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Energies within the A = 10 isospin quintet
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We have used a potential model to compute energies of the lowest T = 2 states in A = 10 nuclei. For 10N, we
obtain Ep = 1.81 to 1.94 MeV.
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I. INTRODUCTION

Advances in experimental techniques have made possible
the measurement of energies of nuclear states that were
previously inaccessible. These states are produced in breakup
or nucleon removal experiments, and their energies are
determined by detecting all the decay products in coincidence
and measuring their momenta. For example, Charity et al. [1]
recently reported the energy of the T = 5/2 double analog in
11B. In the hope that these techniques may soon be applied to
A = 10 nuclei with T = 2, we have computed the energies to
be expected for members of this isospin quintet.

All the states of 10Li are unbound [2]. From a wide variety of
reactions [3–6] the ground state (g.s.) has been established as
an s-wave structure at En = 26(13) keV. With a simple model of
nuclear plus Coulomb potentials (plus angular momentum, as
appropriate), we have computed the energies of the lowest T =
2 state in the A= 10 nuclei. Our procedure is straightforward. It
has been used to compute energies of analog and mirror states
in several light nuclei. A recent paper on 20F and 20Mg [7]
contained some of the references and a description of the
model. In normal cases, in which the nuclear structure and
excitation energies of the core states are reliably known, our
method has been shown to produce results that agreed with
experimental values to within about 30 to 40 keV. For example,
we found [8] that our model reproduced the energies of eight
positive-parity states in 18Ne to this precision. Perhaps the
most striking example of the success of our approach was the
prediction [9] of the g.s. energy of 19Mg: E2p = 0.87(7) MeV.
We assigned an uncertainty of 70 keV to those calculations,
because the energies of the relevant core states in 18Na were
not known, and it was necessary to also compute them. A later
experiment [10] found E2p = 0.75(5) MeV, just at the limit
of our uncertainty. Still later, we investigated the sensitivity of
the 19Mg (g.s.) predictions to various properties of the model
input: a different geometry of the potential well, different
spectroscopic factors, and a different source of 18Na core
energies. We found [11] that these variations were all within
our estimated uncertainty of 70 keV.

We solve the one-body Schrödinger equation, using a
Woods-Saxon shape for the nuclear potential. Parameters are
r0, a = 1.25, and 0.65 fm. The well depth is adjusted to
reproduce a specific energy in the core + n system. An
appropriate Coulomb potential is then added and the same

nuclear potential is used to compute the energy of the core
+p system. The A = 10, T = 2 isospin quintet runs from
Tz = 2 at 10Li to Tz = −2 at 10N. In a standard description,
10Li is pure 9Li x neutron, 10N is pure 9C x proton, and
the interior nuclei are linear combinations of A = 9 and
T = 3/2 cores coupled to a neutron or proton, weighted
by the square of an isospin Clebsch-Gordan coefficient
C(3/2Tzc1/2tz;2Tz), where tz is +1/2 for a neutron. For ex-
ample, the T = 2 state of 10B is 50% proton and 50% neutron:
10B(T = 2) = (1/2) 9B(T = 3/2)x n+ (1/2) 9Be(T = 3/2)xp,
so that M[10B(T = 2)] = (1/2)({M[9B(T = 3/2)] + M(n) +
En} + {M[9Be(T = 3/2)] + M(1H) + Ep}), where M are
mass excesses and En and Ep are the results of the potential
calculation. (Here, En,p are just the negatives of the separation
energies Sn,p, so that E is negative for a bound state and
positive for an unbound state.)

Our procedure is to find the nuclear potential that binds 10Li
as 9Li + n and then use this potential plus the appropriate
Coulomb potential to compute the other nuclei. For the charge
of the cores, the proton calculations have Z = 3 (10Be) to Z = 6
(10N). Because 10Li is slightly unbound, we did the calculations
for the case of a slightly bound 10Li and then extrapolated to an
unbound energy of 26 keV. For purposes of the extrapolation,
we examined the behavior of Ep–En for negative values of
En and extrapolated smoothly to En = +26 keV. We estimate
that the additional uncertainty introduced by this extrapolation
procedure is less than about 30 keV. In other applications
in which the nuclear structure is accurately known, our
procedure has produced results with typical uncertainties
of 30–40 keV. Thus, in the present case, for a specific
spectroscopic factor, we expect an uncertainty in our calculated
energies of about 45–50 keV. As we see below, however,

TABLE I. Energies (in MeV) of the lowest T = 3/2 states in
A = 9 nuclei.

Nucleus Ex
a ME (g.s.)b ME (T = 3/2)

9Li 0 24.955 24.955
9Be 14.392(2) 11.348 25.740(2)
9B 14.6550(25) 12.417 27.0720(25)
9C 0 28.909(2) 28.909(2)

aReference [2].
bReference [12].
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TABLE II. Experimental and computed energies (in MeV) of the
lowest T = 2 states in 10Be.

Source Quantity Value

Experimental ME (g.s.)a 12.607
Ex (T = 2)b 21.216(23)
ME (T = 2) 33.823(23)

Computedc ME (S0 = 1.0) 33.756
ME (S0 = 0.80 33.772

aReference [12].
bReference [2].
cUsing a mass excess of 33.053 MeV [12] for 10Li.

uncertainty in the s-wave spectroscopic factor adds an ad-
ditional uncertainty.

II. CALCULATIONS AND RESULTS

We first list in Table I the energies of the A = 9, T =
3/2 cores. Excitation energies are from the latest compilation
[2], and g.s. mass excesses (MEs) are from the new mass
evaluation [12]. This quartet was among the first (perhaps the
first) isospin quartet to be completed [13]. For all the A =
10 cases, because the 10Li (g.s.) parentage is not accurately
known, we have done the computations twice—once with an
s-wave spectroscopic factor of 1.0 and then again with S0 =
0.80, with the remainder being a d wave. Our calculations
used a mass excess of 33.053 MeV [12] for 10Li. For T = 2
excited states in A = 10, only 10Be is known [2]. Table II lists
the experimental energy of the lowest T = 2 state in 10Be and
the results of our calculation. The experimental value of ME
is 33.823 (23) MeV, compared to calculated values of 33.756
(S0 = 1) and 33.772 (S0 = 0.8) MeV.

Predictions for the other nuclei are listed in Table III. From
the 10B(14N, 14B) 10N reaction [14],the lowest known state in
10N has Ep = 2.6(4) MeV [ME = 38.8(4) MeV], with a width
of 2.3(16) MeV. As pointed out by the compilers [2], this is
almost certainly not the g.s., but rather the mirror of the 1+
state at En = 0.265 MeV in 10Li. We agree. Our g.s. in 10N
is predicted to have Ep = 1.81 or 1.94 MeV, for S0 = 1.0 or

TABLE III. Calculated mass excesses (in MeV) for the lowest
T = 2 state in A = 10 nuclei.

Nucleus ME

S0 = 1.0 S0 = 0.80
10B 34.798 34.842
10C 36.150 36.230
10N 38.010 38.138

0.8, respectively. The compilation [2] estimated Ep (g.s.) ∼
1.8 MeV.

Much earlier, Aoyama et al. [15] used the complex scaling
method in a core + nucleon model of 10Li and 10N. They
reproduced p-wave 1+ and 2+ resonances observed by Bohlen
et al. [16] in 10Li and predicted the corresponding resonances
in 10N. Their 1+ resonance was at energy 2.84 MeV, with a
width of 1.89 MeV. They did not discuss s-wave resonances in
10Li and only remarked that they would be very broad in 10N,
“even if they exist” [15].

Our procedure automatically satisfies the quadratic isobaric
multiplet mass equation (IMME), but only if the core masses
do. Here, the A = 9, T = 3/2 energies (Table I) exhibit the
need for a small cubic term (d �= 0), and this could cause
our A = 10 energies to deviate slightly from the quadratic
IMME.

III. SUMMARY

We have used a simple potential model to calculate the
expected energies of the lowest T = 2 state in A = 10 nuclei,
given its energy of +26 keV in 10Li. This state is known only
in 10Be, where its mass excess is 33.823(23) MeV (Table II).
Our result for a pure s-wave state is 33.756(45) MeV, while a
mixture of 80% s and 20% d gives 33.772(45) MeV, both in
reasonable agreement. For the g.s. of 10N, our computed range
is Ep = 1.81 to 1.94 MeV, depending on the spectroscopic
factor (Table III). Predictions for the other two nuclei are also
listed in Table III. We expect (hope) these predictions will soon
be tested experimentally.
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