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The half-skyrmions that appear in dense baryonic matter when skyrmions are put on crystals modify drastically
hadron properties in dense medium and affect strongly the nuclear tensor forces, thereby influencing the equation
of state (EoS) of dense nuclear and asymmetric nuclear matter. The matter comprising half-skyrmions has
vanishing quark condensate but nonvanishing pion decay constant and could be interpreted as a hadronic dual of
strong-coupled quark matter. We infer from this observation combined with certain predictions of hidden local
symmetry in low-energy hadronic interactions a set of new scaling laws—called “new-BR”—for the parameters
in nuclear effective field theory controlled by renormalization-group flow. They are subjected to the EoS of
symmetric and asymmetric nuclear matter, and are then applied to nuclear symmetry energies and properties of
compact stars. The changeover from the skyrmion matter to a half-skyrmion matter that takes place after the
crossover density n1/2 provides a simple and natural field theoretic explanation for the change of the EoS from
soft to stiff at a density above that of nuclear matter required for compact stars as massive as ∼2.4M�. Crossover
density in the range 1.5n0 � n1/2 � 2.0n0 was employed, and the possible skyrmion half-skyrmion coexistence
or crossover near n1/2 is discussed. The novel structure of the tensor forces and the EoS obtained with the new-BR
scaling is relevant for neutron-rich nuclei and compact-star matter and could be studied in RIB (rare isotope
beam) machines.
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I. INTRODUCTION

The topological soliton called skyrmion [1] has turned
out to be exceedingly pervasive in a variety of space-time
dimensions ranging from 3 to 5 in many areas of physics [2]
and was beautifully observed in such systems as quantum Hall
or cold atoms and more recently in a monoatomic magnetic
film (see, e.g., [3]). In contrast, the situation with its role in
nuclear physics was much less clear and with somewhat limited
success. In this note, we make an attempt to uncover the power,
hitherto unexploited, of skyrmion in strong interaction physics
focusing on nuclear and dense matter. In contrast to condensed
matter, the effect of skyrmion structure in strong interactions
turns out to be indirect and hence much less transparent. In
this work we show with simple plausible arguments that the
skyrmion picture can indeed make a novel prediction on the
properties of compact stars that has not been made thus far by
other approaches.

The arguments made in formulating the theoretical frame-
work are neither rigorous nor completely unambiguous.
Although the crystal structure which is valid in the large
Nc limit could be applicable at very large density, it is not
clear that it can be used in the density regime that we are
concerned with, which will be a few times the normal nuclear
matter density. What we will be exploiting is, however, the
topological structure provided by the skyrmion configuration,
which is insensitive to spatial symmetry. In proceeding we
will rely on what nature indicates at normal densities and then
extrapolate to high densities using a hidden local symmetry
(HLS) structure with well-defined degrees of freedom.

The starting point of our work is that when a large number
of skyrmions as baryons are put on a face-centered-cubic
(FCC) crystal to simulate dense matter, the skyrmion matter
undergoes a transition to a matter consisting of half-skyrmions
[4] in CC configuration at a density that we shall denote as n1/2.
This density is difficult to pin down precisely but it is more
or less independent of the mass of the dilaton scalar, the only
low-energy degree of freedom that is not well known in free
space. It was estimated to lie typically at between 1.3 and
2 times the normal nuclear matter density n0 [5].

The half-skyrmion phase, made up of fractionized baryon
numbers, is characterized by the quark condensate 〈q̄q〉 that
vanishes on the average in the unit cell with, however, chiral
symmetry still broken, so the pion is present. It likely has an
inhomogeneous spatial distribution of baryon density. There
is no obvious order parameter for the “transition” although
there can be higher-dimension field operators representing an
emergent symmetry that could be identified at quantum level.
What can distinguish the two “phases” are the different degrees
of freedom with different topological charges.

Among the predictions made so far with the half-skyrmion
phase, the most striking one—which is the main object of
this article and has not been made by other approaches—was
that the presence of n1/2 strongly modifies the tensor forces in
nuclear interactions and in particular the symmetry energy at
densities n > n1/2 [6,7].

In this note, we confront our predictions with nature by
translating the (semi)classical results of [6] into the parameters
of an effective Lagrangian having chiral symmetry and confor-
mal symmetry, and then do a quantum–effective-field-theory
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(EFT) calculation for nuclear matter and compact-star matter
using a renormalization-group (RG)-based formalism [8]. For
the range n1/2 = (1.5–2.0) n0 considered in [6], we have
applied our formalism to neutron star calculations and a
comparison of our results with the recently discovered two-
solar-mass neutron star [9] will be discussed. An interesting
result of the calculation is that the skyrmion-half-skyrmion
crossover makes the EoS stiffer at the crossover density n1/2

and beyond, thereby leading to more massive stars.
In a nutshell, our strategy is as follows. Up to the nuclear

matter density n0, our nuclear effective field theory will be
guided by symmetries of low-energy QCD (such as chiral
symmetry, hidden local symmetry, etc.) backed by nuclear
phenomenology available up to density near n0. There the
effective Lagrangian will be endowed with parameters suitably
scaling in the vacuum sliding with the density. We will assume
that one can use the same EFT up to the density n1/2 at which
half-skyrmions appear which we take to be above but not far
above n0. Above n1/2 for which there are neither experimental
data nor model-independent theoretical tools available, we will
take the properties indicated by the skyrmion-half-skyrmion
transition based on hidden local symmetric Lagrangian and
certain predicted property of hidden local fields as the chiral
critical point is approached. The effective Lagrangian so given
is then translated into an effective nuclear field theory that is
subject to many-body techniques that account for high order
quantum effects.

II. NEW-BR IN THE HALF-SKYRMION PHASE

What plays a key role in our development is the nuclear
symmetry energy computed in [6] in dense skyrmion matter.
There it was found that the symmetry energy Esym figuring in
the energy per particle of asymmetric nuclear matter at density
n in the form,

E(n, α) = E(n, α = 0) + Esym(n)α2 + O(α4), (2.1)

where α = (nn − np)/(nn + np) with nn(np) the number
density of neutrons (protons) is given by

Esym ≈ 1

8λI

, (2.2)

where λI is the isospin moment of inertia obtained by rotational
quantization of the multi-skyrmion system which is given by
an integral over the unit cell of a certain combination of
the skyrmion configuration. We should understand that this
is a quasiclassical potential energy contribution coming at
O(1/Nc) in the large Nc expansion and contains no kinetic
energy term. In what follows, we shall take into account
quantum corrections arising from nuclear correlations that are
higher order in 1/Nc. For the moment we focus on (2.2). A
striking feature of (2.2) discovered in [6] is a cusp at n1/2 of
the symmetry energy which decreases from n0 to n1/2 and then
increases for n > n1/2. Now given the classical nature of (2.2)
and the neglect of the kinetic energy term, one cannot expect
this feature to appear unscathed in experiments. To confront
nature, one has to go beyond the classical approximation of
the skyrmion crystal. How to systematically make quantum
corrections within the skyrmion crystal approach is not yet

known. What we shall instead do is “translate” the classical
result of [6] into the framework of an effective field theory
treated at mean field of a HLS Lagrangian [10] that contains all
relevant degrees of freedom at the energy scale involved, i.e.,
baryons, pions, and vector mesons. There is of course a certain
arbitrariness in doing this but we shall rely on what nature
indicates. In addition, a dilaton scalar denoted χ is introduced
to account for the spontaneously broken conformal symmetry
as precisely defined in [11]. The work in [6] uses the nonlinear
sigma model, involving only pions and baryons (emerging as
skyrmions). However the nonlinear sigma model Lagrangian is
gauge equivalent to the HLS Lagrangian, hence can capture the
physics of vector mesons as was proposed in [12]. Our strategy
which is consistent with the spirit of the renormalization
group is then to do effective field theory calculation with this
Lagrangian, with the parameters of which “running” with the
intrinsic medium dependence as formulated in [12]. We will
refer to this medium dependence as “BR scaling.”

We will now describe how the cusp structure in (2.2) can
be reproduced by an effective Lagrangian in mean field.

Up to the density n1/2, our effective Lagrangian will carry
the parameters scaling as introduced in [12]. Let us call it
“old-BR.” They are of the form,

m∗
V /mV ≈ m∗

N/mN ≈ f ∗
π /fπ ≡ �I , (2.3)

and

g∗
V /gV ≈ 1, (2.4)

where the asterisk represents density dependence, fπ is
the pion decay constant, the subscripts N and V stand,
respectively, for the nucleon and the vector mesons V = ρ, ω,1

and gV is the hidden gauge coupling constant g standing for
both V = ρ, ω [13]. It was assumed [12,13] that the flavor
U (2) symmetry applies to (ρ, ω) in baryonic matter up to the
normal nuclear matter density n0 and will be assumed in what
follows, up to n1/2 as it does in matter-free space. However,
at n � n1/2, the fractionization of the skyrmions produces a
change in the intrinsic scaling as [6]

m∗
ρ/mρ ≡ �

ρ
II , m∗

N/mN ≡ �N
II = y(n), (2.5)

where y(n) is an order 1 constant that is more or less density
independent as explained below. The scaling �

ρ
II is unknown

except (perhaps) very near chiral transition. It needs not scale
in the same way as �I does as explained below. Very near
chiral transition at n = nc, however, the HLS theory has,
whether viable or not, a definite prediction thanks to the “vector
manifestation fixed point (VM)” at which the matching of both
the vector and axial-vector correlators gives [10]

m∗
ρ/mρ ≈ g∗

ρ/gρ → 〈q̄q〉∗/〈q̄q〉, n → nc, (2.6)

where q stands for chiral quark field. Unless we assume
that U (2) symmetry holds in medium—which we will not as
explained below—the hidden local symmetry argument does
not give any prediction as to how the ω mass and the ω-NN

1Whenever necessary, as will be the case for n > n1/2, we will
specify whether it is ρ or ω.
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coupling behave in medium for n > n1/2. For simplicity, we
will simply take

m∗
ω/mω ≈ m∗

ρ/mρ. (2.7)

As for the ω-NN coupling ≡ gω, it is very much subtler and
we will specify it later. We will call (2.5)–(2.7) “new BR.” The
difference from the old BR is lodged in the density regime
n � n1/2.

There are two points to note here:

(i) One is that at n1/2 the scaling parameter changes
from the pion decay constant scaling as (f ∗

π /fπ )2 ∼
〈q̄q〉∗/〈q̄q〉 to the hidden local symmetry coupling
constant gρ scaling linearly as in (2.6). This changeover
was already observed in [13] from phenomenology.
Because gρ is directly connected, via renormalization
group flow, to the quark condensate which is the bona
fide order parameter of chiral symmetry in the chiral
limit, near the VM fixed point, it is the vector meson
mass ∝ gρ that carries information on chiral symmetry,
not the pion decay constant. This changeover of the
scaling from f ∗

π to g∗
ρ that accounts for that �I and

�II need not have the same behavior in density is
reflected in the half-skyrmion phase in that the pion
decay constant drops only slowly in contrast to the
quark condensate which drops to zero at n1/2. It is
important to note that the hidden gauge coupling gρ

scales in the same way as the ρ-meson mass does at
high density whereas at low density up to n1/2, the
gauge coupling stays unscaling. This difference will
turn out to have a drastic effect on the ρ tensor force
for n > n1/2.

(ii) The second point, also connected to the slowly dropping
pion decay constant, is that the nucleon mass scales
little beyond n1/2, remaining nonzero at the chiral
transition. This resembles—and we believe is related
to—the nucleon mass in the parity-doublet nucleon
model where there is a somewhat large chirally invariant
mass m0 that remains at the transition [14]. In our
application to be given below, we will consider m0 ∼
(0.7–0.8)mN .

That the new BR affects the nuclear tensor forces across
the density n1/2 was explained in [6,7]. So we will skip the
details and briefly summarize only the main features that we
will need below.

If one takes the nucleon to be heavy while other hadrons,
i.e., mesons, are light, then one can take the nonrelativistic
approximation for the nucleons and write the effective tensor
forces in medium in the usual form with the parameters of
the Lagrangian carrying the intrinsic density dependence à la
BR scaling. The two tensor forces contributed by the pion
exchange and the ρ exchange are given in the standard form
with the masses and coupling constants replaced by the starred
quantities. Dividing by the vacuum quantity (CM )2 = ( fMN

4π
)2

and writing x∗
M = m∗

Mr , we have the in-medium π and ρ tensor
forces in the form,

V T
M (r)/(CM )2 = SMτ1 · τ2S12(R∗

M )2m

MY (x∗

M ), (2.8)

with

Y (x∗
M ) =

[
1

(x∗
M )3

+ 1

(x∗
M )2

+ 1

3x∗
M

]
e−x∗

M , (2.9)

where M = π, ρ, Sρ(π) = +1(−1), and R∗
M = f ∗

MN/fMN . The
crucial (very well-known) feature to note is that the two forces
come with an opposite sign.

As argued in [6], the pion tensor force can be taken
unscaling in all relevant density range. In fact, one can
verify explicitly that using suitably scaling parameters for all
parameters that enter in the pion tensor force, such as fπ ,
etc., gives results that are close to those obtained by taking all
the parameters unscaled [7]. Thus R∗

π ≈ 1 and m∗
π ≈ mπ in

Eq. (2.8). As for the ρ tensor, what remains to be determined
is the scaling of R∗

ρ . It follows straightforwardly from (2.3)
and (2.5) that

R∗
ρ = g∗

V m∗
V mN

gV mV m∗
N

≈ g∗
V

gV

≈ 1 for 0 � n � n1/2, (2.10)

and

R∗
ρ = g∗

ρm
∗
ρmN

gρmρm
∗
N

≈ g∗
ρ

gρ

�
ρ
II

/
y(n)

≈ (
�

ρ
II

)2/
y(n) for n1/2 < n � nc, (2.11)

where nc is the putative chiral transition density. Because
g∗

ρ/gρ ∼ �
ρ
II in Region II, we have (2.11) with R∗

ρ scaling
as ∼ (�ρ

II )2 for n � n1/2 and this makes a big change in
the behavior of the net tensor force. Up to density n ≈ n0,
the scaling �I makes the total tensor strength weakened at
increasing density because the increased ρ tensor eats into
the pion tensor [7,15]. Recently this mechanism was shown to
explain the long-standing problem of the carbon 14 dating [16]
which in turn determines how �I scales up to n0.2 If the scaling
�I continued beyond n0, then it would make the net tensor
attraction vanish at n ∼ 2n0 [7]. Now with the new scaling,
this behavior no longer holds. The simple prediction is that
the net tensor-force strength will cease to drop at n1/2. Just
to have an idea of what this does, take �II ≈ �I . A simple
estimation shows that when density reaches n ∼ (2 − 3)n0,
the ρ tensor becomes totally negligible. What remains is only
the pion tensor. When this happens, π0’s could condense in a
crystalline form as suggested in [6,7].

We now argue that an effective field theory at mean field
with the tensor force that follows from the new BR can
reproduce the cusp structure in the symmetry energy (2.2)
seen in the skyrmion-crystal calculation. This can be seen from
the fact that the symmetry energy is dominated by the tensor
force [17,18]. A simple formula that captures the essential
physics of the tensor forces is that of Brown and Machleidt [17]
that we rewrite including the new BR,

Esym ≈ C

Ē

〈
V 2

T

〉
, (2.12)

2It was suggested that this could also be explained by certain short-
range three-body forces [19]. This of course does not mean that
three-body forces are an alternative to the scaling mechanism. More
on this point in Discussions section.
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where C is a known constant, Ē is the average energy
appropriate for the tensor force, ≈200 MeV, and VT is the
radial part of the tensor force that includes the effect of the
new BR. There is again the kinetic term which we will ignore
as before. In the form of (2.12), the cusp structure then follows
immediately from the discussions given above for the behavior
of the tensor forces across n1/2, i.e., the decrease of the net
tensor force strength from n0 to n1/2 and its increase after
n1/2 with the pion tensor taking over the strength. We take
this as a support for the skyrmion crystal—mean-field EFT
transcription.

We will see below how nuclear correlations that go beyond
the mean-field approximation modify this cusp structure. It
actually smoothes it without completely eliminating it. The
effective field theory anchored on the Lagrangian endowed
with the new BR is applied first to nuclear matter and then
to compact-star matter addressing the issue of the maximum
neutron-star mass versus radius.

III. NUCLEAR EQUATION OF STATE

So far we have been discussing qualitative features
impacted by the new BR. We now confront quantitatively
the scaling relations (2.3), (2.5), (2.10), and (2.11) with the
properties of symmetric as well as asymmetric nuclear matter.
We incorporate the new BR in the nuclear effective field theory
in which the RG-implemented Vlow−k plays a key role. More
specifically, we apply the new-BR scalings discussed in Sec. II
to nuclear matter, both symmetric and asymmetric, and to the
nuclear symmetry energy. The special features in the new BR
are the scaling of the nucleon mass y(n) and that of the vector
coupling g. As we shall elaborate in the discussion section,
these features are thought to be closely connected to how (most
of) the nucleon mass is generated in the strong interactions.

Before continuing, let us concisely recapitulate how the
new BR enters into an RG-implemented EFT. As argued in
[13], it involves two decimations in the RG sense. Starting
with an effective chiral Lagrangian, one first decimates in
matter-free space from the chiral scale �χ ∼ 4πfπ ∼ 1 GeV
down to the first decimation scale � ∼ 3 fm−1. What results
is the Vlow−k that is used in our calculation. Then doing many-
body calculations for nuclear systems with the parameters of
Vlow−k running à la new BR amounts to doing the second
decimation. In fact this second decimation is equivalent to
doing a Landau Fermi-liquid theory calculation as formulated
in [13]. In doing this, we are ignoring three-body and higher-
body forces. One should, however, recognize that part of many-
body force effects are embedded in the new BR. One can think
of this as a sort of duality between the two as will be elaborated
later.

To suitably take into account the features mentioned above
into a high-order effective field theory calculation, we shall
carry out our calculations using the realistic BonnS potential
[20]; this potential is an extension of the one-boson-exchange
BonnA potential [21] with the provision that the nucleon and
meson mass as well as the vector coupling be scaled à la
new BR. As discussed in Sec. II, we employ the following
two-region scalings characterized by the transition densities
n1/2 and nc (respectively, for the skyrmion-half-skyrmion and

chiral transitions). For density 0 < n < n1/2 (Region I), we
use3

m∗
M

mM

= m∗
N

mN

= �I (n); �I (n) = 1

1 + cI
n
n0

, (3.1)

and

R∗
ρ = 1. (3.2)

In the above M = (V, S) and N stand, respectively, for meson
(both vector and scalar) and nucleon. For density n1/2 < n <
nc (Region II), we use

m∗
M

mM

= �M
II (n); �M

II (n) = 1

1 + cII
n
n0

(3.3)

for mesons and

m∗
N

mN

= �N
II (n) = y(n) (3.4)

for nucleons. We use the R∗ scaling in II as

R∗
ρ = g∗

ρ

gρ

�M
II (n)/y(n) = (

�M
II

)2/
y(n). (3.5)

The above scaling functions �I and �II are in general not
continuous at the boundary density n1/2. This discontinuity
may be a mere artifact of the simplification we are adopting.
In the present work, as to be discussed later, we shall choose
the parameters contained in them so that these two functions
are nearly continuous (to avoid drastic discontinuity) at n1/2.
In addition, we shall employ two Fermi-Dirac functions to
smoothly join the scaling functions �I and �II so that the
resulting scaling function � is ensured to be continuous at
the boundary. A similar procedure will also be employed for
the R∗ scalings in the two regions. To illustrate, the smoothed
scaling function � is constructed as

� = F<(n1/2)�I + F>(n1/2)�II , (3.6)

with

F<(n1/2) = [1 + e(n−n1/2)/δ]−1,
(3.7)

F>(n1/2) = [1 + e(n1/2−n)/δ]−1,

where δ is a smoothness parameter. In the present work, we
shall use δ/n0 � 0.05–0.10. It turns out that within this range
our results are satisfactorily stable with respect to δ.

We have adopted the following procedure for choosing the
parameters of the above scaling functions. First we require the
parameters in Region I so that they satisfactorily reproduce
the empirical nuclear matter saturation properties (saturation
density n0 � 0.16 fm−3 and average energy per nucleon
E0/A � −16 MeV at saturation). The choice for the param-
eters in Region II will be addressed later. We shall calculate

3We must stress that except for low density � n0 (and possibly high
density near the chiral transition point in the chiral limit as predicted
in HLS), the precise form of the scaling is not known, so what we take
should be understood as more of a convenient parametrization guided,
whenever feasible, by phenomenology. Furthermore there is nothing
that suggests that the scaling should be identical for all mesons.
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FIG. 1. Diagrams included in the all-order pphh ring-diagram
summation for the ground-state energy of nuclear matter. Each dashed
line represents a Vlow−k vertex.

n0 and E0/A using a low-momentum ring-diagram approach
[8,22–25], where the pphh ring diagrams are summed to
all orders within a model space of decimation scale �. Few
low-order (first, fourth, and eighth order) such diagrams are
displayed in Fig. 1. Note that each vertex of the diagrams
is a low-momentum interaction Vlow−k which is obtained
from a realistic NN potential VNN using a renormalization
group approach where the momentum components beyond a
decimation scale � are integrated out [26–29].

More precisely Vlow−k is given by the following T -matrix
equivalence equations:

T (k′, k, k2) = VNN (k′, k)

+ 2

π
P

∫ ∞

0

VNN (k′, q)T (q, k, k2)

k2 − q2
q2dq,

(3.8)

Tlow−k(k′, k, k2) = Vlow−k(k′, k) + 2

π
P

∫ �

0

× Vlow−k(k′, q)Tlow−k(q, k, k2)

k2 − q2
q2dq,

(3.9)

T (k′, k, k2) = Tlow−k(k′, k, k2); (k′, k) � �. (3.10)

In the present work the above VNN is chosen to be the realistic
BonnS [20] NN interaction. (The new-BR scalings we have
established above enter into the meson parameters as well as
the nucleon mass of this potential with the varying density.) P
denotes principal-value integration and the intermediate state
momentum q is integrated from 0 to ∞ for the whole-space
T and from 0 to � for Tlow−k. Because we shall calculate
the nuclear symmetry energy Esym(n) up to n ∼ 5n0, we shall
use � = 3 fm−1 [8]. The above Vlow−k preserves the low-
energy phase shifts in the vacuum (up to energy �2) and the
deuteron binding energy of VNN . (For example, the deuteron
binding energy given by Vlow−k of � = 2.0 and 3.0 fm−1 are
both −2.226 MeV.) Because Vlow−k is obtained by integrating
out the high-momentum components of VNN , it is a smooth
“tamed” potential which is suitable for being used directly
in many-body calculations. The familiar HF approximation
for nuclear matter corresponds to the inclusion of only the
first-order diagram (a) of the figure. In contrast, the pphh ring
diagrams such as those shown in Fig. 1 are included to all
orders in our nuclear matter calculations.

With such ring diagrams summed to all orders [22,23], the
ground-state energy of asymmetric nuclear matter is expressed

as E(n, α) = Efree(n, α) + 
E(n, α) where Efree denotes the
energy for the noninteracting system and 
E, the energy shift
due to the NN interaction, is given by the all-order sum of
the pphh ring diagrams as illustrated in Fig. 1. We include
in general three types of ring diagrams, the proton-proton,
neutron-neutron, and proton-neutron ones. The proton and
neutron Fermi momenta are, respectively, kFp = (3π2np)1/3

and kFn = (3π2nn)1/3, where np and nn denote, respectively,
the proton and neutron density. The asymmetric parameter is
α ≡ (nn − np)/(nn + np). With such ring diagrams summed
to all orders, we have


E(n, α) =
∫ 1

0
dλ

∑
m

∑
ijkl<�

Ym(ij, λ)

×Y ∗
m(kl, λ)〈ij |Vlow−k|kl〉, (3.11)

where the transition amplitudes Y are obtained from a pphh
RPA equation [22,23]. Note that λ is a strength parameter,
integrated from 0 to 1. The above ring-diagram method reduces
to the usual HF method if only the first-order ring diagram
is included. In this case, the above energy shift becomes

E(n, α)HF = 1

2

∑
ninj 〈ij |Vlow−k|ij 〉 where nk = (1, 0) if

k(�,>)kFp for proton and nk = (1, 0) if k(�,>)kFn for
neutron.

The above Vlow−k ring-diagram framework was applied to
symmetric and asymmetric nuclear matter [22,23] and to the
nuclear symmetry energy [8]. This framework has also been
tested by applying it to dilute cold neutron matter in the limit
that the 1S0 scattering length of the underlying interaction
approaches infinity [24,25]. This limit—which is a conformal
fixed point—is usually referred to as the unitary limit, and the
corresponding potentials the unitarity potentials. For many-
body systems at this limit, the ratio ξ ≡ E0/E

free
0 is expected

to be a universal constant of value ∼0.44. (E0 and Efree
0 are,

respectively, the interacting and noninteracting ground-state
energies of the many-body system.) The above ring-diagram
method was used to calculate neutron matter using several very
different unitarity potentials (a unitarity CDBonn potential
obtained by tuning its meson parameters, and several square-
well unitarity potentials) [24,25]. The ξ ratios given by our
calculations for all these different unitarity potentials are all
close to 0.44, in good agreement with the quantum Monte
Carlo results (see [25], and references quoted therein). In fact
our ring-diagram results for ξ are significantly better than those
given by HF and BHF (Brueckner HF) [24,25]. It is desirable
that the above unitary calculations have provided satisfactory
results, supporting the reliability of our Vlow−k ring-diagram
framework for calculating the nuclear matter EoSs.

IV. RESULTS

We recall that the new BR has an assumption which is not
an immediate consequence of chiral symmetry. Specifically
the premise of the vector manifestation associated with hidden
local symmetry states that as one approaches the VM fixed
point, m∗

ρ/mρ → g∗
ρ/gρ → 0, which is not dictated by chiral

symmetry alone. Here we will take the point of view that
the vector manifestation property is operative after the half-
skyrmion onset density n1/2.
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FIG. 2. New-BR EoS for symmetric nuclear matter calculated
with n1/2 = 1.5n0. See text for more explanations.

Let us first consider the EoS of symmetric nuclear matter in
the low density region (n � n1/2), the main purpose here being
the choice of the cI parameters so that the empirical saturation
properties of symmetric nuclear matter are satisfactorily
reproduced. In Fig. 2, we present our results for symmetric
nuclear matter calculated with parameters cI = 0.130 for
nucleon and ρ meson, =0.121 for σ meson, and = 0.139 for ω
meson.4 The EoS of this figure gives ground-state energy per
nucleon E0/A = −15 MeV, saturation density nsat = 0.93n0,
and compression modulus K = 208 MeV, all in satisfactory
agreement with the empirical values. [Here and in Fig. 2 E0/A
is the same as (E(n, α = 0) − mN ) of Eq. (2.1)]. The above
calculation has employed n1/2 = 1.5n0. As to be presented
later, we have also carried out calculations with n1/2 = 2n0

and the saturation properties given by them are nearly the
same as the n1/2 = 1.5n0 case. Recall that a decimation scale
of � = 3 fm−1 was employed in the above calculation, and it
will be used in what follows.

As discussed in [22,23], the use of realistic VNN with
the old BR [12,30,31] leads to satisfactory nuclear matter
saturation properties. As seen in Fig. 2, the new BR does also
lead to satisfactory nuclear matter saturation properties, even
though these two scalings are different for n � n1/2. The main
differences between them are in the scaling of the nucleon
mass and the HLS coupling g. While the nucleon mass does
scale in Region I with the change in 〈q̄q〉∗, its scaling more
or less stops at y(n1/2) for n > n1/2 and is assumed to change
drastically only at nc. The gauge coupling g on the other hand
remains unchanged up to n1/2 and drops roughly proportional
to 〈q̄q〉∗ afterwards as suggested in [13].

Before proceeding to the EoS for n � n1/2, let us first
discuss the scaling parameters we have employed. The scaling
functions we have used in Region I [(3.1) and (3.2)] are similar
to those employed in the old BR [12,31] and Ericson (ER) [32]
scalings. The ER scaling is based on the quark condensate

4Here we are doing some fine tuning for a better fit but the small
differences in cI ’s are of course of no significant meaning.

relation [32],

〈q̄q〉∗
〈q̄q〉 = 1

1 + n�πN

f 2
π m2

π

, (4.1)

where �πN = 45 ± 7 MeV [33]. Then the ER scaling for
hadrons in medium reads

m∗

m
=

(
1

1 + D n
n0

)1/3

, (4.2)

with D = n0�πN

f 2
π m2

π
. Using the empirical values for

(�πN, n0, fπ ,mπ ), we have D = 0.35 ± 0.06. Note that
for the low-density region this relation agrees well with the
parametrization for the old BR [12,31],

m∗

m
= 1 − C

n

n0
, (4.3)

where C is a constant of value ∼ 0.15.
It may be noted that our new BR in Region I [(3.1) and

(3.2)] is consistent with the above Ericson scaling in the n <
n1/2 region if the cI scaling parameters are chosen to have
values near D/3 � 0.12 ± 0.02. It is encouraging that the cI

parameters we have employed so as to give satisfactory nuclear
matter saturation properties (Fig. 2) are indeed quite close to
the value of D/3 given by QCD theories.

We now consider the EoS for n > n1/2. In Fig. 3 we
present results for two choices for the half-skyrmion onset
densities, namely n1/2 = 2.0 and 1.5n0. In addition we also
present the EoS [labeled (C) in the figure] obtained with the
unscaled BonnS [20] potential. As seen this EoS does not have
satisfactory nuclear matter saturation properties; it would give
saturation density much higher than the empirical value of
∼0.16 fm−3 as well as a saturation energy much lower than
the empirical value of ∼−16 MeV. In contrast, the new-BR
EoSs (A) and (B), respectively, for n1/2 = 2.0 and 1.5n0, both
have satisfactory saturation properties. In calculating (A) and
(B), we have used the same cI parameters as listed earlier. Thus
(A) and (B) are equivalent for n < 1.5n0, both having the same

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0.5  1  1.5  2  2.5  3  3.5  4  4.5

E
0/

A
  [

M
eV

]

n/n0

(A)

(B)

(C)

(A): new-BR n1/2=2.0n0
(B): new-BR n1/2=1.5n0

(C): no new-BR 
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See text for more explanations.
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saturation properties (E0/A = −15 MeV, nsat = 0.93n0, and
K = 208 MeV).

Turning to the EoS in Region II (n > n1/2), we note from
(2.10) and (2.11) [or (3.1–3.5)] that the scalings for R∗

ρ

controlling the ρ tensor force in Region II are significantly
different from those in Region I: Other components of vector-
meson-exchange nuclear forces are governed, apart from the
mass scaling, by the scaling of the hidden gauge coupling
constant,

g∗
ρ/gρ ≈ g∗

ω/gω ≈ 1; n < n1/2, (4.4)

g∗
ρ/gρ ≈ [

�M
II

]
; n > n1/2. (4.5)

Were the flavor U (2) symmetry operative in Region II, the
scaling (4.5) would hold for both ρ and ω. It turns out, however,
that if the ω-nucleon coupling dropped in the same way as the
ρ-nucleon coupling, nuclear systems would collapse in that
region. We have found that the repulsion provided by the ω-
exchange potential is sensitively dependent on the ω-nucleon
coupling constant, and a moderate dropping of this constant
can drastically suppress the repulsion, making the system
unstable at high densities unless the nucleon mass dropped
appreciably, which we do not consider realistic. This signals
that the coupling constant g∗ must be asymmetric in high
density or higher members of the ω mesons in the infinite tower
in holographic QCD models that arise in string theory [34]
could intervene in providing the necessary repulsion. In our
calculation, we will take g∗

ω/gω ≈ 1 for both Regions I and II.
Another difference is that the scaling of the nucleon mass

(m∗
N/mN ) is density dependent in Region I as is seen in

experiments while it is equal to a constant or slowly varying in
Region II. These differences can make the EoSs in these two
regions significantly discontinuous at n = n1/2. As mentioned
above, this discontinuity could be an artifact of our schematic
treatment of the skyrmion-half-skyrmion transition. We have
found that this discontinuity can be made small by suitably
choosing the scaling parameters in Region II. We have done
so, and for the EoSs (A) and (B) presented in Fig. 3 we have
used cII = cI for both (A) and (B), with y(n) = 0.77 and
n1/2 = 2.0n0 for (A), and y(n) = 0.78 and n1/2 = 1.5n0 for
(B). The use of the above y(n) values is to have the n < n1/2

energy curves join smoothly with, respectively, their n > n1/2

counterparts at n1/2. It may be noted that both y(n) values
are close to 0.80. These parameter choices will be referred to,
respectively, as A parameters and B parameters. They will be
used and tested in other calculations such as nuclear symmetry
energies and neutron stars later on. That the behaviors of
m∗

N and g∗
ω may be strongly correlated in Region II will be

discussed in the discussion section. In view of the almost
complete absence of model-independent theoretical tools for
these quantities in Region II, our strategy will then be that
the available heavy-ion experiments that probe densities up to
∼4.5n0 give constraints on those parameters. Calculating those
parameters from the given theoretical framework remains to
be done.

It may be useful now to have a summary of the new-
BR scalings employed in our present calculations. For this
purpose, we present a plot of our m∗/m and g∗/g scalings, for
the case of n1/2 = 2n0, in Fig. 4. As shown by line (A) there,
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FIG. 4. Plot of new-BR scalings for Regions I and II. See text for
more explanations.

the scalings for the ρ, ω, and σ masses are the same in both
regions, recalling that for them we have cI = cII and they are
all close to 0.13. (This value is used for plotting them in the
figure.) As shown by line (B), the scaling of the nucleon mass
in Region I is the same as the above mesons, but in Region
II it is equal to a constant y(n). [y(n) = 0.77 is used in the
figure.] From (C) and (D), we see that the scaling g∗/g for ρ is
equal to one (i.e., unscaled) in Region I and equal to the above
meson scaling in Region II, while the scaling for ω is equal to
one in both regions.

As stated above, the above summary represents scalings of
the intrinsic parameters of the underlying Lagrangian with
appropriate symmetries (here, hidden local symmetry that
captures the physics of vector mesons) with which our nuclear
EFT is constructed. In physical quantities, the sharpness in
changeover would be smoothed by many-body correlations as
we find in the results.

It is of interest that the EoSs (A) and (B) of Fig. 3
both exhibit a narrow “plateaulike” segment near n ∼ 2.2n0.
The occurrence of this plateaulike structure may indicate a
skyrmion-half-skyrmion transformation which is of interest
for further study.5 This occurrence could be largely due to the
use of a constant (nonscaling) nucleon mass beyond n1/2—
which we assume here—as is indicated in the half-skyrmion
matter and predicted in the parity-doublet model with a large
chiral-invariant mass m0. It may be pointed out that y(n) plays

5Such a changeover is generically observed on crystal: In fact
a recent skyrmion crystal calculation with hidden local symmetry
Lagrangian—without unknown parameters—confirmed the topolog-
ical change at low enough density [35]. There is also an independent
support coming from renormalization-group analysis at one-loop
order for the changeover of the parameters exploited in this paper [36].
That a topological phenomenon is involved suggests that it is likely
robust. The quark condensate 〈q̄q〉 vanishes on average in unit cell
in the crystal description but this is not a bona fide order parameter
because the pion is present in the system, indicating chiral symmetry
is not restored in the half-skyrmion state. We defer details to a later
publication.
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an important role in determining the EoS of nuclear matter in
Region II as illustrated in Fig. 3.

For density n > 2.0n0, the parameters used for the EoSs (A)
and (B) there differ only in y(n) = 0.77 for (A) and = 0.78
for (B), the cII parameters used for them being identical. It is
seen from Fig. 3 that this small difference has made the (A)
EoS significantly more repulsive than (B), especially in the
high density region. Our calculations have found that the use
of a smaller y(n) would generally give an upward lift to the
n > n1/2 EoS, resulting in a stiffer EoS.

We have performed additional calculations studying mainly
how our calculations depend on the location of the transition
density n1/2. Where it is located and how to choose is a
central issue in our approach. It cannot be lower than n0

because it will be at odds with nuclear structure as we know
it. If it is far greater than n0, then it will be inaccessible
by terrestrial experiments, so will be difficult to verify its
existence. As suggested in skyrmion crystal calculations [2,6],
we will assume that it is located slightly above n0. Our results
reported there indicate, however, that the EoSs obtained with
the new-BR scaling in the range 1.5n0 < n1/2 < 2.0n0 depend
only weakly on n1/2 picked for all ranges of density relevant
for our work. We believe that the precise location of n1/2 is not
important in our calculations as long as it is not far from n0,
while it is y(n) which plays an important role.

By way of heavy-ion collision experiments, there was much
progress in determining the nuclear symmetry energy Esym up
to densities as high as ∼5n0 [37–39]. Thus an application of
our new-BR scaling to the calculation of Esym would provide
an important test for this scaling in the region with n > n1/2.

The nuclear symmetry energy is related to the asymmetric
nuclear matter EoS as Eq. (2.1). We have calculated E(n, α)
for a range of α values, and from them we extract Esym. Also
we use the same ring-diagram formalism where the pphh ring
diagrams are summed to all orders. In Fig. 5 we present our
results calculated with the same new-BR A and B parameters
mentioned earlier, labeled, respectively, by solid and open
squares there. It is of interest that the symmetry energies given
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by the A and B parameters are nearly identical, despite the
considerable differences between the two corresponding EoSs
for symmetric nuclear matter shown in Fig. 3.

Based on heavy-ion scattering experiments, Li et al. [37]
have suggested an empirical relation,

Esym(n) ≈ 31.6(n/n0)γ ; γ = 0.69 − 1.1, (4.6)

for constraining the density dependence of the symmetry
energy. The upper (γ = 1.1) and lower (γ = 0.69) constraints
are also plotted in the figure, labeled, respectively, as “expt-
Li1” and “expt-Li2.” Also based on such experiments, Tsang
et al. [39] recently proposed a new empirical formula for the
symmetry energy, namely,

Esym(n) = Cs,k

2

(
n

n0

)2/3

+ Cs,p

2

(
n

n0

)γi

, (4.7)

where Cs,k = 25 MeV, Cs,p = 35.2 MeV, and γi ≈ 0.7. This
formula is also plotted in Fig. 3, labeled as “expt-Tsang.”
Note that Tsang’s results are very close to the lower constraint
of Li et al.

Returning to Fig. 5, we see that our new-BR results agree
reasonably well with the empirical constraints on Esym; for
Region I our results are slightly below the empirical lower
bounds while in Region II they tend to be closer to the
upper bound. This accounts for the EoS becoming stiffer over
empirical fits as shown in Fig. 6 for neutron matter, where
symmetry energy is active in its full strength with α = 1, while
the EoS for symmetric matter (with no contribution from the
symmetry energy, α = 0), lies within the empirical range as
seen in Fig. 6.

Recently Lattimer and Lim [40] have investigated the
constraints on Esym and L [defined as 3u (dEsym/du), u ≡
n/n0] at density n = n0. The results deduced from nuclear
masses, nuclear giant dipole resonances, astrophysics, neutron
skins of the Sn isotopes, and other investigations exhibit wide
variations, with Esym/MeV ranging from ∼24 to ∼36 and
L/MeV from ∼−20 to ∼100. The overlap constraints allowed
by all these results are 29.0 � Esym

MeV
� 32.7 and 40.5 � L

MeV
�

61.9 [40]. Our results as given by (A) and (B) of Fig. 4 are
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Esym/MeV � 26.5 and L/MeV � 64. Esym is slightly lower
while L is slightly higher than the above constraints, although
consistent with the constraints given by the nuclear masses
and nuclear giant dipole resonances. We should of course
emphasize that the result that our values for Esym and L
determined near the nuclear matter density lie lower than those
given by the bound, in particular for L, does not directly reflect
on the quality of our new BR which brings in new ingredient in
Region II following the topology change in our theory. In fact
it concerns mainly the parameters of Region I which could be
suitably readjusted to agree with the bound without affecting
other observables. In this regard, we depart from the currently
favored notion that certain dense matter theories can be ruled
out by the bounds.

From heavy-ion collisions, Danielewicz et al. [41] have
obtained constraints for the pressure-density EoS p(n) of
neutron matter up to densities ∼4.5n0. To further study our
new-BR scaling in the high density region, we have calculated
the neutron p(n) EoSs up to the above densities. A comparison
of our results with their constraints is presented in Fig. 6 where
the upper and lower boxes are, respectively, the constraints
for the stiff and soft EoSs of [41]. Our EoSs calculated with
parameters A and B are denoted by “solid-” and “open-square,”
respectively. A similar comparison for the p(n) EoSs for
symmetric nuclear matter is presented in Fig. 7. We have also
calculated the speed of sound vs in nuclear (and neutron) matter
using the relation (vs/c)2 = dp/dε, ε and c being, respectively,
the energy density and speed of light. As an illustration, our re-
sults for vs in neutron matter are presented in Fig. 8. The results
are given for the range of density for which our theory is appli-
cable. The extrapolation procedure used to go higher in density
so as to obtain the maximum star mass is described below.

As seen from Figs. 6 and 7, our calculated pressures are in
satisfactory agreements with the empirical constraints of [41].
Note, however, our results are somewhat stiffer than the ex-
perimental ranges at high densities near ∼4n0. It is instructive
to look at the speed of sound vs which is closely related to the
stiffness of the EoS. It is seen from Fig. 8 that the vs given
by our new-BR scaling is significantly larger than that given
by the old-BR scaling [23], indicating the former EoS being
stiffer. As to be reported below, our neutron-matter EoS is,
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however, somewhat stiffer than what would give the two-solar
mass star. There seems to be nothing obviously wrong with
this. The model having the hybrid hadron-quark continuity
mentioned above [42] seems to favor such massive stars.

We have not yet described how we calculate the p and vs

results shown in the above three figures. Let us do this now.
Including the nucleon rest-mass energy, we first calculate the
nuclear-matter energy density,

ε(n) = n

(
E0(n)

A
+ mN

)
, (4.8)

with the average ground-state energy E0(n)/A obtained from
the ring-diagram method described earlier (Sec. III). The
pressure-density EoS is then given by

p(n) = n
dε(n)

dn
− ε(n). (4.9)

As indicated above, to calculate p(n) we need to have the
derivatives of the energy EoS dε(n)/dn or d(E0(n)/A)/dn.
There is, however, a difficulty in doing so, as our E0(n)/A
EoS as shown in Fig. 3 is “not” a continuous/smooth one: It is
composed of two branches, one for skyrmion (n < n1/2) and
the other for half-skyrmion (n > n1/2). These two branches
have clearly different shapes (slope and curvature), and their
slopes are not continuous at n1/2. Also the EoS after n1/2 has
a short segment of plateaulike structure at n � 2.2n0. These
features present obstacles to the calculation of the derivatives
dε(n)/dn and consequently hinder the calculation of p(n).
To circumvent this difficulty, we need to employ a fitting
procedure so as to have a smooth (differentiable) ε(n). Such
a smooth crossover is expected also in a hybrid hadron-quark
matter model mentioned below [42].

Li and Schulze [43] recently proposed a highly desirable
parametrization for the nuclear-matter EoS: They have found
that a wide range of nuclear EoSs can be fitted very accurately
by the polytrope EoS E0(n)/A = an + bnc where a, b, and
c are parameters. We have adopted this fitting procedure in
our present work. With such polytrope EoSs, the pressure EoS
p(n) can be conveniently obtained and so is the speed of sound
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vs ((vs/c)2 = dp/dε). To illustrate this fitting, let us consider
its application to the n1/2 = 2n0 EoS of Fig. 3. We have
found it impossible to fit the EoS entirely with one polytrope.
But with two polytropes, one for skyrmion and another one
for half-skyrmion, a satisfactory fit to the entire EoS can be
achieved as shown in Fig. 9. [In our fitting, we actually use
the polytrope of the form E0(n)/A = a(n/n0) + b(n/n0)c. In
this way, the coefficients a and b have the same units (MeV)
and c is dimensionless.] As seen, the fit comes out quite well.
Furthermore, the a, b, and c coefficients for the two polytropes
are vastly different. This is a worth-noting result, suggesting
that the skyrmion and half-skyrmion EoSs are largely different
“mathematically.” Are they also very different physically?
It should be useful and of much interest to investigate this
question theoretically as well as experimentally.

Our results for the pV diagram originated from the
n1/2 = 2n0 EoS of Fig. 3 are presented in Fig. 10. Here
the volume is defined as V/V0 ≡ n0/n. As seen, p(n) is
discontinuous at the crossover density n1/2. Furthermore, at
this point the half-skyrmion pressure is significantly lower than
the skyrmion pressure. This relative difference in pressure is
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nuclear matter calculated with n1/2 = 2n0 new-BR scaling. The
coexistence points a and b satisfy both p(a) = p(b) and μ(a) = μ(b).

a necessary condition for having a skyrmion half-skyrmion
coexistence. (The coexistence would not be possible if this
relative difference were reversed.) To have such a coexistence,
we also need to have the two coexistence points, labeled a
and b in the figure, satisfying simultaneously pressure and
chemical-potential equivalences, namely p(na) = p(nb) and
μ(na) = μ(nb). (μ = dε/dn, ε being the energy density.) The
points a and b of Fig. 8 satisfy this double requirement, with
na = 2.23n0, nb = 1.72n0, p(na) = p(nb) = 6.59 MeV/fm3,
and μa = μb = 14.61 MeV.

The above results are for the n1/2 = 2n0 symmetric nuclear
matter using the new-BR A parameters. We have repeated
this calculation for neutron matter, obtained (na, nb) = (1.93,
2.09)n0. The width of the coexistence region is about 0.15n0,
considerably narrower than that for symmetric nuclear matter.
For the n1/2 = 1.5n0 calculation using the B parameters, we
have obtained (na, nb) = (1.49, 1.89)n0 for symmetric nuclear
matter, and =(1.43, 1.59)n0 for neutron matter. Note that
here the na for the symmetric nuclear matter is very close
to the crossover density n1/2 (= 1.5n0). This suggests that
the skyrmion half-skyrmion transition in this case is almost a
pure unison crossover where the nuclear matter at n < n1/2 is
entirely composed of skyrmions, and when density increases
to n1/2 it all becomes half-skyrmion matter, leaving no buffer
zone for their coexistence.

In Fig. 8, the “smoothed” pV curve is obtained by
combining the two discontinuous branches using two Fermi-
Dirac functions, similar to what we did in smoothly joining the
scaling functions �I and �II described in Sec. III [see (3.6)
and (3.7)]. The resulting pV curve is then of the standard
form for coexistence, like that for the familiar liquid-gas
coexistence. The above smoothing procedure has also been
used for the pressure EoSs of Figs. 5 and 6.

In a recent neutron-star calculation using realistic NN
potentials [23], the effects from the “old-BR” scaling (2.3)
and (2.4) applied in both I and II were found to be highly
important for neutron stars, the maximum mass, and its radius
calculated (with, without) the inclusion of such effects being,
respectively, (∼1.8,∼1.2M�) and (∼8.9,∼7.2) km. Now the
question is: What does the new BR (2.5) do to neutron stars?
To address this question, we have calculated the properties
of pure neutron stars (i.e., made of neutrons only) from the
above neutron-matter EoSs, using the calculation procedures
described in [23].

In Fig. 11 we present our calculated neutron-star
mass-radius trajectories (A) and (B), obtained, respectively,
with the A and B parameters mentioned earlier. (In this figure
the symbol Msun is used to denote the solar mass M�.) The
caveat mentioned above notwithstanding, it is interesting that
the main results of the two calculations (A) and (B) are nearly
the same. The maximum mass of neutron stars given by the
two are practically identical as given in the caption of Fig. 11.
It is significant that there is little dependence on the location
of n1/2 as long as it is not too high above n0. In the low-mass
region (lower right corner of the figure) the trajectories are
noticeably different, with (A) having slightly larger mass and
longer radius. These results are consistent with the results
shown in Fig. 5 where the two EoSs are essentially equivalent
to each other except in the narrow region between 1.5 and
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FIG. 11. Mass-radius trajectories of neutron stars calculated with
new-BR scalings using n1/2 = 2.0 (A) and 1.5n0 (B). The maximum
neutron-star mass and its radius for these two cases are, respectively,
(2.39 M�, 10.90 km) and (2.38 M�, 10.89 km). The prediction with
old-BR (C) [23] is given for comparison.

2.0n0. The effects from the present new-BR scaling appear
to be even stronger than those from the old-BR scaling. For
example, the maximum mass obtained (with, without) the
new-BR scaling are (∼2.4,∼1.2M�), the increase between
them being significantly larger than the above old-BR case.
As one can see in Fig. 11 (see also Fig. 12), the star properties
are markedly different between the old BR and the new
BR. By analyzing a wide range of empirical data, Steiner
et al. [44] have obtained a constraint for neutron-star radius
10 km � R � 12.5 km. The radius given by our new-BR
calculations is in good agreement with this constraint.

In Fig. 12 we report the central densities ncenter of the
neutron stars calculated with the new-BR scalings as described
above. The maximum-mass neutron stars have ncenter � 5.5n0.
Recalling Figs. 5 and 6, Danielewicz et al. [41] have provided
experimental constraints for the nuclear-matter EoSs up to
density ∼4.5n0. This gives us important guidelines about the
EoSs below this density. But beyond this, there is still no such
guideline and one is really not at all sure what the EoSs there
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FIG. 12. Central densities (ncenter) for the neutron stars of Fig. 9.

should be. Although we can “calculate” the EoS using our
new-BR formalism up to any densities, the resulting EoS is,
we believe, of “good confidence level” only for densities below
and not much higher than ∼4.5n0. Thus we have adopted an
extrapolation scheme, namely calculating the EoS up to an
extrapolation density next while obtaining the EoS beyond
this density by a polytrope extrapolation. (The polytrope is
obtained by fitting the EoS below next.) The mass of neutron
star with central density of next is ∼2.3M�.

Clearly this extrapolation can be applied only to densities
not too much higher than next. We have employed next = 4.5
and 5.5n0 and found that the EoSs given by them are in close
agreement with each other up to ∼7.0n0. This and that our
ncentral is as small as ∼5.5n0 support the reliability of the
above extrapolation procedure for our present neutron-star
calculations. The causal limit in this extrapolation lies at
5.9n0, which is larger than the central density of 5.5n0 for the
maximum mass in Figs. 11 and 12. It would be very interesting
to study the EoS for neutron stars with RIB machines as the
low central densities of neutron stars as given earlier should
be readily accessible there. As stated earlier, our present
calculation has assumed a pure neutron-matter composition
for neutron stars without taking into account a variety of
compact-star conditions. This could be an oversimplification,
and the results obtained thereby should be taken, at best,
indicative of what could be happening in nature.

V. COMMENTS AND DISCUSSIONS

In this paper, we subjected the nuclear effective field theory
anchored on RG flow, with the parameters of the Lagrangian
sliding with density, to normal nuclear matter and dense
compact-star matter. The scaling behavior used here differs
from the old BR scaling [12], in that at a density n1/2 > n0,
a topological change takes place from skyrmion matter to
half-skyrmion matter, giving rise to a modified scaling new BR.
The changeover from skyrmion matter to half-skyrmion matter
is characterized by a vanishing quark condensate 〈q̄q〉 = 0
but a nonvanishing pion decay constat fπ �= 0. Thus it is
not a standard phase transition à la Ginzburg-Landau-Wilson
paradigm although two different phases are involved; it
appears to involve an emergent symmetry not present in the
fundamental theory, QCD.

At the semiclassical approximation made in the calculation,
the half-skrymions are not deconfined in contrast to what
happens in certain condensed matter systems [45]. They are
bound or confined, so they are not propagating degrees of
freedom. What characterizes the system is that the mass of
the baryon made up of two “bound” half-skyrmions remains
more or less unscaled, not going to zero up to the density nc at
which the quarks get deconfined, whereas the ρ-meson mass
is expected to drop faster in the half-skyrmion phase than in
the skyrmion phase. This means that the origin of the most, if
not all, of the nucleon mass is not in the dynamical symmetry
breaking of chiral symmetry, in contrast to the meson mass,
with a substantial mass of the nucleon coming from a hitherto
unknown source. This is similar to what is described in the
parity-doublet model of the nucleon [14,46]. We should note,
however, that this picture is clearly at odds with the constituent
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quark model—which has a strong theoretical support from
QCD in the large Nc limit [47]—where the ratio of the
meson mass over the baryon mass is 2/3. Whether or not
the constituent quark model is applicable in nuclear medium
is not known, but if there were an m0 for the quark which is
not small, then it should be possible that the constituent quark
model hold in dense medium and the ratio remain more or
less the same. In this case, the scaling could be considerably
different from the new BR.

It is intriguing that the two consequences of the changeover
at n1/2, namely, the drastic modification of the nuclear tensor
force and the stiffening of the EoS of dense matter at n1/2,
seem to be hinting at the mechanism for the generation of
∼99% of the nucleon mass in the strong interactions. See [48]
for discussions on this matter.

The salient features obtained in the RG-implemented effec-
tive theory approach adopted in this paper can be summarized
as follows:

(i) Without a suitable scaling in the Lagrangian that
figures in Vlow−k (or incorporating many-body forces),
symmetric nuclear matter cannot be stabilized at the
right density and with correct binding energy.

(ii) Our calculations have essentially two scaling parame-
ters: one is cI ≈ 0.13 for all mesons (vector mesons
and scalar meson) and the nucleon in region I, and in
region II we have cII = cI for mesons and the vector
coupling and an additional parameter y(n) ≈ 0.8 for the
nucleon. With these two parameters, one can explain
satisfactorily the saturation density, the binding energy
and the compression modulus of symmetric nuclear
matter as well as the nuclear symmetry energy, and
predict the EoSs for symmetric and asymmetric nuclear
matter at high density and compact-star matter. Our
results give a good fit to all quantities that are available
experimentally at densities up to n ∼ 4n0.

(iii) The topology change from skyrmion to half-skyrmion
at n1/2 changes the slope of the EoS, making it stiffer in
the half-skyrmion phase and raises the maximum mass
of compact stars to ∼2.4M�. Verifying the presence
and the role of the topology change at n1/2 should be
feasible at RIB machines.

In our treatment, n-body forces for n > 2 have not been
taken into account. As mentioned, three-body forces—in place
of BR—could equally well provide the repulsion needed to
stabilize nuclear matter. This does not mean that the many-
body forces and the BR are alternatives. They should both
come in together. In principle, there should be no problem in
including both BR and many-body forces in a way consistent
with the tenet of chiral expansion. What one has to do in the
presence of such n-body potentials is then to suitably modify
the scaling properties of the Lagrangian, because direct and
indirect chiral symmetry effects are compounded in physical
quantities in a variety of different chiral expansion schemes
as illustrated in [49]. A fully consistent way of doing the
calculation would be to have both the scaling and many-body
potentials treated together with certain constraints, such as
thermodynamic consistency, taken into account. We also note
that our EoS is very close to the EoS found in Ref. [40] with a

similar stiffening throughout the range of density considered,
where the sound velocity never exceeds 0.9.

We have not taken into account strangeness degrees of
freedom—such as kaons, hyperons, strange quarks, etc.—into
the EoS for neutron-rich matter. In our formulation anchored
on dense skyrmion matter, as described in [7], hyperons can
enter only after kaons condense. Therefore the issue here is
how kaon condensation can take place after changing from
skyrmion matter to half-skyrmion matter.

There are two opposing mechanisms to consider in the
process. One is that in the presence of the topology change
at n1/2, the mass of K− has a propitious drop not present in
conventional chiral perturbation treatments [50]. This goes
in the direction of lowering the critical density for kaon
condensation. The other is the effect of stiffening the EoS. It is
known, for instance, in phenomenological studies that the more
repulsion there is in nonstrange nuclear interactions, the higher
the kaon condensation critical density goes up [51]. What will
happen in compact stars therefore will depend crucially on
which one dominates. One intriguing possibility is that the
stiffening postpones the drop of m∗

K in a manner analogous to
the stiffening at the smooth crossover at a density ∼(2 − 4)n0

from hadron to nonstrange quark phase in the hybrid model
that also yields the maximum star mass ∼2.3M� [42]. This
will also have an important impact on the cooling of the star,
because the appearance of strange flavor at higher density
will prevent fast direct URCA process from setting in too
precociously.

It should be stressed that in our approach, strangeness in
the form of condensed kaons (or equivalently hyperons) may
enter at near or even before the density to which our theory with
topology change can be extended, say ∼4.5n0. Therefore the
extrapolation beyond such density with polytropes, without
accounting for strangeness degrees of freedom, potentially
violating causality, should be taken as merely exploratory.

One important aspect in our treatment that requires serious
studies is the correlation between the behavior of the in-
medium nucleon mass m∗

N and that of the in-medium ω-N
coupling gωNN which is related to the U (1) gauge coupling g∗

ω.
We have adopted in our calculation the information from the
skyrmion crystal calculations [5,34] and the parity-doubling
nucleon model [46] that the nucleon mass drops only about
20% up to the highest density we are considering. We have
taken the scaling y effective in Region II to be constant as
indicated in the skyrmion-crystal calculation [34] and in the
one-loop RG analysis of HLS Lagrangian. As stated, were
we to drop the ω-nucleon coupling according to g∗

ω/gω ≈
g∗

ρ/gρ ≈ g∗/g = �II as one would expect if flavor U (2)
symmetry held in Region II, the EoS would become much
too soft above n0 to be compatible with the existence of the
two-solar mass object observed in nature. We kept g∗

ω/gω ≈ 1
while letting the ω mass scale. Now to quantify the above
observation, we have examined the effect of dropping ω-NN
coupling for given m∗

N s. Writing the ω-nucleon coupling in
Region II as g∗

ω/gω = (1 + cII,Nωn/n0)−1, we have found at
n = 2.5n0, E0/A = (−33.9,−50.9,−68.4) MeV for y(n) =
0.77 and E0/A = (11.68,−1.26,−14.56) MeV for y(n) =
0.60 for the scaling constant of the ω-NN coupling cII,Nω =
(0.046, 0.093, 0.139) with all other parameters fixed to (A)
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of Fig. 3. One sees that the EoS is extremely sensitive to the
in-medium properties of both the nucleon mass and the ω-NN
coupling.

There are two implications that follow from this calculation.
One is that U (2) symmetry can be badly broken in dense
medium and as a consequence the vector manifestation of
HLS [10] does not apply to the in-medium ω meson although
its mass may approach zero as the ρ mass does à la mended
symmetry. The other is that the in-medium nucleon mass
and ω-NN coupling must be strongly correlated. One-loop
renormalization group equations with the generalized hidden
local symmetry Lagrangian implemented with baryons (with
no dilatons) of [46] show that in the chiral limit, both m∗

ρ

and m∗
ω approach zero as the dilaton limit fixed point is

approached. So does the nucleon mass m∗
N in the standard (or

“naive”) assignment for the nucleon (see [46]). However, while
the vector manifestation of HLS [10] requires that g∗

ρ/gρ ∝
〈q̄q〉∗/〈q̄q〉 → 0 near chiral restoration, if U (2) symmetry is
violated in medium, the in-medium ω-NN is predicted to drop
much more slowly than the ρ-NN coupling [46]. At one-loop

order the ω-nucleon coupling is found not to scale. It is only
at two-loop and higher order that scaling sets in. One can see
from the RGEs the interplay between the slow scalings of the
coupling and nucleon mass. This behavior agrees qualitatively
with what was noticed above where lowering the nucleon mass
required reducing the coupling gω to have the symmetry energy
lie within the range given by heavy-ion data.
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