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4Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, BP 5027, F-14076 Caen Cedex 05, France

(Received 23 February 2013; revised manuscript received 17 April 2013; published 31 May 2013)

We propose an improved version of the antisymmetrized quasicluster model (AQCM) to describe a smooth
transition from the α-cluster wave function to the jj -coupling shell model wave function and apply it to the
ground state of 12C. The cluster-shell transition in 12C is characterized in AQCM by only two parameters: R

representing the distance between α clusters and the center of mass and � describing the break of α clusters. The
optimal AQCM wave function for the ground state of 12C is an intermediate state between the three-α cluster
state and the shell model state with the p3/2 subshell closure configuration. The result is consistent with that of
the antisymmetrized molecular dynamics (AMD), and the optimal AQCM wave function quantitatively agrees
with the AMD one, although the number of degrees of freedom in AQCM is significantly fewer.
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I. INTRODUCTION

Shell structure is a fundamental property of atomic nuclei.
The stability of nuclei and presence of magic gaps is explained
by nonuniformities of the single-particle level distribution [1].
The strong spin-orbit interaction is essential to explain the
observed magic numbers [2,3]. The nuclear shell model
in which the one-body behavior is supplemented by
configuration-mixing effects of residual two-body interaction
describes a nucleus as a closed quantum system where nucle-
ons occupying bound orbits are isolated from the environment
of scattering states and decay channels. In its modern version,
the shell model calculates nuclear properties in an ab initio
manner [4], using realistic interactions that reproduce the
nucleon-nucleon scattering data [5,6].

The validity of such a closed quantum system framework
depends on the dissociation energy. The configuration-mixing
effects in weakly bound or unbound nuclear states cannot be
treated as a small perturbation atop the mean field and involve
effects of the coupling to decay channels [7]. In particular,
the appearance of cluster states in the vicinity of their respec-
tive cluster decay thresholds is a consequence of an openness
of the nuclear many-body system [8,9]. Consequently, the
standard shell model approach simply cannot be successful in
predicting cluster states at low excitation energies around the
cluster-decay thresholds. In the most advanced closed quantum
system approaches to cluster decay, the shell model wave
functions must be supplemented with a cluster component
to achieve a quantitative agreement with the data [10].

The failure of the closed quantum system approaches
to describe cluster states is the central problem in nuclear
theory. The energetic order of particle emission thresholds,
and their nature, depends on precise properties of the nuclear
Hamiltonian. However, the phenomenological rule that cluster
correlations are seen only in the vicinity of the respective
cluster emission threshold cannot be a consequence of specific
properties of nuclear forces. A generic explanation of this rule

in terms of the collective external coupling of shell model states
via the decay channel(s) has been put forward in Refs. [8,9]. In
this context, α-cluster states are of particular interest because
of strong binding of an α particle and a weak α-α interaction
which does not make it possible to bind an α-α system. The
systematics of α-cluster states in light nuclei was a basis for
Ikeda conjecture that α-cluster states appear close to their
cluster decay thresholds [11].

In spite of recent remarkable advances in the open quantum
system formulation of the shell model [12,13], a coherent
picture of shell structure and clustering in the framework is not
yet within our grasp. The closed quantum system description of
low-energy excitations in light nuclei, where cluster and shell
model structures are intertwined, requires a generalization of
the shell model wave function.

However, cluster models have been developed and success-
fully applied to describe cluster states. In traditional cluster
models, each α cluster is expressed as a (s1/2)4 shell model
configuration. In this case, the spin-orbit interaction, which
plays an essential role in the nuclear systems, cannot be taken
into account. This failure is coming from the special symmetry
of the wave function. Because four nucleons share the same
spatial wave function, each α cluster is a spin-zero system,
and the spin-orbit interaction does not work. If we take the
limit of zero distance among the clusters, the cluster model
wave function agrees with the shell model one in the case
of closed-shell nuclei such as 16O and 40Ca. However, it
cannot describe a subshell closure configuration, where the
contribution of the spin-obit interaction becomes maximum.
Therefore, extension of the cluster model space, especially for
the spin configurations, is needed for the general description
of the nuclear structure. In recent years, there have been
many microscopic studies along this line, and competition
of cluster and shell components in the ground state of light
nuclei have investigated [14,15]. For example, the ground
state of 12C is an intermediate state between the three-α
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cluster state and the shell model state with the p3/2 subshell
closed configuration [14,16–18]. However, it is still difficult
to evaluate quantitatively to what extent cluster structures
develop or shell model structures admix.

A step forward in this direction is proposed in the antisym-
metrized quasicluster model (AQCM) [19–22], which attempts
to include these two distinct structures of different physical
origins in a single many-body approach. In the AQCM, the
transition from the cluster to shell model structure can be
described by only two parameters: R, representing the distance
between α clusters and the center of mass, and �, which
characterizes the quasicluster(s) and quantifies the role of
the spin-orbit interaction in breaking the α cluster(s). This
is a very transparent and simple approach to quantitatively
discuss the mixing of cluster and shell components. However,
the previous AQCM, which was applied to the cluster-shell
competition in C, Ne, and Mg isotopes [19–23], has a problem;
the description for the subshell closure configurations was
not exact. For example, in the studies of C isotopes [19,20],
only one of the three α clusters was changed into a quasi-α
cluster which corresponds to the p3/2,±3/2 shell model orbits.
The p3/2,±1/2 shell model orbits were not included in the
model space because the remaining α clusters were unchanged.
The purpose of the present work is to improve the AQCM
description by removing the restriction for the spin orientations
of individual nucleons. In the new formulation, all α clusters
can be changed into quasi-α clusters, and jj -coupling shell
model states including the subshell closure configuration can
be described.

The paper is organized as follows. The formulation and
details of the improved AQCM parametrization are given in
Sec. II. In the Appendix, we prove that this AQCM can describe
the p3/2 subshell closure configuration. In Sec. III, the AQCM
results for the ground state of 12C are discussed and compared
with the results of the antisymmetrized molecular dynamics
(AMD). We also briefly discuss the structure of the 0+

2 state.
Finally, in Sec. IV we summarize the results and give the main
conclusions.

II. THE MODEL

In this section, we discuss the improved parametrization
of the AQCM wave function and the many-body Hamiltonian
used in this work.

A. Single-particle wave function (Brink model)

In conventional α cluster models, the single-particle wave
function is described as a Gaussian packet [24],

φi =
(

2ν

π

) 3
4

exp[−ν(r i − Rγ )2]ηi, (1)

where ηi represents the spin-isospin part of the wave function,
and Rγ is a real parameter representing the center of a Gaussian
for the γ th α cluster. In this Brink-Bloch wave function, four
nucleons in the γ th α cluster share the common Rγ value.
Hence, the contribution of the spin-orbit interaction vanishes.

B. Single-particle wave function in the AQCM

In the AQCM, a nucleus consists of quasi-α clusters.
For nucleons in the quasi-α cluster, the single-particle wave
function is described by a Gaussian packet, in the same way
as in the Brink-Bloch wave function. However, the center of
this packet ζ i is a complex parameter,

ψi =
(

2ν

π

) 3
4

exp[−ν(r i − ζ i)
2]χiτi, (2)

ζ i = Rγ + i�espin
i × Rγ . (3)

χi and τi in Eq. (2) represent the spin and isospin part of
the ith single-particle wave function, respectively. For the
width parameter, we use the value ν = 0.235 fm−2. The spin
orientation is given by the parameter ξ i , while the isospin part
is fixed to be “up” (proton) or “down” (neutron),

χi = ξi↑|↑〉 + ξi↓|↓〉, (4)

τi = |p〉 or |n〉. (5)

In Eq. (3), espin
i is a unit vector for the intrinsic-spin orientation,

and � is a real control parameter describing the dissolution of
the (quasi)-α cluster. As one can see immediately, the � = 0
AQCM wave function, which has no imaginary part, is the
same as the conventional Brink-Bloch wave function. We
explain later that the AQCM wave function corresponds to
the jj -coupling shell model wave function when � = 1 and
Rγ → 0, and the improved AQCM approach can describe the
subshell closure configuration.

The spin-orbit interaction is intuitively interpreted as

l · s = (r × p) · s = (s × r) · p, (6)

where r , p, and s are the position, the momentum, and the spin
of the nucleon, respectively. If nucleons have the momentum
components parallel (antiparallel) to s × r , the spin-orbit
interaction acts attractively (repulsively). An imaginary part
of a Gaussian wave packet means the momentum of nucleon:

〈ψi | p̂i |ψi〉 = 2h̄
√

νIm[ζ i]. (7)

Therefore, the AQCM wave function has the momentum
parallel or antiparallel to s × r by introducing this particular
form (�espin

i × Rγ ) of the imaginary part in Eq. (3). � > 0
and � < 0 correspond to parallel and antiparallel momenta,
respectively. In actual calculation, of course, the spin-orbit
interaction is a two-body force, which is a function of r i − rj

and not of r .
In this paper we focus on 12C, which consists of three α

clusters, and we assume that they are placed with an equilateral
triangular configuration. For the first quasi-α-cluster, the spin
direction is defined along the z axis and the center of mass is set
in the x direction as Rex . Then we introduce imaginary parts
of centers of Gaussians related to the momenta of nucleons as
in Eq. (3), which means in the y direction. Hence, the centers
of Gaussian wave packets are

ζ i = R(ex + i�ey) (8)

and

ζ i = R(ex − i�ey) (9)
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for the spin-up and spin-down nucleons, respectively. Here, ex

and ey are unit vectors on x and y axes, respectively.
For the second and third quasi-α clusters, we construct their

spin directions and the centers of Gaussian wave packets by
rotating the first quasi-α cluster. Because both the spatial and
spin parts of the wave function are rotated simultaneously, the
relative angles among r , p, and s in the first quasi-α cluster
are kept in the second and third quasi-α clusters. Thus, the
spin-orbit interaction also acts in these quasi-α clusters as
well as in the first one. We rotate both the spatial and spin
parts of the first quasi-α cluster about the y axis as

ψi+4 = R̂(α = 0, β = θ1, γ = 0)ψi, (10)

ψi+8 = R̂(α = 0, β = θ2, γ = 0)ψi, (11)

where i = 1 − 4, (α, β, γ ) = � are the Euler angles, R̂(�) =
e−iαĴz e−iβĴy e−iγ Ĵz is the rotation operator, and θ1 and θ2

are rotational angles, θ1 = 2π/3 and θ2 = 4π/3. From the
discussion in the next section, it is understood that the AQCM
wave function coincides with the (s1/2)4(p3/2)8 configuration
under the proper θ1, θ2 values and the conditions of � = 1 and
R → 0.

The essential difference between the previous and present
AQCM comes from the treatment of the spin orientation. In the
early version of the AQCM [19–21], the intrinsic spin of each
nucleon was quantized with respect to the z axis and the spin
direction was restricted to z or −z direction for all nucleons,

ξ = (1, 0) or (0, 1). (12)

Therefore, it was impossible to change all α clusters to quasi-α
clusters and describe the subshell closure configuration.

In the improved AQCM, we expand the model space and
spin directions can be oriented in any direction. This means ξi↑
and ξi↓ are complex parameters depending on the rotational
angles θ1 and θ2. As a result, we can change all α clusters to
quasi-α clusters by rotating both the spatial and the spin parts
of the wave function of the first quasi-α cluster and describe
the p3/2 subshell closure configuration.

1. p3/2 subshell closure configuration

Let us now discuss the AQCM single-particle wave function
analytically to prove that it describes the p3/2 subshell closure
configuration at R → 0 and � = 1.

First, we discuss the spin-up nucleons in the first quasi-α
cluster, whose centers of Gaussian wave packets are given in
Eq. (8). The single-particle wave function is

ψi =
(

2ν

π

) 3
4

exp
[−νr2

i − νζ 2
i + 2νr i · ζ i

] |↑〉τi . (13)

Using Eq. (8), the last factor can be expanded as

exp[2νr i · ζ ] =
∞∑

k=0

1

k!
(2νR(xi + i�yi))

k,

=
∞∑

k=0

1

k!
(2νRri)

k

(
xi + i�yi

ri

)k

. (14)

For � = 1, using the relations(
xi + iyi

ri

)k

= 1

sk

Ykk(�i) (15)

and

rk
i exp

[−νr2
i

] = 1

tk
R0k(ri), (16)

the single-particle wave function becomes

ψi =
(

2ν

π

) 3
4

∞∑
k=0

(2νR)k

k!sktk
R0k(ri)Ykk(�i)|↑〉τi . (17)

Here, sk and tk are the normalization factors of spherical har-
monics Ykk(�i) and the radial wave function R0k(ri), respec-
tively. Because the spin is up, this wave function is described as
a linear combination of |j, jz = j 〉 = R0k(ri)Ykk(�i)|↑〉 states,
where j = k + 1/2:

ψi =
∞∑

j=1/2

ajR
j− 1

2 |j, j 〉τi . (18)

aj in Eq. (18) is the coefficient for the |j, j 〉 state with the
separated factor of Rj− 1

2 . Analogously, the single-particle
wave function for the spin-down nucleons in the first quasi-α
cluster can be written as

ψi =
∞∑

j=1/2

a−jR
j− 1

2 |j,−j 〉τi . (19)

This expression can be obtained by a time-reversal transfor-
mation of the spin-up wave function.

Next, we discuss nucleons in the second and third quasi-α
clusters, which are generated by multiplying the rotational
operator for the first quasi-α cluster. According to the definition
of Wigner D function,

〈j, k|R̂(α, β, γ )|j,m〉 = exp[−ikα]dj
km(β) exp[−imγ ],

(20)

where d
j
km(β) is a Wigner small d function, the rotated |j, j 〉

state can be expressed as

R̂(α = 0, β = θ, γ = 0)|j, j 〉 =
j∑

m=−j

d
j
mj (θ )|j,m〉. (21)

Thus, the single-particle wave functions in the second and third
quasiclusters, which are generated by rotating |j, j 〉 in the first
quasicluster about the y axis, can be written as

R̂(α = 0, β = θ, γ = 0)ψi

=
∞∑

j=1/2

j∑
m=−j

ajR
j− 1

2 d
j
mj (θ )|j,m〉τi . (22)

We perform this transformation also for the spin-down nucle-
ons in the first quasi-α cluster, which are expressed as linear
combinations of {|j,−j 〉}. The rotation mixes |j,m〉 states
other than the |j,±j 〉 states, when θ satisfies d

j
±jj (θ ) 	= 1.

Rotating all single-particle wave functions following
Eq. (22) and substituting them into Eq. (23), we can discuss
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the nature of the Slater determinant consisting of quasiclusters.
Owing to the antisymmetrization, the lowest order of the wave
function in R is R8 (R4 for both proton and neutron parts), and
the coefficient for R8 exactly corresponds to the (s1/2)4(p3/2)8

configuration. Therefore, for � = 1, R → 0, and proper θ1

and θ2 values, the total wave function coincides with the p3/2

subshell closure configuration (see the Appendix). This limit
is different from the R → 0 limit of the three-α cluster model,
which is known as the Elliott SU(3) limit, (s)4(px)4(py)4.

C. AQCM wave function of the total system

The AQCM wave function of the total system consisting
of three quasi-α clusters is projected onto parity and angular
momentum eigenstates using the parity projection operator P̂ ±
and the angular momentum projection operator P̂ J

MK as

� =
∑
K

CKP̂ J
MKP̂ ±A [ψ1, ψ2, . . . , ψ12]. (23)

The parity projection operator P̂ ± is defined as

P̂ ± ≡ 1 ± P̂

2
, (24)

where P̂ is the parity operator. The angular-momentum
projection operator P̂ J

MK is defined as

P̂ J
MK ≡ 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�), (25)

where DJ
MK (�) is the Wigner D function. In the total wave

function, Eq. (23), particles whose numbers are from 4N − 3
to 4N form the N th quasi-α cluster.

D. Hamiltonian

The Hamiltonian operator Ĥ has the form

Ĥ =
A∑

i=1

t̂i − T̂c.m. +
A∑

i>j

v̂ij , (26)

where a two-body interaction v̂ij includes the central part, the
spin-orbit part, and the Coulomb part. For the central part, we
use the Volkov No. 2 effective N − N potential [25]:

V c(r̂ij ) =
2∑

k=1

V c
k exp

( − r̂2
ij

/
c2
k

)
(W − MP̂ σ P̂ τ ), (27)

where M = 0.60, W = 1 − M = 0.40, V c
1 = −60.65 MeV,

V c
2 = 61.14 MeV, c1 = 1.8 fm, and c2 = 1.01 fm. For the

spin-orbit potential, we adopted the spin-orbit part of the G3RS
potential [26]:

V ls(r̂ij ) =
2∑

k=1

V ls
k exp

( − r̂2
ij

/
d2

k

)
P̂ (3O)L̂ · Ŝ, (28)

where V ls
1 = −1600 MeV, V ls

2 = 1600 MeV, d1 = 0.600 fm,
d2 = 0.477 fm, and P̂ (3O) is a projection operator onto a

triplet-odd state. The operator L̂ stands for the relative angular
momentum and Ŝ is the spin operator.

The parameter set, M = 0.60, V ls
1 = −2000 MeV, and

V ls
2 = 2000 MeV, is known to give a reasonable description

of α + n and α + α scattering phase shifts [27]. In the present
study, we adopt, however, the slightly weaker strengths of the
spin-orbit force to fit the 0+

1 energy of 12C [28].

III. RESULTS AND DISCUSSION

In this section, we show results of the AQCM for 12C
and compare them with the AMD results. In particular, we
extract the single-particle orbits with the antisymmetrized
quasicluster + Hartree-Fock (AQC + HF) method to show that
the improved AQCM can describe the p3/2 subshell closure
configuration. We also briefly discuss the structure of the 0+

2
state.

A. Energy surfaces

The AQCM (three quasiclusters) energy surfaces of 12C
as functions of R and � are shown in Fig. 1. The top and
bottom panels show the energy and spin-orbit energy surfaces
for the 0+ state of 12C, respectively. The minimum of the
energy surface appears at around (R,�) = (0.9, 0.2) and the
corresponding energy is −89.6 MeV. This small distance
between clusters, R = 0.9 fm, and a small but finite imaginary
part of the wave function, � = 0.2, indicate that the ground
state of the 12C is an intermediate state between the three-α

FIG. 1. (Color online) The energy surfaces for the 0+ state of 12C:
the total energy (top) and the spin-orbit energy (bottom).
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state (� = 0) and the p3/2 subshell closure state (R → 0
and � = 1). This hybrid character of the ground-state wave
function can be confirmed by calculating the squared overlap
of the wave functions,

|〈�((R,�) = (0.9, 0.0))|�min〉|2 = 63.6%, (29)

|〈�((R,�) = (0.01, 1.0))|�min〉|2 = 47.3%, (30)

where �min is the wave function at the minimum of the energy
surface. One can see that the squared overlaps between �min

and the three-α state [(R,�) = (0.9, 0.0)] and between �min

and the p3/2 subshell closure state [(R,�) = (0.01, 1.0)] both
have significant values around 0.5.

From the spin-orbit energy surface, one finds that the spin-
orbit interaction acts attractively and repulsively for � > 0 and
� < 0, respectively (for � = 0, the spin-orbit interaction does
not act). Around the minimum of the total energy, the spin-orbit
interaction contributes ∼−16 MeV to the total energy. In the
next section, we show that the improved AQCM takes into
account effects of the spin-orbit interaction very well, and the
AQCM wave function is almost the same as the AMD wave
function.

B. Single-particle orbits of the AQC + HF method

The AQCM single-particle wave functions are given by
Gaussian packets with complex parameters, and different
single-particle wave functions are mutually nonorthogonal.
To extract orthogonal single-particle orbits and corresponding
effective single-particle energies from AQCM, we apply the
method imitating the Hartree-Fock (HF) approach which was
applied first in the context of the AMD [29]. We call it the
AQC + HF method. In general, the corresponding AQC + HF
single-particle orbits are given by linear combinations of
Gaussian single particle wave functions. One should stress,
however, that the HF self-consistency in AQC + HF approach
is satisfied only within the restricted functional space of
AQCM single-particle wave functions. Moreover, except for
special cases, resulting single-particle orbits are not eigen-
states of angular momentum and parity operator. In spite of
these restrictions, the AQC + HF approach provides useful
information about the dependence of mutually orthogonal
single-particle orbits and effective single-particle energies on
parameters of the AQCM manifold. In the following, we
analyze these effective single-particle energies to show that
the improved AQCM describes the p3/2 subshell closure with
the set of the parameter values R → 0 and � = 1.

Figure 2 shows AQC + HF effective single-particle ener-
gies of 12C for the improved AQCM as a function of �. The
Coulomb interaction is neglected and the limit of R → 0 is
expressed by R = 0.01 fm. There are in this case only three
AQC + HF single-particle orbits expressed by solid, dashed,
and dotted lines. Each of these orbits is occupied by four
nucleons because of the spin-isospin degeneracy. The lowest
orbit (the solid line) corresponds to s1/2 shell model wave
function. The higher two orbits (dashed and dotted lines) are
linear combinations of p3/2 and p1/2 components. At � = 1,
these two single-particle orbits become degenerate. In the
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FIG. 2. The AQC + HF effective single-particle energies of the
improved AQCM are plotted as a function of the parameter �

(R = 0.01 [fm]) in 12C. The Coulomb interaction is neglected in
this calculation.

vicinity of � = 1, the dominant component in higher orbits
is p3/2. The p1/2 component vanishes at � = 1. At this point,
the higher single-particle orbits are pure p3/2 shell model wave
functions. If we take into account the spin-isospin degeneracy
of four, eight nucleons occupy these degenerate p3/2 orbits.
Hence, for R → 0 and � = 1, the AQCM wave function
describes the ground-state configuration (s1/2)4(p3/2)8 of 12C
in the jj -coupling shell model. For other � values, there are
three independent AQC + HF single-particle orbits. In this
case, the AQCM wave function does not describe the p3/2

subshell closure configuration.
Figure 3 shows the AQC + HF effective single particle of

12C for the old version of the AQCM [19–21], where only one α
cluster is changed into a quasi-α cluster. In this case, there exist
always three independent AQC + HF single-particle orbits for
any value of �; i.e., the old version of the AQCM cannot
describe the p3/2 subshell closure configuration.

In Fig. 4, we show the expectation value of the one-
body spin-orbit operator, 〈�(R,�)|∑i L̂i · Ŝi |�(R,�)〉, as
a function of R and �. Here the sum over i is for all nucleons.
The calculations are performed using the improved AQCM.
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FIG. 3. The same as in Fig. 2 but for the old version of the AQCM
[19–21].
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FIG. 4. (Color online) The expectation value of one-body spin-
orbit operator,

∑
i L̂i · Ŝi , in the improved AQCM.

The expectation value becomes zero for the three-α model
(� = 0), and its sign changes when crossing the � = 0 line.
For the p3/2 subshell closure configuration, the expectation
value of the one-body spin-orbit operator should be 4, i.e., 8
(number of nucleons in the p3/2 orbit) × 1/2 (the expectation
value of L̂i · Ŝi for the p3/2 orbit). Indeed, we can see that this
value is reached exactly in the limit of � = 1 and R → 0. This
proves that the AQCM can describe the p3/2 subshell closure
configuration.

The optimal AQCM state at R = 0.9 fm and � = 0.2,
which corresponds to the minimum of the energy sur-
face, has the value 〈�(R,�)|∑i L̂i · Ŝi |�(R,�)〉 = 2.38.
Again, this shows that the main component in the ground-
state wave function is intermediate between the cluster
[〈�(R,� = 0)|∑i L̂i · Ŝi |�(R,� = 0)〉 = 0] and p3/2 sub-
shell closure [〈�(R → 0,� = 1)|∑i L̂i · Ŝi |�(R → 0,� =
1)〉 = 4] limits.

C. Comparison of AQCM and AMD results

In this section, we compare our results of the AQCM
with AMD. In Ref. [28], we have calculated 12C using the
β-γ -constrained AMD with the same interaction as used in
the present work. In AMD, all nucleons are described as
independent Gaussian wave packets, and the Gaussian center
parameters are complex variational parameters. This variation,
called the “cooling process,” is often performed before the
angular momentum projection. Here, we have introduced as
constraints the quadrupole deformation parameters, β and
γ , and prepared many different states to solve the cooling
equation. By projecting all these different configurations onto
the eigenstates of angular momentum and parity, we can obtain
the lowest energy configuration after the projection. Thus, the
β-γ -constrained AMD somehow overcomes the approxima-
tion of projection after variation and can be considered as an
improved version of AMD.

We compare the optimal solution of our AQCM wave
function (R,�) = (0.9, 0.2) with this β-γ -constrained AMD
at the minimum point of the 0+ energy surface on the β-γ
plane, (β cos γ, β sin γ ) = (0.35, 0.17), which is the dominant
component of the 0+

1 state of 12C. The energy associated
with these AQCM and AMD wave functions are −89.6 and
−90.1 MeV, respectively; i.e., their difference is rather small,

0.5 MeV. In addition, the squared overlap between the AQCM
and AMD wave functions is very large,

|〈�min|�AMD,min〉|2 = 98.6%, (31)

where �AMD,min is the 0+ projected AMD wave function at
(β cos γ, β sin γ ) = (0.35, 0.17) in Ref. [28]. This very large
overlap indicates that the AQCM wave function gives an
almost identical result of the AMD wave function for the
ground state of 12C. Remaining small differences between
AMD and AQCM wave functions are attributable to different
symmetries in both models, as discussed later. The AQCM
wave function has a threefold rotational symmetry about the y
axis, while the AMD wave function has no symmetry.

The number of degrees of freedom in AQCM and AMD
wave functions is very different. The AQCM wave function
has only two degrees of freedom (R and �), whereas the
AMD wave function in the studied case has ∼100 degrees
of freedom, such as real and imaginary parts of the center of
Gaussian wave packet and the direction of the spin for each
single-particle wave function. This indicates that the AQCM
describes effect of the spin-orbit interaction and the breaking
of α clusters very efficiently.

In the framework of β-γ -constrained AMD, wave functions
with the constraint of γ = π/3 have approximately threefold
rotational symmetry. Therefore, one can compare AQCM and
AMD wave functions having the same threefold symmetry by
taking the minimum AMD wave function on the γ = π/3
line. This minimum point is (β, γ ) = (0.29, π/3) and the
corresponding energy is −89.6 MeV, which is the same value
of the optimal solution of the AQCM wave function. In
addition, the squared overlap is very close to unity,

|〈�min|�AMD,sym〉|2 = 99.9%, (32)

where �AMD,sym is the 0+ projected AMD wave function at
(β, γ ) = (0.29, π/3). This almost 100% overlap of these two
wave functions means that the AQCM result is consistent with
the AMD result for the ground state of 12C except for the effect
of symmetry breaking.

Finally, we compare the β-γ -constrained AMD with the
previous AQCM wave function [19–21], where only one of
the α clusters is changed into the quasicluster. In this version
of the AQCM, the minimum point of the energy surface is at
(R,�) = (1.2, 0.4) and its energy is −89.2 MeV. Then, energy
difference between the previous AQCM and AMD is 0.9 MeV,
which is not a serious problem compared with the improved
AQCM, 0.5 MeV. However, the squared overlap of these two
wave functions deviates very much from unity,

|〈�pre,min|�AMD,min〉|2 = 90.8%, (33)

where �pre,min is the previous AQCM wave function at the
minimum of the total energy.

D. Comparison of cluster-shell competition in 0+
1

and 0+
2 states of 12C

The first excited 0+ state in 12C is a well-known Hoyle
resonance close to α- and triple-α-decay thresholds. The
proximity of these two decay thresholds implies that the con-
tinuum coupling is particularly important for understanding
of the structure of this state, similarly as the proximity of
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FIG. 5. The convergence of total energy for 0+
1 (the solid line)

and 0+
2 (the dashed line) states in 12C with respect to the number of

trial AQCM and three-α cluster basis states. The dotted line shows
the three-α cluster threshold energy, −82.9 MeV.

one- and two-neutron decay channels determines the ground-
state properties of 11Li [8,9]. The present version of the AQCM
describes many-body states in the closed quantum system
framework; i.e., the coupling of the wave function to the decay
channels is absent and the asymptotic form of the wave func-
tion is incorrect. Keeping this shortcoming in mind, we employ
the flexible AQCM to describe the evolution of cluster-shell
competition from the ground state 0+

1 to the Hoyle state 0+
2 .

Results of this section have been obtained using the
generator coordinate method (GCM) with a number of basis
states. These states are given by AQCM wave functions
for different R and � values and various three-α cluster
model wave functions. In these latter components, the AQCM
assumption of a threefold rotational symmetry about the y axis
is abandoned to simulate a gaslike near-threshold component
of the wave function.

Results are shown in Fig. 5 for the ground state 0+
1 and the

Hoyle state 0+
2 . The dotted line in Fig. 5 shows the three-α

cluster threshold energy which is −82.9 MeV in the present
model. From the first to the tenth basis state, we superpose
AQCM wave functions where the values of parameters R
and � are chosen randomly, keeping a threefold rotational
symmetry about the y axis. The following 40 basis states
correspond to various three-α cluster wave functions which
are obtained by assigning the Gaussian center positions of α
clusters randomly. These basis states have no spatial symmetry.

Figure 5 shows the convergence of the total energy for 0+
1

(the solid line) and 0+
2 (the dashed line) states depending on

the number of basis states. We see that the random three-α
cluster component, which is inessential in the ground state
of 12C, lowers the energy of the first excited state by about
7 MeV. Hence, the gaslike component cannot be neglected in
the near-threshold 0+

2 state. Because of that, the energy of the
0+

2 state converges rather slowly and one needs at least 50 basis
states to find the stable result. The energy of the 0+

1 state
converges at −91.8 MeV, which is close to the experimental
value −92.2 MeV. The calculated 0+

2 state appears slightly
above both α- and triple-α-decay thresholds, in agreement
with the experimental data.

To discuss the structure of 0+
1 and 0+

2 states, we calculate
the expectation value of the one-body spin-orbit operator. For
the ground state, the calculated value, 〈�GCM(0+

1 )| ∑i L̂i ·
Ŝi |�GCM(0+

1 )〉 = 1.77, is in between 0 (the three-α cluster
state limit) and 4 (the p3/2 subshell closure configuration
limit). This result confirms the earlier finding (see Sec. III B)
for a single optimal AQCM wave function that the 0+

1 state
is intermediate between the three-α cluster state and the
p3/2 subshell closure state. As compared to the value for an
optimal state at R = 0.9 fm and � = 0.2 (see Sec. III B),
〈�(R,�)|∑i L̂i · Ŝi |�(R,�)〉 = 2.38, the GCM value is
slightly reduced owing to the mixing of different basis
states and breaking a threefold rotational symmetry about
the y axis. However, the near-threshold 0+

2 state has a very
small expectation value of the one-body spin-orbit operator,
〈�GCM(0+

2 )| ∑i L̂i · Ŝi |�GCM(0+
2 )〉 = 0.11; i.e., it is an almost

pure cluster structure.
These results for 0+

1 and 0+
2 agree with the modern

understanding of cluster structure formation in 12C [8,9]. A
transition between the jj -coupling shell model structure and
the three-α cluster structure occurs in the vicinity of the α- and
triple-α-decay thresholds and can be seen in the near-threshold
0+

2 state. It is interesting that the present GCM calculation
which neglects an explicit coupling to both α-decay channels
is capable of following the transition from a predominantly
shell model wave function in the ground state 0+

1 to an almost
pure cluster wave function in the 0+

2 excited state.

IV. SUMMARY AND PERSPECTIVES

Nuclear clustering escapes the description in terms of the
standard shell model which simply fails to predict cluster
states at observed low excitation energies around cluster-decay
threshold. Generic explanation of this enigmatic phenomenon
involves understanding of the role played by the coupling
of shell model states via the decay channel(s). In this work,
we have proposed a simple approach based on the improved
AQCM parametrization to describe a transition from the
α-cluster wave function to the jj -coupling shell model wave
function. As compared to the previous AQCM [19–22], which
allows the transformation of a single α cluster into a quasi-α
cluster, in the improved AQCM we expand the model space
and spin directions can be oriented in any direction. In the
new formulation, all α clusters of a nucleus can be changed
into quasi-α clusters. Hence, a destructive interference of the
spin-orbit coupling and clustering can be investigated in a
single variational wave function.

The relation between the shell and cluster models was
established in the harmonic oscillator limit [30], i.e., via the
SU(3) symmetry [31,32]. In the symmetry-adopted models,
such as the SU(3) shell model [32], the symplectic shell
model [33], or the semimicroscopic algebraic cluster model
[34], one may characterize the relative importance of the shell
and cluster components by the SU(3) content of the realistic
wave function. The other way is to split the interaction into
SU(3)-preserving and a SU(3)-breaking parts. Their relative
weights can then be used as a control parameter to indicate how
close the real situation is to the intersection point of the two
models [35]. In the shell model, typical symmetry-preserving
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parts are the harmonic oscillator and quadrupole forces, while
important symmetry-breaking parts are the spin-orbit and
pairing interactions. In the cluster model, the symmetric parts
are again the harmonic oscillator and quadrupole forces, and
the symmetry-breaking interaction can be, e.g., the dipole
interaction. In the 0p shell, where the SU(3) model reduces
to Wigner’s supermultiplet theory [36], the joint conclusion
of many works is that for the ground state of the 12C
nucleus the (0, 4) SU(3) symmetry is a good approximation.
The recent studies using the no-core shell model [37] con-
firms the dominance of the (0, 4) component in the wave
function [38].

The AQCM proposed in this work provides a possibility for
going from the moleculelike clusterization to the jj coupled
shell model limit directly, in a single step, contrary to the
two-step procedure of the shell and cluster model calculations
with different symmetry-breaking terms, as we discussed in
Ref. [22]. This model does not apply the SU(3) basis; thus,
a detailed comparison with the standard shell model is not
easy. Based on analytical and numerical studies, we have
shown that the AQCM wave function in the limit R → 0
and � = 1 corresponds to the (s1/2)4(p3/2)8 closed-shell
configuration of 12C. The proposed parametrization makes
it possible to determine an optimal wave function of 12C in
a variational procedure for each chosen effective nucleon-
nucleon interaction. The optimal AQCM ground state of 12C is
an intermediate state between the three-α cluster state and the
shell model state with the p3/2 subshell closure configuration.
From a comparison with the AMD model, where all nucleons
are treated independently, we found that the AQCM result is
consistent with the AMD result (overlap is about 99%), even
though the number of degrees of freedom in the AQCM trial
wave function is significantly fewer than in the AMD.

The AQCM can be applied to heavier nuclei as well. In
sd-shell nuclei, a variational wave function has to include both
clusters and quasiclusters to describe pure shell model con-
figurations. In some cases, the AQCM wave function contains
more than one configuration, e.g., in 28Si one configuration is a
pentagon of quasi-α clusters on the xy plane and two α clusters
along the z axis, and another configuration is a tetrahedron
of α clusters whose center of gravity is at the origin of the
coordinate system and a triangle of three quasi-α clusters on
the xy plane surrounding it. If we take the zero limit for the
relative distances among α clusters and quasiclusters, these
two configurations become identical and give the lowest shell
model configuration (s1/2)4(p3/2)8(p1/2)4(d5/2)12 at � = 1.

A prolate shape cluster configuration 16O + 12C is also
expected to play a role in the low-energy region of 28Si.
In such a configuration, one can easily prepare 12C as the
jj -coupling shell model wave function (s1/2)4(p3/2)8 using the
improved AQCM parametrization. The optimal configuration
of 28Si can then be obtained by diagonalizing the Hamiltonian
matrix comprised of these different configurations.

The AQCM studies open new perspectives in studies of
cluster-shell competition in various particle-stable systems, in-
cluding neutron-rich carbon nuclei, heavy Nα nuclei, or hyper-
nuclei. The generic explanation of nuclear clustering, its uni-
versal occurrence and properties, involves understanding of the
role played by the coupling of shell model states via the decay
channel(s). This coupling leads to the formation of the collec-
tive near-threshold eigenstate of the open quantum system. The
coupling results in the anti-Hermitian component and interplay
between Hermitian and anti-Hermitian terms is a source of
collective near-threshold phenomena in the ensemble of shell
model states [8,9]. The coupling to decay channels in AQCM,
which could be included through the complex scaling method,
is a challenging subject to be addressed in the near future.
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APPENDIX: R EXPANSION OF THE IMPROVED
AQCM WAVE FUNCTION

In this Appendix, we show that the improved AQCM wave
function (in this case three quasi-α clusters) becomes the jj -
coupling wave function (in this case p3/2 subshell closure
configuration) at the limit of R → 0 and � = 1. We expand
the AQCM wave function in R and prove that the R8-order
term of the wave function is the (s1/2)4(p3/2)8 configuration.

Because proton and neutron parts of the wave function are
identical, we consider here only the proton part. The proton
part of the total wave function of the improved AQCM with
� = 1 is the antisymmetrized product of six single-particle
wave functions:

�p =
(

2ν

π

) 9
2

A

[
exp[−ν{r1 − R(1, i, 0)}2]

(
1
0

)
, exp[−ν{r2 − R(1,−i, 0)}2]

(
0
1

)
,

exp

[
−ν

{
r3 − R

(
−1

2
, i,

√
3

2

)}2](
1/2√
3/2

)
, exp

[
−ν

{
r4 − R

(
−1

2
,−i,

√
3

2

)}2] (−√
3/2

1/2

)
,

exp

[
−ν

{
r5 − R

(
−1

2
, i,−

√
3

2

)}2] ( −1/2√
3/2

)
, exp

[
−ν

{
r6 − R

(
−1

2
,−i,−

√
3

2

)}2] (−√
3/2

−1/2

)]
, (A1)
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where

(x, y, z) ≡ xex + yey + zez (A2)

stands for the Gaussian center parameters, and (
a
b

)
≡ a|↑〉 + b|↓〉 (A3)

is the spin part of the wave function. Here,

exp[−ν{r1 − R(1, i, 0)}2]

(
1
0

)
(A4)

is the spin-up proton, and

exp[−ν{r2 − R(1,−i, 0)}2]

(
0
1

)
(A5)

is the spin-down proton of the first quasi-α cluster. Single-particle wave functions of other four protons are generated by rotating
both the spatial and spin parts of these two orbits about the y axis by 2π/3 and 4π/3.

Using Eqs. (18), (19), and (22), we expand the proton part of the total wave function, Eq. (A1), in R as

�p =
(

2ν

π

) 9
2

A

[
a1/2

∣∣∣∣1

2
,

1

2

〉
+ a3/2R

∣∣∣∣3

2
,

3

2

〉
+ O(R2), a−1/2
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2
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2
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2
,−3

2

〉
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(
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2
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2
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1

2
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3

2
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2
,−1

2

〉)
+ a3/2R

(
1

8
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2
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3

2
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8
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2
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3

8
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2
,−1

2

〉
+ 3

√
3

8

∣∣∣∣3

2
,−3

2

〉)
+ O(R2),
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(
−

√
3

2
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2
,

1

2

〉
+ 1

2
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2
,−1

2
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(A6)

=
(
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π

) 9
2 999

512
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2
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2
−3/2R

4A
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2
,
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〉
,
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2
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〉
,
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,
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,
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〉
,
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2
,−3

2

〉]
+ O(R5). (A7)

The (s1/2)2(p3/2)4 configuration appears as the lowest order term in R, the R4-order term. Because of the antisymmetrization,
terms up to the R3 order vanish. Because neutron and proton parts of the wave function have the same form, the total wave
function has the (s1/2)4(p3/2)8 configuration at the R8-order term.
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