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The odd-even staggerings (OESs) on nuclear binding energies are studied systematically within the spherical
covariant density functional (CDF) theories, specifically the relativistic Hartree-Fock-Bogoliubov (RHFB) and the
relativistic Hartree-Bogoliubov (RHB) theories. When taking the finite-range Gogny force D1S as an effective
pairing interaction, both CDF models can provide appropriate descriptions on the OESs of nuclear binding
energies for C, O, Ca, Ni, Zr, Sn, Ce, Gd, and Pb isotopes as well as for N = 50 and 82 isotones. While there still
exist some systematical discrepancies from the data, i.e., the underestimated OESs in light C and O isotopes and the
overestimated ones in heavy regions, respectively, such discrepancies can be eliminated partially by introducing
a Z- or N -dependent strength factor into the pairing force Gogny D1S. As an example of application, distinct
improvements are achieved with the optimized pairing force in determining the single-particle configurations of
112,114,118,124Sn.
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I. INTRODUCTION

In nuclear physics, the pairing mechanism is one of the basic
ingredients in determining nuclear structure properties [1], and
it becomes even more significant for exotic and superheavy
nuclei, which have attracted wide interest from the community
during recent decades [2–15]. Specifically in exotic nuclei
[16], weakly bound nuclear systems under extreme conditions,
crucial roles are played by the pairing correlations not only
in predicting the isospin limits of finite nuclei [2–4] but
also in developing the exotic modes, such as nuclear halo
structures and possible Bardeen-Cooper-Schrieffer (BCS)–
BEC crossover [5–9,14,15]. For superheavy nuclei with extra
large charge numbers, many important properties such as
nuclear shapes, fission barriers, and collective modes are
essentially related with the effects of pairing [10–12].

Experimentally it is not so straightforward to measure the
pairing effects, which are in general evaluated by the odd-even
staggering (OES) on the nuclear binding energy. The binding
energy of a system with an odd nucleon (neutron or proton)
number is found to be lower than the arithmetic mean of two
even neighbors, which leads to the so-called OES of single-
nucleon separation energies along the isotopic or isotonic
chains. Since the early days of nuclear physics, the OES was
interpreted as the presence of pairing correlations between
nucleons in a nucleus [1]. In the independent quasiparticle
picture, the OES extracted from the experimental binding
energies is often taken as the reference of the pairing-gap
energy, which also provides a quantitative observable to
constrain the pairing interaction [17].

During recent decades, many successes have been achieved
by the covariant density functional (CDF) theories in de-
scribing the structural properties of nuclear systems [18–24].
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One of the most popular CDF models is the relativistic
Hartree approach with the no-sea approximation, namely, the
relativistic mean field (RMF) theory [25,26], which has been
widely applied in exploring the properties of both ground states
[19,21,22] and excited states [21,27] for the finite nuclei in
and far from the valley of β stability. However, due to the limit
of the approach itself, significant system degrees of freedom
are missing in RMF, such as the one-pion exchange [28] and
ρ-tensor couplings. With the growth of computational facilities
and the development of new methods, such defects can be
eliminated with the inclusion of exchange (Fock) terms, which
leads to a new CDF model—the density-dependent relativistic
Hartree-Fock (DDRHF) theory [23] and its natural extension,
the relativistic Hartree-Fock-Bogoliubov (RHFB) theory [29].
Besides compatible quantitative accuracy as RMF in describ-
ing nuclear bulk properties, substantial improvements are
also achieved by DDRHF in the self-consistent description
of nuclear shell structures and the evolutions [24,30–34],
the relativistic symmetry restoration [35–37], the excitation
modes [38], and neutron star physics [39,40].

In general the pairing effects in open-shell nuclei are
considered within the BCS or Bogoliubov schemes. For a
stable nuclear system, the BCS method can provide an efficient
and simple way to handle the pairing correlations, although it
meets serious problems when going beyond the stable region,
especially when the halos emerge [22]. Approaching the
nuclear isospin limits, the single neutron or proton separation
energy becomes comparable to the pairing-gap energy such
that the continuum can be involved easily by the pairing
correlations. In terms of Bogoiubov quasiparticles, both mean
field and pairing correlations are unified into the Bogoliubov
scheme such that the continuum effects can be naturally taken
into account. Aiming at the weakly bound nuclear systems,
the CDF models combined with Bogoliubov framework have
been extended as the relativistic Hartree-Bogoliubov (RHB)
theory [21,41] and the RHFB theory [29]. Compared to the
former, the RHFB theory provides a more concrete platform
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to evaluate the pairing effects due to the improvements brought
by the Fock terms, especially with the inclusion of ρ-tensor
couplings [24].

Besides the self-consistent treatment of the continuum
effects, e.g., by the Bogoliubov theory, the theoretical reli-
ability in describing the pairing effects also depends on the
adopted pairing interaction. In the realistic calculations the
particle-particle (pp) pairing interactions are usually taken
as a phenomenological form, such as zero-range δ forces
or finite-range Gogny interactions with great success in the
relativistic and nonrelativistic calculations [22,29,42,43]. Due
to its numerical simplicity, the δ-type forces are popularly
applied in dealing with the pairing effects, especially when a
realistic density dependence is introduced [44]. While limited
by the zero-range formalism, it may require a sophisticated
energy cutoff to decide the pairing window, as well as the
strength of pairing interaction [44]. In contrast to the simple
δ force, the finite-range Gogny forces have been widely taken
as the effective interactions not only in the pp channels but
also in the particle-hole (ph) channels and potentially better
systematics is expected for the pp interaction. In addition
to the benefit from the characteristic finite range, a natural
energy cutoff is already embedded in modeling the pairing
space. While it should be noticed that the pairing parts of
Gogny forces were adjusted under the nonrelativistic approach
[43,45,46], the global feasibility associated with the relativistic
scheme [47,48] is still required to be tested, especially when
the Fock terms are included in the ph channels. In fact, the
CDF effective interactions have been attempted to unify the
descriptions of both ph and pp channels in nuclear matter,
while an effective factor has to be introduced in the pairing
part to get reasonable gap parameters [49,50].

In this work, the OESs on nuclear binding energy will be
systematically studied under the CDF scheme, specifically
the RHFB and RHB theories. The content is organized as
follows. In Sec. II, we briefly introduce the general formalism
of the RHFB theory with finite-range Gogny pairing force.
The neutron OESs along the isotopic chains of C, O, Ca, Ni,
Zr, Sn, Ce, Gd, and Pb and the proton ones along the isotonic
chains of N = 50, 82 are discussed systematically in Sec. III,
as well as the effects with modified pairing strength. Finally,
the summary is given in Sec. IV.

II. THEORETICAL FORMALISM AND
NUMERICAL DETAILS

As commonly recognized, the nucleon-nucleon interaction
in nuclear system is mediated by the exchange of mesons
and photons. Standing on this criterion, the CDF model
Lagrangian, i.e., the theoretical starting point, is constructed
by including the degrees of freedom associated with the
nucleon (ψ), the isoscalar σ and ω mesons, the isovector
ρ and π mesons, and the photons (A) [51]. Following the
standard variational procedure, the system Hamiltonian H is
then determined as well as the field equations for nucleons,
mesons, and photons, respectively the Dirac, Klein-Gordon,
and Proca equations [26,51].

Standing on the level of mean field approach, the contribu-
tions of the negative-energy states are generally neglected,
i.e., the so-called no-sea approximation. The CDF energy
functional is then determined by the expectation of the system
Hamiltonian H with respect to the Hartree-Fock ground |	0〉,

E = 〈	0|H |	0〉, |	0〉 =
∏
i=1

c
†
i |0〉 , (1)

where the index i denotes the states with positive energy and
|0〉 is the vacuum state. Within the RHB theory, the energy
functional (1) contains only the Hartree contributions, whereas
both Hartree and Fock terms are included explicitly in the
RHFB theory [29,41].

In the spherical system, the variation of the energy func-
tional (1) with respect to the Dirac spinor ψ(r) leads to the
relativistic Hartree-Fock (RHF) equation as∫

d r ′h(r, r ′)ψ(r ′) = εψ(r), (2)

where ε is the single-particle energy and h(r, r ′) denotes the
single-particle Hamiltonian [29]. By combining the Bogoli-
ubov transformation [52] with CDF models, the above RHF
equation can be extended into the RHFB one [49] as

∫
d r ′

(
h(r, r ′) �(r, r ′)

−�(r, r ′) h(r, r ′)

)(
ψU (r ′)
ψV (r ′)

)

= (γ 0Eq + λ)

(
ψU (r)

ψV (r)

)
, (3)

where ψU and ψV are the quasiparticle spinors, Eq denotes
the quasiparticle energy, and the chemical potential λ is
introduced to preserve the particle number on the average. In
the single-particle Hamiltonian h(r, r ′), the retardation effects
are neglected as is usually done in mean field calculations [29].
The pairing potential �(r, r ′) in Eq. (3) reads as

�αα′ (r, r ′) = −1

2

∑
ββ ′

V
pp
αα′ββ ′(r, r ′)κββ ′(r, r ′), (4)

with the pairing tensor [41]

κββ ′(r, r ′) = ψVβ
(r)∗ψUβ′ (r ′). (5)

For the pp interaction V pp in Eq. (4), the following finite-range
Gogny force is adopted in this work:

V (r, r ′) =
∑
i=1,2

e[(r−r ′)/μi ]2
(Wi+BiP

σ − HiP
τ − MiP

σP τ ),

(6)

where μi,Wi, Bi,Hi , and Mi are the parameters of Gogny
pairing force.

Except for few special cases, e.g., the RHB model with zero-
range pairing force, the RHFB equation (3) is generally in an
integro-differential form, which is difficult to solve efficiently
in the coordinate space. In this work, the Dirac Woods-Saxon
(DWS) basis [53], which can provide appropriate asymptotical
behavior for the continuum states, is introduced to solve such
integro-differential equation. For further details, the readers
are referred to Ref. [29].
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To evaluate the pairing effects, the following three-point
indicators [54,55] of the OES of nuclear binding energies are
introduced for isotopes (ν) and isotones (π ), respectively:

�(3)
ν (N ) ≡ (−1)N

2
[Sn(N,Z) − Sn(N + 1, Z)], (7a)

�(3)
π (Z) ≡ (−1)Z

2
[Sp(N,Z) − Sp(N,Z + 1)], (7b)

where �(3)
ν (N ) and �(3)

π (Z) represent neutron (ν) and pro-
ton (π ) OES, i.e., the difference on single-nucleon separation
energies Sn (or Sp) of two neighboring isotopes (or isotones).
Quantitatively there also exist other higher order indicators to
evaluate the pairing effects, such as the four-point formula or
the five-point ones [54]

�(5)
ν (N ) ≡ (−1)N

8
[Sn(N + 2, Z) − 3Sn(N + 1, Z)

+ 3Sn(N,Z) − Sn(N − 1, Z)], (8a)

�(5)
π (Z) ≡ (−1)Z

8
[Sp(N,Z + 2) − 3Sp(N,Z + 1)

+ 3Sp(N,Z) − Sp(N,Z − 1)]. (8b)

However, these higher order indicators may get the mean-field
features involved, which may partially smooth out the odd-
even oscillations due to the pairing effects [55]. Even with
the three-point one (7), the obtained OESs for the isotopes
(isotones) with even neutron (proton) number are still sensitive
to both pairing and mean-field effects [55–57]. In order to avoid
the disturbances of the mean field as much as possible, here we
take only the OESs [see Eq. (7)] of the isotopes (isotones) with
odd neutron (proton) number as the representatives to study
the pairing effects.

To have an overall understanding on the pairing properties,
we performed the calculations within both RHFB and RHB
for the C, O, Ca, Ni, Zr, Sn, Ce, Gd, and Pb isotopes, and
N = 50 and 82 isotones, from which are extracted the neutron
and proton OESs by Eq. (7) for the odd isotopes or isotones.
In all the calculations, the pp interaction V pp is taken as the
finite-range Gogny force D1S [58]. In the ph channel, we
adopt four CDF effective interactions with density-dependent
meson-nucleon couplings, i.e., PKA1 [24], PKO3 [30], PKDD
[59], and DD-ME2 [60]. For the RHB calculations with PKDD
and DD-ME2, only the Hartree contributions are involved,
whereas both Hartree and Fock terms are taken into account
by the RHFB ones with PKA1 and PKO3. Due to the limit of
the approach itself, the π and ρ tensor couplings are missing
in PKDD and DD-ME2, while PKO3 contains the π couplings
and both are involved in PKA1. It was proved that the inclusion
of the Fock terms and correspondingly the π - and ρ-tensor
couplings play essential roles in improving the self-consistent
descriptions of shell evolution and single-particle structures
[24,30,31].

It should be mentioned that both RHFB and RHB calcula-
tions are restricted to the level of the mean field approach with
spherical symmetry for the selected isotones and isotopes,
and the effects of deformation are neglected in the present
work. Currently the integro-differential RHFB equation (3) is
solved by expanding the quasiparticle spinors ψU and ψV on
the Dirac Woods-Saxon (DWS) basis [29,53]. It is checked

to be accurate enough to take the parameters of the DWS
basis as Rmax = 20 fm, NF = 28, and ND = 12, where Rmax

is the size of the spherical box and NF (ND) corresponds to the
numbers of positive- (negative-) energy states included in the
basis expansion.

For the nuclei with odd neutron and/or proton numbers, the
blocking configurations are utilized here to approximate the
odd-nucleon effects. Practically, by blocking different orbits
around the Fermi surface, the configuration with the strongest
binding is determined as the ground state. Notice that in the
odd nuclei the time reverse symmetry is broken due to the odd
nucleon. However, in this work we neglect the current effects
since the mean field would not be essentially changed by the
odd particle [61–63].

III. RESULTS AND DISCUSSION

A. Odd-even staggering along the isotopic and isotonic chains

We first study the neutron OESs of the selected isotopes
with odd neutron number within the RHFB and RHB theories.
Figure 1 shows the evolution of neutron OESs �(3)

ν (N ) (in open
symbols) along the isotopic chains of C, O, Ca, Ni, Zr, Sn, Ce,
Gd, and Pb, where the experimental data (in filled squares)
extracted from Ref. [64] are presented as the reference. The
theoretical results are provided by the calculations with PKA1,
PKO3, and PKDD. The results from DD-ME2 are omitted
because they show similar systematics as PKDD on the
OESs. It is clearly seen that all the calculations with the
selected effective interactions can provide appropriate overall
agreement with the data to certain extent.

For the light nuclei, PKA1 shows better agreement with
the data than PKO3 and PKDD on the isospin evolution of
OESs along the isotopic chain of carbon. For O isotopes, the
experimental depressions of neutron OESs �(3)

ν (N ) at N = 7
and N = 15 are qualitatively reproduced by all the theoretical
calculations, consistent with the occurrences of the shell
structures at N = 8 and 16. However, quantitatively all the
theoretical calculations underestimate the OESs at the proton-
rich sides. The possible reason could be the missing of the cor-
relations beyond the mean-field level. It has been noticed that
an enhancement of the pairing correlations could occur when
the particle-vibration coupling is included beyond the mean
field, which is expected to affect the single-particle energy in
odd-mass nuclei [65–70]. The present work does not include
such coupling, but the corresponding effects are found to about
1/7 on shell gaps [71] and accordingly about 1/14 on OES (see
Eq. (7) of Ref. [56]). Moreover, the discrepancies as seen at
N = 7 on the OESs for both C and O isotopes might be partly
due to the pairing collapse phenomenon in the related regions
of phase transitions (i.e., close to the magic configurations)
[72], which could be cured theoretically by the particle-number
projection [73]. It should also be noticed that the selected C
and O isotopes have reached the neutron dripline, where the
continuum can be involved substantially. In Ref. [34], the con-
sistent relation between the continuum effects and the OES on
the neutron radius has been illustrated for the carbon isotopes,
whereas for oxygen the contributions from the continuum are
fairly tiny due to the occurrence of magic shell N = 16 [74].
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FIG. 1. (Color online) Neutron OESs �(3)
ν (N ) [see Eq. (7)] as functions of neutron number N for the C, O, Ca, Ni, Zr, Sn, Ce, Gd, and Pb

isotopes. The results are extracted from the calculations of RHFB with PKA1 (in open circles) and PKO3 (in open upward-pointing triangles),
and RHB with PKDD (in open downward-pointing triangles), in comparison with the data [64] (in filled squares). The finite-range Gogny force
D1S is utilized as the effective pairing force. See the text for details.

For the medium-heavy nuclei it is found that the neutron
OESs of Ca isotopes are precisely reproduced by PKA1,
PKO3, and PKDD except the one at N = 31. For Ni isotopes,
PKA1, PKO3, and PKDD also present proper overall agree-
ments, except N = 29 for PKO3 and PKDD and N = 39 for all
the selected effective interactions. From the consistent relation
between the pairing effects and shell structures, it seems that
the shell effect around N = 28 is underestimated by PKO3 and
PKDD, whereas the one at N = 40 is underestimated by PKA1
and overestimated by PKO3 and PKDD. For Zr isotopes,
the neutron OESs are described precisely by PKA1 until the
distinct discrepancies occur beyond N = 59, where the nuclei
may be deformed [75]. In contrast, PKO3 and PKDD present
remarkable deviations from the data in a fairly wide range since
N > 49. The model deviations in reproducing the neutron
OESs here may be connected with the fact that PKA1, in which
the ρ-tensor coupling is included [24], provides better descrip-
tions on the nuclear shell structures and therefore improved
consistence with the pairing effects, as mentioned previously.

For heavier nuclei, e.g., the Sn isotopes, the experimental
OESs �(3)

ν (N ) keep around the value of 1.2 MeV, except

at N = 65 and N = 83. Quantitatively PKDD provides the
best agreement with the data while the neutron OESs are
slightly overestimated by PKA1 and PKO3. For Ce and Gd
isotopes, although some of them may be deformed [75], the
spherical calculations with PKA1, PKO3, and PKDD still
provide appropriate descriptions on the neutron OESs, except
for Gd isotopes beyond N = 89. This is perhaps because
the effects of deformation could be canceled in Eq. (7) to
some extent since the three adjacent nuclei in the three-point
indicators share nearly the same deformation [75]. Along the
isotopic chain of Pb, the systematics of neutron OESs are
properly described by PKA1, PKO3, and PKDD, while there
still exists some systematical overestimation.

Concerning the evolutions of proton OESs along the
isotonic chains of N = 50 and 82, similar systematics are also
obtained from the CDF calculations with PKA1, PKO3, and
PKDD, as referred to the data [64]. From Figs. 2(a) and 2(c)
it is seen that the proton OESs for N = 50 and 82 isotones
are reproduced in an appropriate agreement with data by the
selected effective interactions. In particular, the calculations
with both PKA1 and PKO3 present the clear depression of
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FIG. 2. (Color online) Proton OESs �(3)
π (Z) of N = 50 and

82 isotones as functions of proton number Z. The results are
calculated by the RHFB theory with PKA1 and PKO3 and by the
RHB theory with PKDD, where the Gogny force D1S is utilized in
the pairing channel. The experimental data extracted from Ref. [64]
are also shown for comparison. The results without and with the
effective pairing strength factor ζ are shown in the upper [(a) and (c)]
and lower [(b) and (d)] panels respectively.

�(3)
π (Z) at Z = 39 for N = 50 isotones, corresponding with

the subshell structure Z = 40, which may imply the extra
role of Fock terms, especially the embedded tensor effects,
in determining the nuclear shell structure for the selected
isotonic chain [33]. Compared to the data quantitatively,
however, the pairing effects are also somewhat overestimated
for the selected isotones. It is worthwhile to mention that
the calculations with other relativistic effective Lagrangian,
e.g., the RHB with DD-ME2 [60], also show a similar trend.
In brief one may reach the point that the OESs, coherently
the pairing effects, are somewhat underestimated by the CDF

calculations for light nuclei and overestimated for heavy
nuclei.

In general the statistical observables, i.e., the root-mean-
square (rms) deviation σrms and the average one D from
the data, are introduced to test quantitative precision of the
theoretical calculations,

σrms =
√√√√1

n

n∑
i=1

∣∣�(3)
i,Cal − �

(3)
i,Exp

∣∣2
, (9)

D = 1

n

n∑
i=1

[
�

(3)
i,Cal − �

(3)
i,Exp

]
, (10)

where �
(3)
i,Cal and �

(3)
i,Exp denote the OESs extracted from the

CDF calculations and the experimental data, respectively, and
n is the number of odd isotopes (isotones) in the selected
isotopic (isotonic) chains. Table I shows the values of σrms and
D for the selected isotopes and isotones. It is found that the
calculations with PKA1, PKO3, and PKDD present negative
average error D for C and O isotopes and positive ones for
nuclei heavier than Ni isotopes. Such systematics may also
indicate that the pairing effects are somehow underestimated
for light nuclei and overestimated for heavy nuclei by taking
the finite-range Gogny force D1S as the effective pairing
interaction, which has already been demonstrated from the
results in Figs. 1, 2(a), and 2(c).

To eliminate such systematical discrepancy with the data,
additional strength factor ζ is introduced into the pairing
interaction, as in Ref. [47],

V
pp

opt(r, r ′) = ζV pp(r, r ′), (11)

where V pp(r, r ′) and V
pp

opt(r, r ′) are the original and optimized
pairing force. The optimized strength factor ζ is determined
with respect to the root-mean-square deviation σrms from the
PKA1 calculations with different values of ζ since PKA1
can better describes the nuclear structure properties [24].
As examples, Fig. 3 shows the neutron OESs of Sn and
Pb isotopes calculated with the optimized Gogny pairing

TABLE I. The root-mean-square deviation σrms and the average error D of OES for the isotopes C, O, Ca, Ni, Zr, Sn, Ce, Gd, and Pb and for
the isotones N = 50 and 82, determined by the CDF calculations with PKA1, PKO3, and PKDD. The results inside (outside) the parentheses
are presented by the calculations taking the Gogny force D1S with (without) pairing strength factor ζ as the effective pairing interaction. See
the text for details.

ζ σrms D
PKA1 PKO3 PKDD PKA1 PKO3 PKDD

C 1.20 0.792(0.665) 0.916(0.816) 0.824(0.671) − 0.467( − 0.125) − 0.640( − 0.203) − 0.597( − 0.159)
O 1.15 0.609(0.582) 0.899(0.649) 0.641(0.594) − 0.415( − 0.173) − 0.609( − 0.100) − 0.498( − 0.173)
Ca 1.00 0.255 0.354 0.305 − 0.032 +0.109 +0.039
Ni 1.00 0.230 0.228 0.230 +0.046 +0.108 − 0.014
Zr 1.00 0.323 0.577 0.511 +0.128 +0.393 +0.295
Sn 0.95 0.230(0.135) 0.257(0.145) 0.158(0.167) +0.186( + 0.043) +0.211( − 0.085) +0.062( + 0.035)
Ce 0.93 0.266(0.155) 0.332(0.176) 0.241(0.184) +0.205( − 0.002) +0.294( + 0.083) +0.132( − 0.037)
Gd 0.90 0.447(0.339) 0.452(0.251) 0.338(0.314) +0.281( − 0.002) +0.362( + 0.056) +0.098( − 0.160)
Pb 0.90 0.327(0.118) 0.362(0.122) 0.218(0.163) +0.296( + 0.049) +0.344( + 0.057) +0.167( − 0.088)
N = 50 0.95 0.250(0.172) 0.204(0.137) 0.148(0.148) +0.196( + 0.037) +0.171( − 0.011) +0.062( − 0.079)
N = 82 0.90 0.300(0.123) 0.287(0.147) 0.163(0.171) +0.278( − 0.055) +0.269( − 0.061) +0.127( − 0.135)
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FIG. 3. (Color online) The same as Fig. 1 but for Sn (a) and
Pb (b) isotopes calculated by the optimized Gogny pairing force D1S
with the effective pairing factor ζ . See the text for details.

force D1S, in which the strength factor ζ are respectively
taken as 0.95 and 0.90. By comparing the results with
original pairing force (i.e., ζ = 1.0) in Figs. 1(f) and 1(i),
one can see that the agreements with the data are remarkably
improved by the inclusion of the strength factor. In Ref. [48]
similar conclusions have also been reached in reproducing the
experimental data of inertia moments for very heavy nuclei.
For the N = 50 and 82 isotones, as shown in Figs. 2(b) and
2(d), the systematical overestimation on proton OESs can be
also eliminated by reducing the strength factors as ζ = 0.95
and 0.90, respectively.

In fact, such improvements can be demonstrated quan-
titatively from the statistical observables in Table I for all
the selected isotopes and isotones. It is shown that with the
inclusion of the strength factor almost all the CDF calculations
present nearly zero average deviations D, especially for
the heavy isotopes and isotones, which corresponds to an
improvement of the systematics of pairing effects. As shown in
the second column of Table I, the strength factors ζ represent
distinct Z dependence for isotopes, as well as N dependence
for isotones; i.e., ζ decreases monotonically with increasing
proton number Z of the isotopes or neutron number N of
the isotones, consistent with the systematic deviations as seen
from Figs. 1 and 2. As seen from rms deviations in Table I,
remarkable improvements on the agreements can be also found
with the inclusion of the strength factor in pp interaction. For
the neutron OESs the statistic qualities of the agreements,
i.e., the values of σrms, are improved by about 10% for light
nuclei (C and O) and about 30% for heavy ones (Sn, Ce,
Gd, and Pb), whereas for the isotones of N = 50 and N = 82
(the last two rows in Table I), the RHFB calculations with
optimized pairing forces respectively present about 30% and
50% improvement on the rms deviations σrms, which are almost
unchanged in the RHB calculations with PKDD as well as with
DD-ME2.

Figure 4 presents the proton effective pairing gaps of
the N = 50 (left plots) and 82 (right plots) isotones with
even proton numbers, i.e., the average gap energies extracted
from the RHFB calculations (see Eq. (5.5) of Ref. [42]). For
comparison, the OESs of the experimental binding energies
are shown by three-point (filled squares) and five-point (filled
circles) indicators. As the experimental reference of pairing
effects, one may find distinct deviations between these two
formalisms along the isotonic chain of N = 50 [see Fig. 4(a)]
and such deviations become smaller for N = 82 isotones. This

FIG. 4. (Color online) The average proton pairing gap of N = 50
and N = 82 even isotones compared with the corresponding proton
OES extracted from the data [64]. The results without and with the
effective pairing strength factor ζ are shown in the left [(a) and (c)]
and right [(b) and (d)] panels respectively. See the text for details.

is mainly due to the fact that these evaluations of pairing
effects for even-even nuclei have already got the mean-field
effects involved to different extents [55,56]. As referred to the
experimental values, the calculated effective pairing gaps still
show appropriate agreements, especially for the calculations
with optimized pairing force by the three-point indicator,
which agree with the conclusion that the OES of three-point
indicator can well describe the average pairing gap instead of
higher order indicators [56]. It should be noticed that along the
isotonic chain of N = 50 the calculations with PKA1 present
distinct depression at Z = 40, which implies the occurrence
of some subshell closures, also demonstrated by the OES
depression of the odd isotones at Z = 39 [see Figs. 2(a) and
2(b)]. The calculations with PKO3 and PKDD do not show
similar consistencies between the results of odd and even
isotones; e.g., for the odd N = 50 isotones the OES results
show certain depression at Z = 39 [see Figs. 2(a) and 2(b)],
whereas the effective pairing gaps for the even isotones are
just changed smoothly at Z = 40 [see Figs. 4(a) and 4(b)].
Along the isotonic chain of N = 82, the inconsistencies are
also observed at Z = 58 from the results of PKO3 and PKDD;
i.e., the values of the effective pairing gaps clearly indicate the
existence of the artificial shell closure Z = 58 [24,76] while
such spurious shell is not found from the systematics on the
OESs of the odd isotones.

B. NUCLEAR STRUCTURE PROPERTIES WITH
OPTIMIZED PAIRING FORCE

Since substantial improvements in reproducing the neutron
and proton OESs have been achieved with the optimized
pairing force V

pp
opt [see Eq. (11)], it is worthwhile to test the

relevant effects in describing the nuclear structure properties,
such as the single-particle configurations, pairing energies, and
nuclear binding energies. As a direct response, the occupation
probabilities of valence orbits will be essentially changed with
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the modifications of the pairing strength, as well as the pairing
energies.

In Table II are shown the calculated occupation probabilities
of neutron valence orbits 2d5/2, 1g7/2, 3s1/2, 2d3/2, and 1h11/2

in 112Sn, 114Sn, 118Sn, and 124Sn, as compared to the data taken
from Refs. [77,78]. The bracketed numbers are the results
calculated with the optimized pairing force V

pp
opt (ζ = 0.95).

Among the selected effective Lagrangians, PKA1 shows the
best agreements with the data within the error bars (denoted
by bold types), whereas lesser agreements are provided by
the calculations with PKO3, PKDD, and DD-ME2, especially
the improper order of the pseudospin partners 2d5/2 and
1g7/2. As seem from the data of occupation probabilities, the
neutron orbit 2d5/2 is almost fully filled whereas 1g7/2 is just
gradually occupied, which implies that 2d5/2 is bound deeper
than 1g7/2 in the selected isotopes. Evidently PKA1 presents
more reliable description on nuclear structures than the other
selected effective Lagrangians.

In the PKA1 calculations the optimized pairing force V
pp

opt
also bring some systematic improvements on the agreement
with the data, i.e., being closer to the central values of
the data, whereas with PKO3 and PKDD, such systematical
improvements cannot be observed, which may be partially due
to the inappropriate order of the valence orbits. If comparing
the occupations of another pseudospin doublet 3s1/2 and 2d3/2,
one may also find the improper order of these two states
described by PKO3 and PKDD in 112,118,124Sn and by DD-ME2
in 112Sn. Compared with the distinct improvements on the
OESs with V

pp
opt, the corresponding effects on the occupations

are relatively weak because the configurations are determined
not only by the pairing effects, but also more essentially by
the concrete shell structure, in which the mean field plays the
dominant role.

As another direct effect, the modification on the pairing
interaction will substantially change the contributions from
the pairing correlations to the energy functional. Taking the
even Pb isotopes as the representatives, Table III shows
the pairing energies from the RHFB and RHB calculations
with the selected effective parameters. For comparison the
results calculated by RHB with NL1 and by nonrelativistic

HFB with Gogny D1S are also shown [47]. It should
be mentioned that in the former RHB-NL1 calculations
the effective pairing interaction was taken as the Gogny
force D1S with additional strength factor ζ = 1.15, whereas
for the latter Gogny calculations it kept as the original
one [47].

As seen from Table III the pairing energies are remarkably
reduced in the calculations of PKA1, PKO3, and PKDD with
the optimized pairing force V

pp
opt, which leads to weaker pairing

contributions than those from NL1 and Gogny calculations. In
this work the pairing interaction is optimized as referred to
the OESs of binding energies of the odd isotopes, while in
Ref. [47] the strength factor ζ = 1.15 is simply determined
to reproduce the pairing energies of the Gogny calculations
for Pb isotopes. Such deviations between the models may
also originate from the inconsistency between the relativistic
mean field and nonrelativistic pairing potential, as mentioned
before. As referred to the pairing energies, the PKA1 and
PKO3 calculations with original Gogny pairing force present
slightly stronger pairing effects than the Gogny ones, while
PKDD and DD-ME2 present much weaker pairing effects.
This discrepancy between the RHF and RMF models can be
interpreted by the values of the nonrelativistic-type effective
mass [23,79]. With the inclusion of Fock terms, PKA1
and PKO3 have a fairly large effective mass, close to the
nonrelativistic ones, whereas in general the RMF models
present smaller effective masses, e.g., by PKDD and DD-
ME2. Globally the level densities determined by PKA1 and
PKO3 are then larger than PKDD and DD-ME2 such that
stronger pairing effects are obtained by the former ones
with the same pairing interaction. This may also partially
explain the reason why we have different pairing strength
factors from the previous NL1 calculations.

To provide a statistical understanding on the effects of
the optimized pairing force, Figs. 5 and 6 show the statistic
behaviors of the deviations from the experimental data for
both binding energies and OESs, respectively. For comparison,
the results calculated with the original and optimized Gogny
pairing forces are respectively shown in the upper and lower
panels. In these two figures the solid curves denote the

TABLE III. The pairing energy of Pb isotopes obtained by the CDF calculations with PKA1, PKO3, and PKDD. The results inside (outside)
the parentheses are presented by the calculations taking the Gogny force D1S with (without) pairing strength factor ζ as the effective pairing
interaction. The corresponding results of RHB theory with NL1 with ζ = 1.15 and of HFB theory with Gogny force [47] are also shown for
comparison.

A PKA1 PKO3 PKDD NL1 Gogny

196 − 24.72( − 17.76) − 24.54( − 17.04) − 17.47( − 11.62)
198 − 22.40( − 16.03) − 22.40( − 15.38) − 15.56( − 10.14)
200 − 19.40( − 13.73) − 19.52( − 13.13) − 13.14( − 8.34)
202 − 15.65( − 10.83) − 15.86( − 10.28) − 10.23( − 6.26) − 14.49 − 14.41
204 − 11.14( − 7.34) − 11.34( − 6.85) − 6.85( − 3.97) − 10.41 − 10.49
206 − 5.90 ( − 3.50) − 6.00 ( − 3.11) − 3.17( − 1.48) − 5.57 − 5.74
208 0.00 (0.00) 0.00(0.00) 0.00 (0.00) 0.00 0.00
210 − 4.81 ( − 2.93) − 6.89 ( − 4.30) − 5.34( − 3.66) − 4.79 − 4.19
212 − 8.58 ( − 5.04) − 12.00( − 7.67) − 9.61( − 6.56) − 8.66 − 8.64
214 − 11.64( − 6.37) − 16.04( − 10.33) − 12.99( − 8.87) − 11.77 − 12.89

054331-8



ODD-EVEN STAGGERING OF THE NUCLEAR BINDING . . . PHYSICAL REVIEW C 87, 054331 (2013)

FIG. 5. (Color online) Distributions of deviations from experiment of the binding energies of 205 spherical nuclei in the selected isotopes
and isotones (0.5-MeV bins). Results obtained without (with) the effective pairing strength factor are shown in the upper (lower) panels. The
best-fitted Gaussian distributions [see Eq. (12)] are also shown with black lines, and the corresponding parameters are listed in Table IV.

Guassian statistic fittings as

y = y0 + A

w
√

π/2
e
−2 (x−xc )2

w2 , (12)

where y0 is the minimum counts, A represents the area of
the Gaussian distribution, and xc and w denote the statistic
averages (ideally zero) and errors. In Figs. 5 and 6 it is
clearly shown that the deviations of both binding energies
and OESs from the data obey the Gaussian statistic behaviors.
For the binding energy the deviations are not symmetrically
distributed on the negative and positive sides and more counts
are found for the positive deviations, mainly due to the
deformation effects neglected in current calculations of Zr,

Ce, and Gd isotopes. It is expected to improve the results by
including the deformation effects, which in general lead to
more bound ground states. For the OESs the statistic distri-
butions are nearly symmetric, especially for the PKA1 results
with the optimized pairing force. Evident improvements due
to the optimize pairing interaction can be also demonstrated
from the statistic variables shown in Table IV. It is seen that
the statistic averages and errors on the OES deviations, i.e.,
the values of xc and w, are improved distinctly, while the
improvements on the binding energies are not so distinct and
systematical as the OESs. Especially for PKA1 the statistic
qualities even become worse, inconsistent with the evident
improvements on the OESs.

FIG. 6. (Color online) The same as Fig. 5 but for the OES [see Eq. (7)] of 186 spherical nuclei with both even and odd nucleon numbers in
the selected isotopes and isotones (0.1-MeV bins).
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TABLE IV. Parameters of the corresponding Gaussian distribu-
tions [see Eq. (12)] for the binding energy in Fig. 5 and the OES in
Fig. 6. Results obtained without (with) the effective pairing strength
factor are shown outside (inside) the parentheses.

y0 xc w A

Binding energy

PKA1 0.05(0.66) 0.58(0.76) 3.65(4.16) 101.26(91.05)
PKO3 1.34(0.27) − 0.60(0.23) 2.69(3.37) 87.39(97.60)
PKDD 3.52(2.80) − 0.45(0.15) 1.97(2.26) 43.87(55.54)

OES

PKA1 0.73(1.31) 0.19( − 0.01) 0.39(0.24) 15.93(14.13)
PKO3 0.67(1.06) 0.23(0.03) 0.35(0.27) 16.02(14.80)
PKDD 1.15(1.23) 0.07( − 0.10) 0.30(0.28) 14.52(14.30)

IV. SUMMARY

In summary, the neutron odd-even mass staggerings (OESs)
of C, O, Ca, Ni, Zr, Sn, Ce, Gd, and Pb isotopes, and
the proton ones of N = 50 and 82 isotones, are studied
systematically within the spherical covariant density function
theory, specifically the relativistic Hartree-Fock-Bogoliubov
(RHFB) theory with PKA1 and PKO3 and the relativistic
Hartree-Bogoliubov (RHB) theory with PKDD and DD-ME2.

By taking the finite-range Gogny force D1S as an effective
paring interaction, the neutronand proton OESs can be prop-
erly reproduced by the selected effective Lagragians. However,
some systematic discrepancies with the data of the OESs are
found, namely, the OESs and coherently the pairing effects are
somewhat underestimated for light nuclei and overestimated
for the heavy ones. Such discrepancies can be eliminated
partially by introducing a Z- or N -dependent strength factor
into the pairing force, which present better agreements with the
experimental data of the OESs by improving the root-mean-
square deviation σrms of the OES about 10% for light nuclei and
30% for heavy ones. Similar improvements are also obtained
on the description of single-particle configurations, especially
in the calculations with PKA1. In addition, the effects of the
optimized pairing force on the pairing energy and binding
energy are analyzed systematically.
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