaction. The folding of these gave the spin-spin
potential, U12(σ 0, I, R), in addition to the central term.

A thorough analysis of spin-spin potentials that result from
the folding of all the terms in the NN interaction given in
Eq. (14) has been given by Petrovich et al. [21] and McAbee
[24,25]. Both performed a multipole decomposition of an NN
interaction containing central, spin-orbit, and tensor parts and
the resulting expressions were folded over the target wave
functions. In Ref. [21] this was used to derive a general expres-
sion for the optical potential for the elastic scattering of two
non-spin-zero nuclei and used coupled-equations formalism to
obtain the scattering observables. McAbee [24,25] used this to
derive the form factors for his generalized spin-spin operators,
Eq. (2), which were then treated in the DWBA framework to
obtain the spin-spin observables.

We have included spin-spin interactions through the folding
of the central vσσ

NN , and tensor vtr
NN terms in the NN interaction.

These are the same as McAbee [24,25] included in his final
calculation where he neglected all momentum dependent
nonlocal spin-spin interactions. The folding of these two terms
in the NN interaction give all the local spin-spin potentials that
can be formed from the generalized spin-spin operator, Eq. (2),
by the coupling of σ 0, I , and R. The folding of the central
spin-independent term, vcen

NN , does not result in spin-spin inter-
actions. However, Feshbach [6] discussed spin-spin potentials
derived from the folding of the spin-orbit term in the NN
interaction. These terms have not been thoroughly investigated
in relation to spin-spin interactions but some studies of the first
order I · � term have been performed [34]. In this term, � is
the relative orbital angular momentum of the projectile and
target. This term by itself does not give a deviation of DNN

from unity as it is independent of the spin operator for the
scattered nucleon σ 0. When this is the case, Eq. (1) shows
that DNN = 1. The folding of the spin-orbit term in the NN
interaction would lead to higher order spin-spin interactions
which do depend on the projectile spin, but it is unclear if such
terms would cause a significant deviation of DNN from unity.
Their effect on DNN will be the subject of future work.

In this work we use a realistic free-space NN interaction.
For 200 MeV protons, the use of a free t matrix is valid, as
the difference between cross sections and analyzing power
predictions using the free t matrix and the medium-modified
G matrix is very small [35]. Our interaction is a version of the
Bonn-B potential where the parameters of the original potential
have been improved so predictions better agree with later
measurements of NN scattering and phase-shift analysis (see
references in [36]). Our effective interaction is a superposition

of Yukawa terms, the parametrization of which is the same as
that detailed in Love and Franey [37]. Our parameters were fit-
ted to a free, complex t matrix and are calculated for an incident
proton laboratory energy of 200 MeV, as described in [36].

A. Treatment of exchange

For nucleon-nucleus elastic scattering the antisymmetriza-
tion of the wave function yields local direct terms and nonlocal
nucleon-exchange terms. It is reasonable, to use a single-
nucleon knock-on exchange (SNKE) correction, when consid-
ering exchange contributions arising from antisymmetrization.
In SNKE the projectile nucleon is exchanged with a single
target nucleon [28]. Knock-on exchange can be included in
the folding model by replacing the effective NN interaction
potential term in Eq. (14), vNN (r), with

vNN (r) → (1 − PNN )vNN (r), (17)

where the PNN operator exchanges all coordinates of the two
nucleons [38,39]. The exchange operator can be written in
terms of the individual exchange operators P σ , P τ , and P r

NN ,
which exchange the spin, isospin, and spatial coordinates,
respectively,

PNN = P σ
NNP τ

NNP r
NN . (18)

The NN potential, vNN (r) can now be written as

vNN (r) → (1 − PNN )vNN (r), (19)

→ vNN (r) + v̂NN (r)P r
NN, (20)

where v̂NN (r) = −P σ
NNP τ

NNvNN (r). The exchange potential,
v̂NN (r), has the same spin-isospin decomposition as vNN (r),
except that the sign is changed for the odd relative angular
momentum states of the two nucleons.

Exchange effects were included crudely in early folding
models for spin-spin interactions [23], as they used effective
interactions that were mainly phenomenological. Explicit
exchange effects were discussed by Satchler [13], but were not
included here. The later works of Petrovich [21] and McAbee
[24] used the SNKE correction to approximate exchange for
the vσσ

NN (r)σ a · σ b term in their effective NN interaction. The
spin-orbit exchange contribution was included by Petrovich
who just used the odd state spin-orbit components alone, but
both Petrovich and McAbee left out the exchange effects for
the tensor term in their final calculations. Our work aims to
investigate their contributions to the spin-spin interactions by
including consistently, for the first time, SNKE terms for both
the central vσσ

NN (r)σ a · σ b and tensor vtr
NN (r)SNN

12 (σ aσ b, r̂)
terms in the effective NN interaction.

The exact evaluation of exchange amplitudes is very
complicated. Therefore, the treatment of exchange terms in
folding models has been performed using zero-range pseu-
dopotentials [40–42]. In the method we adopt for investigating
exchange effects on spin-spin interactions, the exchange
pseudopotentials are derived to yield the same Born amplitudes
as their equivalent exchange terms [28,43]. This is the simplest
of these approximate treatments and so the resulting zero-range
effective exchange interaction can be used to evaluate the
scattering amplitude more readily than the full exchange terms.
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B. Approximation for central exchange

From the NN interaction given in Eq. (14) between
projectile nucleon a and target nucleon b, the Born amplitude
for central spin-spin SNKE term is given by

〈k′|v̂σσ
NN (r)σ a · σ bP

r
ab|k〉 = Ĵσσ (Q)σ a · σ b, (21)

where the strength Ĵσσ (Q) is the Fourier transform of
v̂σσ

NN (r)Pab

Ĵσσ (Q) = 4π

∫ ∞

0
j0(Qr)v̂σσ

NN (r)r2dr, (22)

and Q, is the sum of the initial and final wave number of either
particle in the center of mass system,

Q = k′ + k. (23)

The value taken for the magnitude of Q is discussed in
Sec. IV D. The zero-range pseudopotential used to approxi-
mate this exchange term is given by

v̂σσ
NN (r)σ a · σ bP

r
ab → Ĵσσ (Q)δ(r)σ a · σ bP

r
ab. (24)

This pseudopotential has been used by several authors to
approximate the central exchange contribution to the NN
interaction. For nucleon scattering at energies above 100 MeV
it has been shown to be quite accurate (see references in
[28,38,39]).

C. Approximation for tensor exchange

In previous works on spin-spin interactions, this contri-
bution has been neglected due to the difficulty in taking the
pseudopotential approach for the noncentral tensor potential
[25]. In this work the tensor exchange will be included using
the pseudopotential approximation consistent with that used
for the central exchange.

The Born amplitude for the tensor exchange term is

〈k′|v̂tr
NN (r)SNN

12 (σ a, σ b, r̂)P r
ab|k〉

= Q2Ĵtr(Q)SNN
12 (σ a, σ b, Q̂), (25)

where SNN
12 (σ a, σ b, Q̂) = 3(σ a · Q̂)(σ b · Q̂) − σ a · σ b, and

the strength, Ĵtr(Q), is calculated using the Fourier transform

Ĵtr(Q) = −4π

Q2

∫ ∞

0
j2(Qr)v̂tr

NN (r)r2dr. (26)

We define Ŝ
NN

12 (σ a, σ b, Q) = Q2 SNN
12 (σ a, σ b, Q̂) and use

〈k′|ŜNN

12 (σ a, σ b, Q)|k〉
= 〈k′|[Ŝ

NN

12 (σ a, σ b,−ı∇r )δ(r)
]

P r
ab|k〉, (27)

where the square brackets mean that the grad operator in

Ŝ
NN

12 (σ a, σ b,−ı∇r ), acts only on the δ function. Equation (25)
can now be rewritten in a form more suitable for manipulations
in the folding calculations

〈k′|v̂tr
NN (r)SNN

12 (σ a, σ b, r̂)P r
ab|k〉

= Ĵtr(Q)〈k′|[Ŝ
NN

12 (σ a, σ b,−ı∇r )δ(r)
]
P r

ab|k〉. (28)

The zero-range pseudopotential used to approximate this
term is

v̂tr
NN (r)SNN

12 (σ a, σ b, r̂) P r
ab

→ Ĵtr(Q)
[
Ŝ

NN

12 (σ a, σ b,−ı∇r )δ(r)
]
P r

ab. (29)

As in our treatment of central exchange, the magnitude of Q
on the right-hand side is assumed constant in any particular
folding calculation. The form of the pseudopotential Eq. (29)
preserves the correct behavior of the exact tensor force under
rotations of space and spin coordinates, while the δ function
considerably simplifies folding calculations.

D. Approximation for Q

The exchange operator, P r
ab, changes the Born amplitudes

discussed in the previous sections from a dependence on the
momentum transfer q = k′ − k to Q = k′ + k. The simplest
choice for Q is to take it to be the center-of-mass wave
vector for the incident particle: Q = kc.m. [28,36]. This is
reasonable for scattering in the forward direction, but it is
at large scattering angles that the measured deviation of DNN

from unity is most significant. In order to perform an improved
calculation of these exchange terms at large scattering angles,
a more physical approximation for the magnitude of Q is
required, one that changes with scattering angle.

In the following discussion we will consider the scattering
of the incident nucleon with wave vector ka by a single valence
nucleon with initial wave vector kb, which for simplicity is
bound to a spinless core of infinite mass. The Born amplitude of
the local NN interaction term, vNN (r), (where r is the relative
separation between the two nucleons r = ra − rb), is given by

〈k′
a, k′

b|vNN |ka, kb〉
=

∫
d r e−ı(k′

a−k′
b)·r/2vNN (r)eı(ka−kb)·r/2

× δ(k′
a + k′

b − ka − kb)

= δ(k′
a + k′

b − ka − kb)

〈
k′

a − k′
b

2

∣∣∣∣vNN

∣∣∣∣ ka − kb

2

〉
, (30)

where k′
a and k′

b are the final wave numbers of the two
nucleons and we have neglected factors of π for this
discussion. We have assumed that the potential conserves the
total momentum of the system [which is assured by using
δ(k′

a + k′
b − ka − kb)]. The momentum transfer q and vector

Q can be obtained from this Born amplitude by taking

k′ = k′
a − k′

b

2
, k = ka − kb

2
. (31)

Using the conservation of momentum k′
a + k′

b = ka + kb,
this gives

q = k′ − k = k′
a − ka, Q = k′ + k = k′

a − kb, (32)

assuming on-shell scattering, i.e., ka = k′
a . In order to

approximate Q, an appropriate value of kb must be selected.
In order to determine which value of vector Q has the

most important contribution to the scattering amplitude, the
folded potential will be treated using the Born approximation
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in momentum space. This gives the Born amplitude as

〈k′
a, ψA′ |vNN |ka, ψA〉
=

∫
dkbψ̃

∗
A′ (kb − q)〈k′|vNN |k〉ψ̃A(kb), (33)

where Eqs. (30) and (31) have been used and the ψA are the
target nucleon wave functions. When vNN is local, 〈k′|vNN |k〉
is a function of q and can be taken outside of the integral. For
nonlocal potentials, the matrix element of vNN depends on Q,
which in turn is dependent on kb, and cannot be taken out of
the kb integral. Therefore to avoid evaluating the kb integral
exactly, an appropriate value of Q will be chosen at which to
evaluate 〈k′|vNN |k〉.

The most important contribution of kb to this integral
is given by the product of the final and initial target wave
functions ψ̃∗

A′(kb − q) and ψ̃A(kb), respectively. The form of
the wave function is taken to be harmonic oscillator (HO),
ψA(r) = P (r) exp(−r2/R2

HO), where P (r) is a polynomial in
r and RHO is the HO parameter. The Fourier transform of this
wave function is then ψ̃A(K) = P (K) exp(−K2R2

HO/4). For
large RHO, the polynomials can be neglected and the values of
kb that are most important can be found from the maximum of

exp

[
− (kb − q)2 R2

HO

4

]
exp

[
− k2

b

R2
HO

4

]

= exp

[
−

(
q2

2
+ 2

[
kb − q

2

]2)
R2

HO

4

]
, (34)

which occurs when (q2/2 + 2[kb − q/2]2)R2
HO/4 is at a

minimum, i.e., when kb = q/2. For this approximation of Q,
the value of kb is therefore taken to be

Q = k′
a − kb = k′

a − q
2

= k′
a + ka

2
. (35)

This leads to the approximation for the magnitude of Q used
in this work:

Q = ka cos(θ/2), (36)

assuming ka = k′
a and θ is the angle between ka and k′

a . This
approximation for Q is the same as that obtained from the
prescription described in Appendix B of Ref. [36], in the limit
A → ∞.

V. FOLDING MODEL

This section describes the formalism developed in order
to microscopically derive the spin-spin potentials in terms of
the interactions of individual nucleons, rather than using a
phenomenological model. McAbee [24,25] evaluated target
spin-dependent forces using a valence nucleon+core model.
Here we extend his work to the case of two nucleons outside
an inert, infinitely massive, core with application to the I = 3
ground state of 10B. This is not a very realistic model for this
nucleus, but we are concentrating on the calculation of spin
dependent forces with kI > 0. Terms in the spin-spin interac-
tion receive no contribution from closed shells in the ground
state because they carry no angular momentum. Therefore,
only the nonzero rank target spin tensor components of the
one-body-density matrix (OBDM) are relevant and deviations
of DNN from unity are associated only with these components.

A more realistic, but still simple model, of 10B would be
a two-nucleon (neutron and proton) hole in the lowest p3/2

shell with a closed 0s1/2 shell. We show in Appendix B that
spin-dependent forces with kI > 0 are trivially related, through
a kI -dependent phase, to the results obtained from the simple
two-particle model, for which the folding calculations can be
carried through in a relatively straightforward way. This is the
analog of a similar theorem for static multiple moments of
shell model states discussed in [44].

The two valence particles in our model couple together to
give the spin I = 3 for the ground state spin of the 10B nucleus
and the maximum allowed rank, kI = 3, of the spin operator
constructed from the components of the target spin. Therefore,
the types of spin-spin interactions allowed are determined by
the orbitals occupied by its valence particles as well as the
ground state spin of the target nucleus. Using this simple
nuclear wave function builds on previous works [23,24], but
inclusion of a more realistic model for the 10B nucleus is
desirable in future work.

In this calculation the wave function for the valence
nucleons is assumed to have the simple form [44]

�I,M (r1, r2) = [��1j1m1 (r1) × ��2j2m2 (r2)]IM, (37)

where the valence particles, nucleon 1 and nucleon 2 are at a
distance of r1 and r2 from the core, respectively. The nucleon
wave functions ��jm(r) are defined as

��jm(r) =
∑
λms

(
�λ 1

2ms

∣∣jm
)
u�j (r)Y�λ(r̂)χ 1

2 ms
, (38)

where � is the orbital angular momentum, 1
2 is the intrinsic

spin of the nucleon, which couple together to give the total
spin j , u�j (r) is the real radial wave function, Y�λ(r̂) is a
spherical harmonic and χ 1

2 ms
is the spin function that describes

the intrinsic angular momentum of the valence nucleon.
The total folded spin-spin potential is given by

UM ′
I MI

(σ 0, I, R) =
∑
i=1,2

Ui
M ′

I MI
(σ 0, I, R), (39)

where i = 1 denotes the proton valence particle and i = 2
the neutron valence particle (as labeled in Fig. 1). The folded

02

r

r

r

R
1

2

r

θ

θ

01

02

0

1

2

01

FIG. 1. The folding model coordinate system, particle 0 is the
incident proton, particle 1 is the valence proton and particle 2 is the
valence neutron. The projectile-valence nucleon separation is r01 =
R − r1 and r02 = R − r2 for the proton and neutron, respectively.
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spin-spin potential for nucleon i is therefore

Ui
M ′

I MI
(σ 0, I, R) =

∫ ∑
m′

1m
′
2m1m2

�∗
�′

1j
′
1m

′
1
(r1)(j ′

1m
′
1j

′
2m

′
2|IM ′

I )

×�∗
�′

2j
′
2m

′
2
(r2)VNN (r0i)��1j1m1 (r1)

× (j1m1j2m2|IMI )��2j2m2 (r2) d r1d r2,

(40)

where VNN (r0i) is the effective NN interaction between
the projectile and target valence particle i. As discussed
previously, we calculate spin-spin interactions from the folding
of the central vσσ

NN , and tensor vtr
NN terms in the NN interaction

given in Eq. (14). The separation between the projectile

and valence nucleon, r0i , is defined in Fig. 1. We will now
choose which valence nucleon will be examined, the proton
(i = 1), or the neutron (i = 2). The process for calculating
the folded potential is exactly the same for each nucleon
[the only difference being which VNN (r0i) is used] but for
the sake of this discussion the interacting nucleon will be
taken to be the proton, and hence 〈��′

2j
′
2m

′
2
(r2)|��2j2m2 (r2)〉 =

δ�′
2,�2δj ′

2,j2δm′
2,m2 . Equation (40) can now be rearranged using

standard angular momentum recoupling techniques and the
relationships between Clebsch-Gordon coefficients and Racah
coefficients, W (abcd; ef ), discussed in [26], to give the
general folding equation for the projectile-valence particle 1
(proton) potential

UM ′
I MI

(σ 0, I, R) = (−)1+j1−j ′
1 Î ĵ1ĵ

′
1

∫
d r1

∑
λ′

1λ1m
′
s1ms1

Y ∗
�′

1λ
′
1
(r̂1)χ∗

1
2 m′

s1
u�′

1j
′
1
(r1)VNN (R − r1)Y�1λ1 (r̂1)χ 1

2 ms1
u�1j1 (r1)(−)

1
2 +m′

s1−�′
1−λ1

×
∑
kI qI

k1q1k2q2

k̂I
2
W (kI j1Ij2; j ′

1I )(IMIkI qI |IM ′
I )(−)k1−k2 k̂1

(
1
2ms1

1
2 − m′

s1

∣∣k1q1
)

× (�1 − λ1�
′
1λ

′
1|k2q2)(k1q1kI qI |k2q2)

⎧⎨
⎩

j1 j ′
1 kI

1
2

1
2 k1

�1 �′
1 k2

⎫⎬
⎭ . (41)

This equation can be used to determine the spin-spin potentials for direct and exchange terms in the NN interaction for both the
valence proton and neutron particle.

A. Central N N interaction

Using the general folding expression in Eq. (41), we first evaluate the central term in the NN interaction, vσσ
NN (r01)σ 0 · σ 1.

This term can be expressed, using a multipole expansion, as

vσσ
NN (r01)σ 0 · σ 1 = 4π

∑
KQ

f
(σσ )
K (R, r1)

K̂2
YKQ(R̂)Y ∗

KQ(r̂1)
∑
μ0

(−)μ0σ
(0)
1μ0

σ
(1)
1−μ0

. (42)

The function fK (R, r1) is given by

fK (R, r1) = K̂2

2

∫ 1

−1
PK (μ)vNN (|R − r1|)dμ, (43)

where μ = cos θ01, θ01 is the angle between R and r1 (as shown in Fig. 1) and PK (μ) is a Legendre polynomial.
The folding of this central direct term in the NN interaction using Eq. (41) and standard angular momentum recoupling

techniques [26], gives the following result:

Uσσ (σ 0, I, R) = (−)1+j1−j ′
1
√

24πÎ ĵ1ĵ
′
1�̂

′
1

∫ ∞

0
r2

1 dr1u�′
1j

′
1
(r1)

∑
kI k2

(−)k2
f

(σσ )
k2

(R, r1)

k̂2
2 u�1j1 (r1)(�′

10k20|�10)k̂IW (kI j1Ij2; j ′
1I )

×
⎧⎨
⎩

j1 j ′
1 kI

1
2

1
2 1

�1 �′
1 k2

⎫⎬
⎭ SkI k2 (σ 0, I, R̂). (44)

Full details of this process are given in Ref. [33]. SkI k2 (σ 0, I, R̂) is the generalized spin-spin operator discussed in Sec. II B.
For our model of 10B, summing over kI and k2 in Eq. (44) yields three different types of spin-spin interactions,

Uσσ = Uσσ
10 + Uσσ

12 + Uσσ
32 , see Appendix C 1. These spin-spin potentials are of the form given in Eq. (8), where the superscript

σσ indicates that these spin-spin interactions come from the folding of the vσσ
NN (r01)σ 0 · σ 1 term in the NN interaction. The

folding of this term has led to the spherical U10(σ 0, I, R) and tensor U12(σ 0, I, R) spin-spin interactions examined in previous
work (see Sec. II A) and also the higher rank term U32(σ 0, I, R), first derived by McAbee [24,25].
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B. Tensor N N interaction

Using a multipole expansion, the tensor term in the NN
interaction, vtr

NN (r01)SNN
12 (σ 0, σ 1, r̂01), can be expressed as

vtr
NN (r01)SNN

12 (σ 0, σ 1, r̂01)

= 4π
∑
K

f
(tr)
K (R, r1)

K̂2
YK (R̂) · Y ∗

K (r̂1)2

√
8π

5
τ2(S) · Y2(r̂01),

(45)

where we have used the relation

SNN
12 (σ 0, σ 1, r̂01) = 2

√
8π

5
τ2(S) · Y2(r̂01), (46)

derived using the relationship between the spin operator for
the total spin S and the spin operators of the component spins,
where S = 1

2 (σ 0 + σ 1), given by

τ2−μ(S) =
√

3

2

∑
μ1μ2

(1μ11μ2|2 − μ)τ1μ1 (σ 0)τ1μ2 (σ 1), (47)

and the relationships between spherical harmonics with
different ranks taken from [26]. To aid the folding algebra, the
second form of the tensor term in which the spin and radial
dependence have been separated, Eq. (45), will be used. This
can be further separated [26] into

r2
01Y2μ(r̂01) = |R − r1|2Y2μ( ̂R − r1)

= R2Y2μ(R̂) + r2
1 Y2μ(r̂1)

−
√

4π

√
10

3
Rr1[Y1(R̂) × Y1(r̂1)]2μ. (48)

Expressing the tensor term in the NN interaction using
Eqs. (45), (47), and (48) leads to three terms that can be
folded using the general folding expression [Eq. (41)], in the
same way as the central term in the NN interaction (for full
details see [33]).

For 10B this folding leads to four types of spin-spin in-
teractions, U tr = U tr

10 + U tr
12 + U tr

32 + U tr
34 (see Appendix C 2).

These spin-spin interactions are also of the form given in
Eq. (8). To denote that these spin-spin potentials come from
the folding of the tensor term, the superscript tr is used.

The folding of the tensor vtr
NN (r01)SNN

12 (σ 0, σ 1, r̂01) term
in the NN interaction also yields the spherical U10(σ 0, I, R)
and tensor U12(σ 0, I, R) spin-spin interactions examined
in previous work. Also obtained is the higher rank term,
U32(σ 0, I, R), from McAbee [24,25]. A new spin-spin inter-
action U34(σ 0, I, R), which goes beyond the work of McAbee,
is also derived for the first time.

C. Exchange terms

The general folding equation needs to be slightly modified
for exchange terms in the NN interaction. Continuing the
discussion for the valence proton (particle 1 in Fig. 1) the
potential VNN (r01) in Eq. (41) now becomes V̂NN (r01)P r

01.
Substituting this into the general folding equation and acting
with the operator P r

01, changes the spatial coordinates of
everything to the right of the potential, i.e., Y�1λ1 (r̂1)u�1j1 (r1) to

Y�1λ1 (R̂)u�1j1 (R), in Eq. (41). We also must remember that, in
the calculation of the scattering amplitude, this folded potential
is placed between two distorted waves and the exchange
operator, P r

01, will also act on the wave function to the right.

D. Central exchange N N interaction

The folding of the central SNKE term v̂σσ
NN (r01)σ 0 · σ 1P

r
01

will be performed using the zero-range pseudopotential from
Eq. (24). Inserting this into the modified (as detailed above)
general folding equation yields

Û σσ (σ 0, I, R)

= (−)3j1−j ′
1−�′

1 Ĵσσ (Q)

√
6

4π
Î ĵ1ĵ

′
1

× �̂1�̂
′
1u�′

1j
′
1
(R)u�1j1 (R)

∑
kI k

(−)kk̂I

k̂
(�10�′

10|k0)

×W (kI j1Ij2; j ′
1I )

⎧⎨
⎩

j1 j ′
1 kI

1
2

1
2 1

�1 �′
1 k

⎫⎬
⎭ Sik(σ 0, I, R̂), (49)

where the full details of this folding are given in Ref. [33].
Using our model of 10B gives three different types of spin-spin
interaction Û σσ = Û σσ

10 + Û σσ
12 + Û σσ

32 (see Appendix C 3),
where the hat denotes that these folded potentials are derived
from the central spin-spin exchange term in the NN interac-
tion. These three spin-spin interactions are the same type as
those obtained from the direct central term.

E. Tensor exchange N N interaction

The contribution of the tensor SNKE term
v̂tr

NN (r01)SNN
12 (σ 0, σ 1, r̂01)P r

01 to the folded spin-spin
interactions will be approximated using the zero-range
pseudopotential from Eq. (29)

Ĵtr(Q)
[
Ŝ

NN

12 (σ 0, σ 1,−ı∇r01 )δ(r01)
]
P r

01

= 2

√
8π

5
Ĵtr(Q)

[
τ2(S) · Y2

( − ı∇r01

)
δ(r01)

]
P r

01, (50)

where we have defined the operator Ŝ
NN

12 (σ 0, σ 1, A) =
A2 SNN

12 (σ 0, σ 1, Â). The relationship between these two differ-
ent forms of the pseudopotential is analogous to that derived
for the direct tensor term operator. The second form, where
the spin and radial dependence of the operator have been
separated, is more suitable for manipulation in the folding
model and will therefore be used for the evaluation of this term.
The solid spherical harmonic Y2μ(−ı∇r01 ) described in [45] is
related to the regular spherical harmonic by

Y2μ(R) = R2Y2μ(R̂). (51)

The solid spherical harmonic Y2μ(−ı∇r01 ) can be expressed
in terms of the grad operator ∇r01 using the coupling rule for
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two spherical harmonics, from [26],

Y2μ(−ı∇r01 ) = −√
5√

4π

√
3

2

∑
μ2μ3

(1μ21μ3|2μ)∇μ2∇μ3 . (52)

Including Eq. (47), we now have all the components we need to
fold the tensor exchange term in the NN interaction using the

modified general folding equation. However, we must now also
consider that the operation of P r

01 is not limited to the initial
ground state valence nucleon wave function �I,MI

(r1, r2). In
the calculation of the scattering amplitude the initial distorted
wave is also to the right of this operator (see Sec. III B). If
we take all the coordinate-dependent parts of this folding
calculation and insert them into Eq. (9) we obtain

f̂ tr
co(μ′,M ′

I ; μ,MI ; θ, φ)= −μpt

2πh̄2 〈χ (−)
μ′ (R, k′), IM ′

I |
∫

d r1Y
∗
�′

1λ
′
1
(r̂1)u�′

1j
′
1
(r1)

[
Y2μ

(−ı∇r01

)
δ(r01)

]
Y�1λ1 (R̂)u�1j1 (R)|χ (+)

μ (r1, k), IMI 〉,
(53)

where P r
01 χ (+)

μ (R, k) = χ (+)
μ (r1, k). For the central exchange

term this consideration was not required. In this case the
properties of the δ function changes χ (+)

μ (r1, k) back to
χ (+)

μ (R, k). Equation (53), gives the scattering amplitude for
the tensor (denoted by the superscript tr) exchange (denoted by
the hat f̂ ) spin-spin interactions. We must remember however,
that Eq. (53) does not give the full scattering amplitude for the
tensor exchange spin-spin interactions. For the purposes of this

discussion we have neglected all but the coordinate-dependent
parts of the modified general folding equation. This is denoted
by the subscript co.

In order to take advantage of the integral properties of
the δ function the coordinates in Eq. (53) can be changed
to r1 = R − r01. Integrating by parts and using ∇2

r01
f (R −

r01) = ∇2
Rf (R − r01), finally allows us to integrate using the

δ function resulting in

f̂ tr
co(μ′,M ′

I ; μ,MI ; θ, φ) = −μpt

2πh̄2 〈χ (−)
μ′ (R, k′), IM ′

I |Y�1λ1 (R̂)u�1j1 (R)Y2μ(−ı∇R)Y ∗
�′

1λ
′
1
(R̂)u�′

1j
′
1
(R)|χ (+)

μ (R, k), IMI 〉, (54)

in a symmetry with the direct tensor folded potential, this can
be split into three terms: Term A, denoted by trA, where the
solid spherical harmonic acts on the components of the valence
nucleon wave function [Y ∗

�′
1λ

′
1
(R̂)u�′

1j
′
1
(R)]; Term B, denoted by

trB, where it acts on the initial distorted wave [χ (+)
μ (R, k)]; and

Term C, denoted by trC, where a rank-one grad operator acts
on both using Eq. (52). The total tensor exchange spin-spin
interaction is the combination of these three terms. For full
details of this folding see Ref. [33].

The folding of Term A, where the solid harmonic acts
only on the components of the final valence nucleon wave
function, [Y2μ(−ı∇R)Y ∗

�′
1λ

′
1
(R̂)u�′

1j
′
1
(R)], and not on the dis-

torted waves, leads to spin-spin interactions of the same
form, UkI k(σ 0, I, R) = FkI k(R)SkI k(σ 0, I, R̂), as all the other
folded potentials derived previously. The spin-spin amplitude
can therefore be calculated using the method described in
Sec. III B.

The spin-spin interactions derived from this term are Û trA =
Û trA

10 + Û trA
12 + Û trA

22 + Û trA
32 + Û trA

34 , see Appendix C 4. The hat
denotes that these spin-spin potentials are from the folding of
an exchange term.

For the first time, a spin-spin interaction is obtained that
has even rank in I (kI = 2). The nonlocal nature of the
tensor exchange term in the NN interaction means it is no
longer straightforward to check the parity and time-reversal
invariance of the resulting folded potentials. While the whole
term (including parts A, B, and C) must be invariant, the
individual terms need not be. This was fully investigated in
Section 5.52 of [33] and the whole term was proven to be
invariant under parity and time reversal.

Term B, in which the solid spherical harmonic acts on the
incident distorted wave alone [Y2μ(−ı∇R)χ (+)

μ (R, k)], with
the valence nucleon wave function unaffected, yields a folded
potential of the form

Û trB
kI k

(σ 0, I, R)χ (+)
μ (R, k) =

∑
kI k

F̂ trB
kI k

(R)[Yk(R̂) × τkI
(I)] · [τ1(σ 0) × Y2(−ı∇R)]χ (+)

μ (R, k), (55)

where the folded potentials from this tensor exchange term
will be denoted by Û trB

kI k
(σ 0, I, R). They are different from

those derived previously because, instead of the operator
SkI k(σ 0, I, R̂), these spin-spin interactions are proportional to
[Yk(R̂) × τkI

(I)] · [τ1(σ 0) × Y2(−ı∇R)]. The spin-spin poten-
tials from this term Û trB = Û trB

10 + Û trB
12 + Û trB

32 are described

in Appendix C 5. The solid spherical harmonics in these
equations act on the initial distorted wave function [which
has been left in Eq. (55) for clarity]. This means the spin-spin
amplitude given in Eq. (10) cannot be used for this interaction.
The modification of the DWBA scattering amplitude for these
potential terms will be discussed in the next subsection.
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The folding of the third tensor exchange term, which acts
one grad on the components of the valence nucleon wave

function and one grad on the distorted wave gives a spin-spin
potential of the form

Û trC
kI kE(σ 0, I, R)χ (+)

μ (R, k) =
∑
kI kE

F̂ trC
kI kE(R)[Yk(R̂) × τ1(σ 0)]Eε

[
τkI

(I) × ∇]
E−ε

χ (+)
μ (R, k). (56)

The folded potentials from this tensor exchange term will be
denoted by Û trC

kI kE(σ 0, I, R) where the extra subscript E rep-
resents the coupling between the operators [Yk(R̂) × τ1(σ 0)]
and [τkI

(I) × ∇]. Performing the sums in Eq. (56) with the
angular momentum values from the simplified model of 10B
leads to eleven different types of spin-spin interactions, which
are detailed in Appendix C 6. These folded potentials also have
a grad operator acting on the initial distorted wave function.
The modification of the spin-spin amplitude formalism for
these spin-spin interactions will be discussed next.

F. Modified scattering amplitudes

The folded spin-spin potentials derived from two of the
three tensor exchange terms in the NN interaction have
differential operators which act on the initial distorted wave.
This means that the DWBA scattering amplitude for the local
spin-spin interactions, given by Eq. (9), can no longer be used.
The modified scattering amplitude for tensor exchange term B
and C are given by

f̂ trB
kI k

(μ′,M ′
I ; μ,MI ; θ, φ) = −μc.m.

2πh̄2 〈χ (−)
μ′ (R, k′), IM ′

I |F̂ trB
kI k

(R)[Yk(R̂) × τkI
(I)] · [τ1(σ 0) × Y2(−ı∇R)]|χ (+)

μ (R, k), IMI 〉,
(57)

f̂ trC
kI k

(μ′,M ′
I ; μ,MI ; θ, φ) = −μc.m.

2πh̄2 〈χ (−)
μ′ (R, k′), IM ′

I |
∑
E

F̂ trC
kI kE(R)[Yk(R̂)τ1(σ 0)]Eε[τkI

(I) × ∇]E−ε |χ (+)
μ (R, k), IMI 〉. (58)

In order to evaluate these amplitudes the effect of Y2μ(−ı∇R)
and ∇ on the initial distorted wave χ (+)

μ (R, k) must be
determined. This can be done using partial wave expansions
of the distorted waves and results from [26,28,46] to evaluate
the required derivatives. The complete results for the partial

wave expansion of the amplitudes f̂ trB
kI k

and f̂ trC
kI k

are given
in [33]. Choosing the incident beam direction to be along the
z-axis with the y-axis perpendicular to the scattering plane
(along k × k′) yields this equation for the modified scattering
amplitude for tensor exchange term B

f trB
kI k

(μ′,M ′
I ; μ,MI ; θ )

= 3
√

30

Ec.m.

√
4π

k̂I k̂
∑

�′,�,j ′,j

(−)j−�′+1/2−2μ−qI �̂ĵ ı�−�′
eı(σ�+σ�′ )Y�′,μ−qI −μ′(k̂′)

(
�0 1

2μ
∣∣jμ

)

× (
�′μ − qI − μ′ 1

2μ′∣∣j ′μ − qI

)
(IMIkI qI |IM ′

I )(kI − qI jμ|j ′μ − qI )
∫ ∞

0
RdRu�′,j ′ (kc.m., R)F̂ trB

kI k
(R)

×
∑
LE

[
ÔL�

u�,j (kc.m., R)

R

]
L̂2(20L0|�0)(k0L0|�′0)Ê2W

(
kIEj ′ 1

2 ; �′j
){kI E �′

L k 1

}{
j E 1

2
1 1

2 �

}{
1 E �
L 2 1

}
, (59)

where the operator ÔL� is taken from [46,47] and is defined in Appendix C 4. Substituting the distorted wave function and folded
potential into Eq. (58) and using the same choice of axes as term B yields

f trC
kI k

(μ′,M ′
I ; μ,MI ; θ )

= −√
6

Ec.m.

k̂I k̂
∑

�′,�,j ′,j

�̂2ĵ ı�−�′
(−)�+j−j ′+2μ−kI −qI eı(σ�+σ�′ )Y�′,μ−qI −μ′(k̂′)

(
�0 1

2μ
∣∣jμ

)

× (
�′μ − qI − μ′ 1

2μ′∣∣j ′μ − qI

)
(IMIkI qI |IM ′

I )(kI − qI jμ|j ′μ − qI )
∫ ∞

0
RdRu�′,j ′ (kc.m., R)

∑
EL

F̂ trC
kI kE(R)

×
[
ĝL�

u�,j (kc.m., R)

R

]
(−)−LL̂Ê2(�010|L0)(k0L0|�′0)

∑
E′

Ê′2W
(
j 1

2E′1; � 1
2

)
W

(
j 1

2kI �
′; E′j ′)

⎧⎨
⎩

1 � E′
E 1 kI

k L �′

⎫⎬
⎭ , (60)
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where the operator ĝL� is also taken from [46] and is defined
in Appendix C 4.

Sections V A–V F have described all the formalism de-
veloped in order to perform a microscopic calculation of
our spin-spin interactions. These components have been used
to calculate the spin-spin potentials for 200 MeV protons
elastically scattered from 10B. The choice of single-particle
wave function used in these calculations is given in the next
subsection.

G. Single-particle wave function

The single particle wave functions for the valence proton
and neutron in the 1p 3

2
shell of 10B are calculated from a

Woods-Saxon (WS) potential and will be referred to here as a
‘WS wave function’. This wave function is calculated using a
binding energy of 7.0 MeV and a WS potential with parameters
RWS = (0.88 ± 0.13)(A − 1)1/3 fm and a = 0.81 ± 0.08 fm
for the diffuseness, taken from Ref. [48] who obtain the 1p 3

2

wave function from the transform of the electron scattering
form factor of the 1.740 MeV excited state in 10B. The single-
particle wave function of the valence proton incorporates the
effect of the Coulomb interaction with the core, making it
slightly different from the neutron wave function.

VI. RESULTS FOR DN N

Our folding model has been used to construct new spin-
spin tensor interactions within a simple two valence-particle
model for the target nucleus, using a realistic nucleon-nucleon
interaction that includes direct and exchange terms. This has
led to higher order couplings of the target and projectile spins
being incorporated into this calculation. In addition, spin-spin
interactions from nonlocal tensor exchange contributions to the
NN interaction have also been included. We will now show
how our folding model and new spin-spin tensor interactions
effect DNN .

A. Effects of spin-spin interactions on DN N

All our results are collected in Fig. 2. The separate
contributions from terms of different physical origin are
described in the following subsections.

1. Contributions from direct terms

The dashed curve shows the calculation of DNN for
all the spin-spin interactions obtained from the folding
of the ‘direct’ terms in the NN interaction. It there-
fore includes contributions to the folded potentials from
both the central vσσ

NN (r)σ 0 · σ 1 + vσσ
NN (r)σ 0 · σ 2 and tensor

vtr
NN (r)SNN

12 (σ 0, σ 1, r̂) + vtr
NN (r)SNN

12 (σ 0, σ 2, r̂) terms. The
spin-spin potentials for each kI and k are therefore given by
UkI k = Uσσ

kI k
+ U tr

kI k
. These interactions are given in Eqs. (C1)

to (C7). The DNN from the U tr
kI k

(σ 0, I, R) potentials is not
plotted separately as their contribution is negligible compared
to the Uσσ

kI k
(σ 0, I, R) potentials.

0 20 40 60 80
θc.m. (deg)

0.85

0.9

0.95

1

D
N

N

FIG. 2. DNN for elastic proton scattering from 10B, calculated
using all spin-spin interactions (solid curve). The individual contribu-
tions for the direct terms (dashed curve), central exchange (dot-dash
curve), and tensor exchange (dotted curve) are also shown.

2. Contributions from central exchange terms

The dot-dash curve in Fig. 2 shows DNN for all the spin-spin
interactions derived from the folding of the central single-
nucleon knock-on ‘exchange’ (SNKE) term, v̂σσ

NN (r01)σ 0 ·
σ 1P

r
01 + v̂σσ

NN (r02)σ 0 · σ 2P
r
02, using the zero-range pseudopo-

tential from Eq. (24). This folding gives spin-spin interactions
of the form UkI k(σ 0, I, R) = FkI k(R)SkI k(σ 0, I, R̂), the same
form as the direct terms. The form factors from this folding,
F̂ σσ

kI k
(R), are given in Eqs. (C8) to (C10) for protons elastically

scattered from 10B and are simply proportional to the square
of the single particle wave function u1 3

2
(r).

These results use Ĵσσ (Q), which is evaluated for the
simple case of Q = kc.m.. This gives Ĵ

pp
σσ (Q) = −134.775 +

77.363ı MeV fm3 for like particles and Ĵ
pn
σσ (Q) = −75.395 −

5.501ı MeV fm3 for unlike particles. The effect of a θ -
dependent Q on Ĵσσ (Q) is discussed in Sec. VI B.

3. Cancellation of direct and exchange central terms

The DNN from the folding of the central exchange term
has the most significant deviation from unity. However, the
opposite signs of the spin-spin potentials from the folding
of the direct vσσ

NN (r)σ 0 · σ 1 + vσσ
NN (r)σ 0 · σ 2 and exchange

v̂σσ
NN (r)σ 0 · σ 1P

r
01 + v̂σσ

NN (r)σ 0 · σ 2P
r
02 terms in the NN inter-

action leads to considerable cancellation. The cause of this can
be found by examining how SNKE is formally included in the
folding model using Eqs. (19) and (20). The direct interaction
vσσ

NN (r) equals the exchange potential v̂σσ
NN (r) except that in

the latter the sign of the odd relative angular momentum
state terms is changed, this leads to significant cancellation
between the central direct and exchange terms especially for
the odd-state terms. This is why the DNN calculated using all
the spin-spin interactions (solid curve in Fig. 2) deviates less
from unity than that including each of the central direct and
central exchange contributions alone. If the potentials for the
direct and exchange odd state terms were replaced with a zero
range δ function they would cancel completely [28].
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4. Contributions from tensor exchange terms

The dotted curve in Fig. 2 shows the calculation of DNN

for all the spin-spin interactions obtained from the folding
of the tensor SNKE term, v̂tr

NN (r01)SNN
12 (σ 0, σ 1, r̂01)P r

01 +
v̂tr

NN (r02)SNN
12 (σ 0, σ 2, r̂02)P r

02, and has the smallest deviation
from unity. Each of the spin-spin interactions derived in
Sec. V E depends on the coefficient Ĵtr(Q). The results
in Fig. 2 use Ĵtr(Q) evaluated for Q = kc.m.. This gives,
Ĵ

pp
tr (Q) = 3.541 − 2.267ı MeV fm5 for like particles and

Ĵ
pn
tr (Q) = 3.373 − 1.563ı MeV fm5 for unlike particles. The

effect of a θ -dependent Q on Ĵtr(Q) will be examined next.

B. Improved treatment of exchange: The choice of Q

So far in this chapter the coefficients Ĵσσ (Q) and Ĵtr(Q)
from the zero-range pseudopotentials used to approximate the
SKNE terms in the NN interaction have been calculated using
the approximation Q = kc.m.. This is a reasonable choice for
scattering in the forward direction. However the measurement
of DNN for 200 MeV protons elastically scattering from 10B
detailed in [2] shows that the deviation of DNN from unity
is most significant at large angles. Therefore in Sec. IV D the
details of an approximation for the magnitude of Q was given
that does better at large angles, Q = kc.m. cos(θ/2).

Figure 3 shows as example of the Ĵtr(Q) coefficient for the
interaction between unlike nucleons ‘pn’, for the two different
approximations of Q. The introduction of a θ -dependent Q
changes the values of Ĵσσ (Q) and Ĵtr(Q) significantly as shown
in Table I for θ = 0 and θ = 90.

The calculation of the polarization transfer coefficient DNN

is plotted in Fig. 4 for all the spin-spin interactions derived
in this work. The solid curve (is the same as the solid
curve in Fig. 2) shows DNN evaluated using Q = kc.m. to
calculate the spin-spin interactions from the folding of the
central and tensor exchange terms in the NN interaction. The
dashed curve in Fig. 4 shows the same calculation, but using
Q = kc.m. cos(θ/2).

0 20 40 60 80
θc.m. (deg)

-5

0

5

10

15

20

J tr
(Q

) 
(M
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5 )

FIG. 3. The exchange coefficient Ĵtr(Q) for Q = kc.m. (straight
lines) and Q = kc.m. cos(θ/2) (curved lines) for unlike ‘pn’ NN

interactions, real (solid lines) and imaginary (dashed lines) parts of
the coefficient.

TABLE I. Exchange coefficients Ĵσσ (Q) and Ĵtr(Q) at θ = 0 and
θ = 90 for like (pp) and unlike (pn) particles.

θ = 0 θ = 90

Ĵσσ (Q) pp −134.775 + 77.363ı −85.900 + 101.759ı

MeV fm3 pn −75.395 − 5.501ı −53.469 − 22.163ı

Ĵtr(Q) pp 3.541 − 2.267ı 9.011 − 0.643ı

MeV fm5 pn 3.373 − 1.563ı 19.401 + 3.463ı

Changing the approximation for Q from Q = kc.m. to
Q = kc.m. cos(θ/2) has a significant effect at large angles.
Figure 4 shows that the solid and dashed curves begin to
deviate from one another at around 20◦ which is the angle
where the exchange coefficients Ĵσσ (Q) and Ĵtr(Q) for the
two different approximations of Q also begin to deviate from
one another (see example in Fig. 3). The shape of the solid
and dashed curves in Fig. 4 are very similar until around 60◦
when the solid curve (Q = kc.m.) move to smaller 1 − DNN

and the dashed curve [Q = kc.m. cos(θ/2)] move to larger
1 − DNN . At 90◦, in Fig. 4, DNN (Q = kc.m.) = 0.970 and
DNN (Q = kc.m. cos(θ/2)) = 0.904.

Figure 4 also shows the calculation of DNN using the
Q = kc.m. cos(θ/2) approximation, but with no tensor ex-
change contributions (dot-dash curve). Without tensor ex-
change the calculation of DNN is much closer to the solid
curve (Q = kc.m.) and has a very similar shape. Comparing
the solid curve and dashed curve indicates that using the
Q = kc.m. cos(θ/2) approximation leads to a significant
increase in the deviation of DNN from unity at large angles. The
dot-dashed curve shows that it is through the tensor exchange
term that this increase is achieved. The curves in Fig. 4 indicate
that the effect of the Q approximation is greatest on the
spin-spin interactions derived from the tensor exchange term
in the NN interaction. It also signifies the importance of the
approximation for Q on the calculation of an accurate DNN at
large angles.
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FIG. 4. DNN for elastic proton scattering from 10B, calculated
using all spin-spin interactions. The two different approximations
for Q are shown as Q = kc.m. (solid curve) and Q = kc.m. cos(θ/2)
(dashed curve), also shown is the calculation without tensor exchange
contributions and Q = kc.m. cos(θ/2) (dot-dashed curve).
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C. Effect of even kI

The model of 10B used in this work is a valence proton
and neutron hole in the 1p 3

2
shell. Appendix B shows that

the only difference this makes to the folding formalism for
valence proton and neutron particles occurs when the rank of
the spin operator τkI qI

(I) is even. When kI is greater than zero

the reduced matrix element τ
M ′

I MI

kI qI
(I) must be multiplied by

(−)(kI +1) to change from a particle to a hole description [44].
The total spin-spin amplitude, f (μ′,M ′

I ; μ,MI ; θ ), can be
written as

f (μ′,M ′
I ; μ,MI ; θ ) =

∑
kI k

fkI k(μ′,M ′
I ; μ,MI ; θ ), (61)

where all the individual spin-spin amplitudes,
fkI k(μ′,M ′

I ; μ,MI ; θ, φ), including those for the nonlocal
tensor exchange terms, can be written as

fkI k(μ′,M ′
I ; μ,MI ; θ, φ) =

∑
qI

τ
M ′

I MI

kI qI
(I)f̃kI qI ,k(μ′; μ; θ, φ).

(62)

Here, f̃kI qI ,k(μ′; μ; θ, φ) contains the partial wave sums, the

integration over R and the spherical harmonic Y�′,μ−qI −μ′(k̂′).
Using the total spin-spin amplitude in Eq. (1) for DNN

gives

DNN =
Tr

[ ∑
kI qI ,k,k′

I q
′
I ,k

′ τ
M ′

I MI

kI qI
(I)f̃kI qI ,k(μ′; μ; θ, φ)σyτ

† M ′
I MI

k′
I q

′
I

(I)f̃ †
k′
I q

′
I ,k

′ (μ′; μ; θ, φ)σy

]
Tr

[ ∑
kI qI ,k,k′

I q
′
I ,k

′ τ
M ′

I MI

kI qI
(I)f̃kI qI ,k(μ′; μ; θ, φ)τ

† M ′
I MI

k′
I q

′
I

(I)f̃ †
k′
I q

′
I ,k

′ (μ′; μ; θ, φ)
] . (63)

For Eq. (63) to describe holes rather than particles, the functions in the trace must be multiplied by (−)1+kI +1+k′
I (top and bottom)

for kI > 0. This modification has no effect on the calculation of DNN because of the following property of the spin operators

Tr[τkq(I)τ †
k′q ′(I)] = (2I + 1)δkk′δqq ′ . (64)

Taking the trace over the spin projection of the target gives

DNN =
Tr′

[ ∑
kI qI ,k,k′

I q
′
I ,k

′ δkI k
′
I
δqI q

′
I
f̃kI qI ,k(μ′; μ; θ, φ)σyf̃

†
k′
I q

′
I ,k

′(μ′; μ; θ, φ)σy

]
Tr′

[∑
kI qI ,k,k′

I q
′
I ,k

′ δkI k
′
I
δqI q

′
I
f̃kI qI ,k(μ′; μ; θ, φ)f̃ †

k′
I q

′
I ,k

′(μ′; μ; θ, φ)
] , (65)

where Tr′ is taken over the spin projections of the projectile alone. The phase change now becomes (−)1+kI +1+k′
I →

(−)1+kI +1+kI = 1. So the phase change that results from transferring from the particle to hole model of 10B does not change the
polarization transfer coefficient DNN or the cross section.

More generally, this result means that in the calculation of
DNN only cross terms in the scattering amplitude with the same
rank in the target spin survive the trace over the spin projection
of the target. Cross terms with different kI will give zero.

To see how the deviation of DNN from unity is related
to the strengths of all the spin-spin interactions, the ratio of
1 − DNN for FkI k(R) and 0.5 × FkI k(R) is plotted in Fig. 5.
When the strength of the spin-spin potential changes by a
factor of 2 the deviation of DNN from 1 changes by a factor of
4. The dependence of 1 − DNN on the strength of the spin-spin
potentials is a second order one because only terms with the
same rank in I can interfere with each other. This brings into
question whether it is appropriate to use first order DWBA to
calculated the spin-spin amplitudes.

Stamp [1] first presented the polarization transfer coeffi-
cient DNN as the simplest way of experimentally confirming
the existence of spin-spin interactions, a better approach may
be to study first order effects of spin-spin interactions using
another observable. Since DNN is only dependent on the
polarization of the projectile nucleon, an observable that is
dependent on the polarization of the target would lead to
a first order dependence on the strength of the spin-spin
interactions. Such an observable would be a more sensitive
probe of spin-spin interactions.

D. Sensitivity of DN N to u� j (r)

The potential parameters (from [48]) used to calculate the
WS single-particle wave function discussed in Sec. V G have
significant error bars, RWS = (0.88 ± 0.13)(A − 1)1/3 fm and
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FIG. 5. Ratio of the deviation of DNN from unity, including all the
spin-spin interactions FkI k(R) and 0.5FkI k(R), direct and exchange,
for elastic p + 10B scattering.
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FIG. 6. Calculation of DNN , for elastic proton scattering from
10B using a WS (solid line) and HO (dashed line) single-particle
wave function, compared to the measurement (symbols) of DNN

from [2]. The grey area shows the dependence of the calculation on
the uncertainties in the WS parameters from [48] used to calculate
the single particle wave function.

a = 0.81 ± 0.08 fm. To examine the sensitivity of DNN to the
wave functions they were calculated using the maximum and
minimum values for RWS and a. The corresponding angular
distributions of DNN are shown by the shaded area in Fig. 6,
compared to the experimentally measured values of DNN from
[2], denoted by the circular points.

The solid line in Fig. 6 shows the calculation of DNN using
the WS parameters RWS = 0.88(A − 1)1/3 fm and a = 0.81 fm
to calculate the single-particle wave function and is the same
as the dashed line in Fig. 4. The dashed line in Fig. 6
uses a harmonic oscillator (HO) wave function. The value of
ν = 0.1966 fm−2 used in this work is taken from Ref. [49] in
which the harmonic oscillator constant, ν, was calculated for
different p shell nuclei using Coulomb energy data. HO wave
functions can be a reasonable approximation for low lying
bound states and have the advantage that they can be integrated
and differentiated analytically. However, in this case the DNN

calculated using the HO wave function varies quite signifi-
cantly from the WS calculations at large angles. In our work,
DNN depends not only on the single-particle wave function,
but also on the wave functions’ first and second derivatives
through the tensor exchange terms (also see Fig. 1 in [4]). This
makes this polarization observable very sensitive to changes
in the shape of the wave function u1 3

2
(r). This sensitivity may

make DNN a potentially useful probe of nuclear structure.

VII. CONCLUSIONS

We have developed a general model for spin-spin terms
in the elastic nucleon-nucleus optical potential. The spin-spin
potentials were generated by folding a realistic effective NN
interaction over the nuclear wave function. The target is
assumed to have a two valence-particle structure with the total
spins of the two valence nucleons coupling to give the total spin

of the nucleus. This general model has been used for the spe-
cific calculation of the elastic scattering of protons from 10B.

Which spin-spin terms are present and how strong they
are depends directly on the structure of the target. In the
simple model of 10B, the valence proton and neutron (both
in 1p 3

2
shells) couple together to give the total spin of the

nucleus. In our folding model the total angular momenta of
the valence nucleons j1 and j2, couple to give the maximum
allowed rank, kI = 3, of the target spin I . The rank k of the
spherical harmonic, Yk(R̂), in the generalized local spin-spin
operator is dependent on the orbital angular momentum of the
levels occupied by the valence nucleons. This means we have
included terms that go beyond previous work on spin-spin
interactions and therefore, for valence nucleons in shells with
larger orbital angular momentum, �, and total spin, j , higher
order spin-spin operators would be allowed. Our calculation
of DNN is not only sensitive to the occupation of different
orbitals, but also to their radial wave functions. This sensitivity
means polarization observables could be used as a probe of
nuclear structure.

Comparing the deviations of DNN from unity caused by
spin-spin interactions derived from the direct and exchange
terms in the NN interaction, show that they both contribute
significantly. The approximation for the magnitude of Q =
k′ + k also has a considerable effect on the calculation of DNN

through the exchange terms. In particular, the tensor exchange
contribution has been show to be particularly important at
large angles, where the largest deviation of DNN from unity
is measured. However, while our calculations do lead to a
significant deviation of DNN from unity, they still do not match
the experimental data from [2] at large angles. In future work
we hope to examine the effect of spin-spin interactions from
the folding of the spin-orbit term in the NN interaction and
the small angle approximations used in the calculations of the
exchange terms, to see if we can reproduce the experimental
data more closely.

While Stamp [1] identified DNN as the simplest way of
experimentally verifying that spin-spin interactions exist, we
have determined that this observable has a second-order depen-
dence on the strength of the spin-spin potentials. This brings
into question the validity of using the first order DWBA model
to calculate the spin-spin amplitude as this approximation
discards other second-order terms. Alternatively, to study first
order effects of spin-spin interactions another observable could
be investigated. DNN is only dependent on the polarization
of the projectile nucleon. An observable that is dependent
on the polarization of the target would lead to a first order
dependence on the strength of the spin-spin interactions. Such
an observable would be a more sensitive probe of spin-spin
interactions and will be the focus of future work [50].
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APPENDIX A: GENERAL SPIN OPERATORS τkq(S)

The operators τ1q0 (σ 0) and τkI qI
(I) are constructed out of

the x, y and z components of their spin operators σ 0 and I ,
respectively. For a general spin, S, the relationships between
the spin operator τkq(S) and the components Sx , Sy , and Sz

can be derived using the following expression derived from
Eqs. (1d) and (1e) in Hooton and Johnson [27]:

k̂1k̂2ŜW (Ik2Ik1; Ik3)τk3q3 (S)

=
∑
q1q2

(k2q2k1q1|k3q3)τk1q1 (S)τk2q2 (S), (A1)

and the relations between components of vector tensors in the
spherical and Cartesian coordinate systems

τ1±1(S) = ∓ 1√
2
C(S)[Sx ± ıSy], (A2)

τ10(S) = C(S)Sz. (A3)

The spin dependent coefficient C(S) is the same for all τ1q(S)
because they rotate as spherical harmonics (Eq. (1c) [27]).
Thus, C(S) can be determined using the matrix element of
τ10(S)

〈SS|τ10(S)|SS〉 =
√

3(SS10|SS) = C(S)〈SS|SZ|SS〉

=
√

3

√
S

S + 1
= C(S)S,

→ C(S) =
√

3

S(S + 1)
. (A4)

Therefore

τ1±1(S) = ∓ 1√
2

√
3

S(S + 1)
[Sx ± ıSy];

(A5)

τ10(S) =
√

3

S(S + 1)
Sz.

Using Eq. (A1) with k3 = 2 and k1 = k2 = 1 leads to

τ2±2(S) = 3

S(S + 1)

1

6ŜW (S1S1; S2)
[Sx ± ıSy]2,

τ2±1(S) = ∓ 3

S(S + 1)

1

6ŜW (S1S1; S2)
× [Sz(Sx ± ıSy) + (Sx ± ıSy)Sz],

τ20(S) = 3

S(S + 1)

1

3
√

6ŜW (S1S1; S2)

[
3S2

z − S(S + 1)
]
.

(A6)

This method can be used to calculate all τkq(S) in terms of
the x, y, and z components of their spin S. However, for this
work it is far more convenient to use the spin operator τkq(S).
Discussion of the spin-spin operator SkI k(σ 0, I, R̂) in terms of
the projectile and target spin operators σ 0 and I will be limited
the spherical and tensor spin-spin terms to allow comparison
with previous work.

APPENDIX B: TWO-PARTICLE–TWO-HOLE
EQUIVALENCE

In this appendix we show that, for the purpose of calculating
terms in the folding model interaction that are tensors of
nonzero rank in the target spin, a two-particle or a two-hole
model for 10B give results that differ by a phase factor
depending only on the rank of the tensor.

Our starting point is a general expression for the folding
model interaction, V A(0) of projectile nucleon 0 with an A-
nucleon target of spin I :

V A
I M ′

I ,I MI
(0) =

∫
d1 d1′ρA

I M ′
I ,I MI

(1′, 1)〈 1|v(0, 1)|1′〉,
(B1)

where the one-nucleon density matrix, ρA
I M ′

I ,I MI
(1′, 1), can be

expanded as

ρA
I (1′, 1) =

∑
kI qI

1

k̂I

τkI ,qI
(I)

∑
b,b′

(−)j
′
b+m′

b (jb mb, j
′
b − m′

b|kI qI )φ∗
b,jb,mb

(1)φb′,j ′
b,m

′
b
(1′)(I‖ρkI

(b, jb, , b
′, j ′

b)‖I ). (B2)

The quantities (I‖ρkI
(b, jb, , b

′, j ′
b)‖I ) are reduced matrix elements between target states |�I,MI

〉 of the tensor operators

ρkI ,qI
(b, jb, b

′, j ′
b) =

∑
mb,m

′
b

(−)j
′
b−m′

b (jb mb, j
′
b − m′

b|kI qI )a†
b,jb,mb

ab′,j ′
b,m

′
b
, (B3)

where a
†
b,jb,mb

and ab,jb,mb
are creation and destruction operators for a set of single particle states, φb,jb,mb

(1), with definite angular
momentum jb, and b denotes other necessary quantum numbers, including isospin. Nuclear structure considerations enter through
the choice of the φb,jb,mb

and the value of the reduced matrix elements.
We first assume that the ground state of 10B can be approximated as a one-neutron–one-proton hole in a filled p3/2 shell that

we label j :

|�I,MI
) =

∑
m,m′

(−)j+m(−)j+m′
(j m, j m′|I,MI )an,j,−map,j,−m′ |φ0), (B4)

where |φ0) is the state vector describing the j shell filled with neutrons and protons and I = 3 in the ground state of 10B. For this
state we find

(I‖ρkI
(b, j, , b, j )‖I ) = [δkI ,0δqI ,0ĵ − (−)I Î k̂IW (I I j j ; kI j )]. (B5)
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An even simpler model, that is convenient in the detailed evaluation of the folding model and is used in the main text,
is to assume that the ground state of 10B consists of one neutron and one proton in a p3/2 shell, j = 3/2, outside a state |φ1)
having a completely empty p3/2 shell and completely filled other shells:

|�I,MI
, 1) =

∑
m,m′

(j m, j m′|I,MI )a†
n,j,ma

†
p,j,m′ |φ1). (B6)

In this case the reduced matrix element is

(I, 1‖ρkI
(b, j, , b, j )‖I, 1) = [(−)kI (−)I Î k̂IW (I I j j ; kI j )]. (B7)

In both cases we have ignored any contributions from closed shells that do not contribute to the target spin and only contribute
to tensors with kI = 0. We see that for kI > 0 the two models give the same reduced matrix elements and hence the same
one-nucleon density matrix components apart from a phase factor (−)(kI +1).

APPENDIX C: SPIN-SPIN POTENTIALS FOR 10B

For the model of 10B used in this work the valence nucleons remain in the 1p 3
2

shell and therefore have initial and final angular

momenta of �1 = �′
1 = 1. These couple with the intrinsic 1

2 -spin of the nucleon to give total angular momenta of j1 = j ′
1 = j2 = 3

2
and I = 3. These values are used to calculate the following spin-spin potential terms.

1. Central direct term

Using our model of 10B, the folding of the central direct term in the NN interaction [given in Eq. (44)] yields three different
types of spin-spin interactions

Uσσ
10 (σ 0, I, R) = −2

√
π

3

∫ ∞

0
r2

1 dr1u1 3
2
(r1)2

∫ 1

−1
dμP0(μ)vσσ

NN (r01)S10(σ 0, I), (C1)

Uσσ
12 (σ 0, I, R) = −2

5

√
2π

15

∫ ∞

0
r2

1 dr1u1 3
2
(r1)2

∫ 1

−1
dμP2(μ)vσσ

NN (r01)S12(σ 0, I, R̂), (C2)

Uσσ
32 (σ 0, I, R) = 3

5

√
2π

5

∫ ∞

0
r2

1 dr1u1 3
2
(r1)2

∫ 1

−1
dμP2(μ)vσσ

NN (r01)S32(σ 0, I, R̂), (C3)

where r01 = |R − r1|.

2. Tensor direct all terms

Summing the potentials from all three tensor terms yields the spin-spin interactions from the folding of the whole tensor term
in the NN interaction for protons elastically scattering from 10B:

U tr
10(σ 0, I, R) = 4

15

√
3π

∫ ∞

0
r2

1 dr1u1 3
2
(r1)2

∫ 1

−1
dμ

[
r2

1 P0(μ) + R2P2(μ) − 2Rr1P1(μ)
]vtr

NN (r01)

r2
01

S10(σ 0, I), (C4)

U tr
12(σ 0, I, R) = 2

15

√
6π

5

∫ ∞

0
r2

1 dr1u1 3
2
(r1)2

∫ 1

−1
dμ

[
5R2P0(μ) + (

4r2
1 − R2

)
P2(μ) − 43

5
Rr1P1(μ) + 3

5
Rr1P3(μ)

]

× vtr
NN (r01)

r2
01

S12(σ 0, I, R̂), (C5)

U tr
32(σ 0, I, R) = 6

35

√
2π

5

∫ ∞

0
r2

1 dr1u1 3
2
(r1)2

∫ 1

−1
dμ

[(
r2

1 + R2
)
P2(μ) − 7

5
Rr1P1(μ) − 3

5
Rr1P3(μ)

]
vtr

NN (r01)

r2
01

S32(σ 0, I, R̂),

(C6)

U tr
34(σ 0, I, R) = − 6

35

√
6π

∫ ∞

0
r2

1 dr1u1 3
2
(r1)2

∫ 1

−1
dμ

[
R2P2(μ) + r2

1 P4(μ) − 2Rr1P3(μ)
]vtr

NN (r01)

r2
01

S34(σ 0, I, R̂). (C7)
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Combining the spin-spin potentials from the three tensor
terms in Eqs. (C4)–(C7) enables a simple check of the folding
of the direct tensor NN interaction term to be performed.
When r01 = 0 (i.e., R = r1 and μ = 1) the factor 1/r2

01 → ∞
in the equations above. For these potentials to remain physical
for all values of r01, the terms in the square brackets must be
zero when r01 = 0. Expressing the Legendre polynomials in
the equations above in terms of μ shows that the terms in the
square brackets do indeed sum to zero for r01 = 0.

3. Central exchange term

The spin-spin potentials allowed for the model of 10B used
in this work are determined in the same way for the central

exchange term, as they were with the direct terms in the
NN interaction. This gives three different types of spin-spin
interaction

Û σσ
10 (σ 0, I, R) = − Ĵσσ (Q)√

3π
u1 3

2
(R)2 S10(σ 0, I), (C8)

Û σσ
12 (σ 0, I, R) = − Ĵσσ (Q)

5

√
2

15π
u1 3

2
(R)2 S12(σ 0, I, R̂),

(C9)

Û σσ
32 (σ 0, I, R) = 3

5

Ĵσσ (Q)√
10π

u1 3
2
(R)2 S32(σ 0, I, R̂). (C10)

4. Tensor exchange term A

Using the angular momentum values from the simplified model of 10B the folding of tensor exchange term A yields the allowed
spin-spin terms

Û trA
10 (σ 0, I, R) = −2Ĵtr(Q)

5
√

3π
u1 3

2
(R)

[
Ô11u1 3

2
(R)

]
S10(σ 0, I), (C11)

Û trA
12 (σ 0, I, R) = −Ĵtr(Q)

25
√

30π
u1 3

2
(R)

[
13Ô11 + 27Ô31u1 3

2
(R)

]
S12(σ 0, I, R̂), (C12)

Û trA
22 (σ 0, I, R) = 9Ĵtr(Q)

25
√

10π
u1 3

2
(R)

[
Ô11 − Ô31u1 3

2
(R)

]
S22(σ 0, I, R̂), (C13)

Û trA
32 (σ 0, I, R) = −3Ĵtr(Q)

175
√

10π
u1 3

2
(R)

[
7Ô11 + 3Ô31u1 3

2
(R)

]
S32(σ 0, I, R̂), (C14)

Û trA
34 (σ 0, I, R) = 3

√
6Ĵtr(Q)

35
√

π
u1 3

2
(R)

[
Ô31u1 3

2
(R)

]
S34(σ 0, I, R̂). (C15)

The differential operator Ô�′� is taken from [46,47]. The allowed combinations of differential operators are

Ô�−2,� = ĝ�−2,�−1 ĝ�−1,� = d2

dr2
+ 2� + 1

r

d

dr
+ �2 − 1

r2
, (C16)

Ô�,� = ĝ�,�−1 ĝ�−1,� = ĝ�,�+1 ĝ�+1,� = d2

dr2
+ 2

r

d

dr
− �(� + 1)

r2
, (C17)

Ô�+2,� = ĝ�+2,�+1 ĝ�+1,� = d2

dr2
− 2� + 1

r

d

dr
+ �(� + 2)

r2
. (C18)

The differential operator ĝ�′�, is also taken from [46] and is given by

ĝ�+1,� = d

dr
− �

r
, ĝ�−1,� = d

dr
+ � + 1

r
. (C19)

5. Tensor exchange term B

The folding of tensor exchange term B, using the angular momentum values from the simplified model of 10B gives the allowed
spin-spin terms

Û trB
10 (σ 0, I, R) = −2

√
2

3
Ĵtr(Q)u1 3

2
(R)2[Y0(R̂) × τ1(I)] · [τ1(σ 0) × Y2μ(−ı∇R)], (C20)

Û trB
12 (σ 0, I, R) = − 4

15
Ĵtr(Q)u1 3

2
(R)2[Y2(R̂) × τ1(I)] · [τ1(σ 0) × Y2μ(−ı∇R)], (C21)

Û trB
32 (σ 0, I, R) =

√
12

5
Ĵtr(Q)u1 3

2
(R)2[Y2(R̂) × τ3(I)] · [τ1(σ 0) × Y2μ(−ı∇R)]. (C22)

054601-18



EFFECT OF SPIN-SPIN INTERACTIONS ON NUCLEON- . . . PHYSICAL REVIEW C 87, 054601 (2013)

6. Tensor exchange term C

Folding this tensor exchange term yields the following allowed spin-spin terms four our model of 10B:

Û trC
011(σ 0, I, R) = 5Ĵtr(Q)

6
√

6π
u1 3

2
(R)[ĝ01 − ĝ21]u1 3

2
(R)[Y1(R̂) × τ1(σ 0)]1ε[τ0(I) × ∇]1−ε, (C23)

Û trC
110(σ 0, I, R) = −Ĵtr(Q)

5
√

3π
u1 3

2
(R)[5ĝ01 + 11ĝ21]u1 3

2
(R)[Y1(R̂) × τ1(σ 0)]0[τ1(I) × ∇]0, (C24)

Û trC
111(σ 0, I, R) = Ĵtr(Q)

15
√

3π
u1 3

2
(R)[5ĝ01 + 16ĝ21]u1 3

2
(R)[Y1(R̂) × τ1(σ 0)]1ε[τ1(I) × ∇)]1−ε, (C25)

Û trC
112(σ 0, I, R) = Ĵtr(Q)

25
√

3π
u1 3

2
(R)[10ĝ01 − 3ĝ21]u1 3

2
(R)[Y1(R̂) × τ1(σ 0)]2ε[τ1(I) × ∇]2−ε, (C26)

Û trC
132(σ 0, I, R) = −√

2Ĵtr(Q)

25
√

π
u1 3

2
(R)

[
ĝ21u1 3

2
(R)

]
[Y3(R̂) × τ1(σ 0)]2ε[τ1(I) × ∇]2−ε, (C27)

Û trC
211(σ 0, I, R) = −2Ĵtr(Q)

3
√

5π
u1 3

2
(R)[ĝ01 − ĝ21]u1 3

2
(R)[Y1(R̂) × τ1(σ 0)]1ε[τ2(I) × ∇)]1−ε, (C28)

Û trC
212(σ 0, I, R) = Ĵtr(Q)

5
√

π
u1 3

2
(R)[ĝ01 − ĝ21]u1 3

2
(R)[Y1(R̂) × τ1(σ 0)]2ε[τ2(I) × ∇)]2−ε, (C29)

Û trC
312(σ 0, I, R) = −Ĵtr(Q)

50
√

π
u1 3

2
(R)[5ĝ01 + ĝ21]u1 3

2
(R)[Y1(R̂) × τ1(σ 0)]2ε[τ3(I) × ∇]2−ε, (C30)

Û trC
332(σ 0, I, R) = 53

√
6Ĵtr(Q)

175
√

π
u1 3

2
(R)

[
ĝ21u1 3

2
(R)

]
[Y3(R̂) × τ1(σ 0)]2ε[τ3(I) × ∇]2−ε, (C31)

Û trC
333(σ 0, I, R) = −11

√
3Ĵtr(Q)

35
√

2π
u1 3

2
(R)

[
ĝ21u1 3

2
(R)

]
[Y3(R̂) × τ1(σ 0)]3ε[τ3(I) × ∇]3−ε, (C32)

Û trC
334(σ 0, I, R) = 3

√
3Ĵtr(Q)

35
√

2π
u1 3

2
(R)

[
ĝ21u1 3

2
(R)

]
[Y3(R̂) × τ1(σ 0)]4ε[τ3(I) × ∇]4−ε . (C33)
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