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Effects of ground-state correlations on collective excitations of 16O
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The effects of the correlations in the ground state of 16O on the octupole and dipole excitations are studied
using the extended random phase approximation (ERPA) derived from the time-dependent density-matrix theory.
It is found that the ground-state correlation effects are significant, especially in the octupole excitation. It is
shown that the first 3− state calculated in the random phase approximation (RPA) is shifted upward when the
self-energy contributions are included in particle-hole pairs. The coupling to the two-particle–two-hole states
plays a role in shifting the first 3− state down to the right position. It is also found that the dipole strength is
fragmented due to the partial occupation of the single-particle states and that the peak position of the giant dipole
resonance calculated in ERPA is little changed from that in RPA due to the above-mentioned competing effects:
the increase in particle-hole energy and the coupling to two-particle–two-hole configurations.
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I. INTRODUCTION

The random phase approximation (RPA) based on the
Hartree-Fock (HF) ground state has extensively been used to
study nuclear collective excitations. It is generally considered
that the HF + RPA approach is the most appropriate for
double-closed-shell nuclei for which the HF theory would
give a good description of the ground states. However, recent
theoretical studies for 16O indicate that the ground state of 16O
is a highly correlated state [1,2], which indicates the necessity
of using beyond-RPA theories to study collective excitations
of 16O. In this paper we investigate how octupole and dipole
excitations of 16O are affected by ground-state correlations,
using an extended RPA (ERPA) that has been derived from
the time-dependent density-matrix theory (TDDM) [3,4]. We
show that the octupole excitation of 16O is quite sensitive to
the ground-state correlation effects.

II. FORMULATION

The TDDM consists of the coupled equations of motion for
the one-body density matrix nαα′ (the occupation matrix) and
the correlated part of the two-body density matrix Cαβα′β ′ (the
correlation matrix). These matrices are defined as

nαα′ (t) = 〈�(t)|a†
α′aα|�(t)〉, (1)

Cαβα′β ′(t) = 〈�(t)|a†
α′a

†
β ′aβaα|�(t)〉

− (nαα′ (t)nββ ′(t) − nαβ ′(t)nαβ ′(t)), (2)

where |�(t)〉 is the time-dependent total wave function
|�(t)〉 = exp[−iH t]|�(t = 0)〉. The equations of motion for
reduced density matrices form a chain of coupled equa-
tions known as the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy. In TDDM the BBGKY hierarchy is
truncated by replacing a three-body density matrix with
antisymmetrized products of the one-body and two-body
density matrices. The TDDM equation for Cαβα′β ′ contains all
effects of two-body correlations: particle-particle, hole-hole,
and particle-hole correlations. The ground state in TDDM
is given as a stationary solution of the TDDM equations.
The stationary solution can be obtained using the gradient
method [1]. This method is also used in the present work. The

ERPA equations used here are derived as the small amplitude
limit of TDDM and are written in matrix form for the one-body
and two-body amplitudes x

μ
αα′ and X

μ
αβα′β ′ [1]

(
A C

B D

)(
xμ

Xμ

)
= ωμ

(
S1 T1

T2 S2

) (
xμ

Xμ

)
. (3)

The one-body sector of Eq. (3) Axμ = ωμS1x
μ is formally the

same as the equation in the self-consistent RPA (SCRPA) of
Refs. [5–7], which includes the effects of ground-state correla-
tions through nαα′ and Cαβα′β ′ . We refer to the approximation
Axμ = ωμS1x

μ as the modified RPA (mRPA). To explain
the role of the correlation matrix in the mRPA equation, we
explicitly show the matrices A and S1:

A(αα′ : λλ′)
= (εα − εα′ )(nα′α′ − nαα)δαλδα′λ′

+ (nα′α′ − nαα)(nλ′λ′ − nλλ)〈αλ′|v|α′λ〉A
− δα′λ′

∑
γ γ ′γ ′′

〈αγ |v|γ ′γ ′′〉Cγ ′γ ′′λγ

− δαλ

∑
γ γ ′γ ′′

〈γ γ ′|v|α′γ ′′〉Cλ′γ ′′γ γ ′

+
∑
γ γ ′

(〈αγ |v|λγ ′〉ACλ′γ ′α′γ + 〈λ′γ |v|α′γ ′〉ACαγ ′λγ )

−
∑
γ γ ′

(〈αλ′|v|γ γ ′〉Cγγ ′α′λ + 〈γ γ ′|v|α′λ〉Cαλ′γ γ ′), (4)

S1(αα′ : λλ′)
= (nα′α′ − nαα)δαλδα′λ′ , (5)

where the subscript A means that the corresponding matrix
is antisymmetrized and nαα′ is assumed to be diagonal. The
first two terms on the right-hand side of Eq. (4) are the
same as those in the RPA equation, the next two terms with
Cαβα′β ′ describe the self-energy of the particle-hole (p-h)
state due to ground-state correlations [5], and the last four
terms with Cαβα′β ′ may be interpreted as the modification of
the p-h interaction caused by ground-state correlations [5].
The difference between mRPA and SCRPA is in the method
to determine nαα and Cαβα′β ′ : In SCRPA these matrices
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are self-consistently determined using the amplitudes x
μ
αα′

whereas here we calculate them in TDDM. Such a method of
expressing nαα with the RPA amplitudes has been used in other
beyond-RPA theories [8–12]. If the correlated ground state is
replaced by the HF ground state, mRPA and ERPA become the
same as RPA and the second RPA (SRPA) [13], respectively.
In SRPA calculations the so-called diagonal approximation
where the correlations in matrix D are neglected has often
been used [13]. In the ERPA calculations shown below all
correlations in matrix D are included. It has been pointed out
[14] that if the effects of ground-state correlations are included
perturbatively in extended RPA theories, the energy-weighted
sum rule (EWSR) is not satisfied. In our ERPA and mRPA the
ground state is calculated nonperturbatively in TDDM and the
one-body amplitudes x

μ
αα′ include the p-p and h-h components

in addition to the p-h and h-p components. Therefore, ERPA
and mRPA satisfy EWSR [15].

III. RESULTS

The occupation probability nαα and the correlation matrix
Cαβα′β ′ are calculated within TDDM using the 1p3/2, 1p1/2,
1d5/2, and 2s1/2 states for both protons and neutrons. For the
calculations of the single-particle states we use the Skyrme III
force. To reduce the dimension size, we only consider the
two-particle–two-hole (2p-2h) and 2h-2p elements of Cαβα′β ′ .
A simplified interaction which contains only the t0 and t3 terms
of the Skyrme III force is used as the residual interaction. The
spin-orbit force and Coulomb interaction are also omitted from
the residual interaction. To avoid a cumbersome treatment
of the rearrangement effects of a density-dependent force in
extended RPA theories [16], we use the three-body version of
the Skyrme interaction, v3 = t3δ

3(r1 − r2)δ3(r1 − r3), which
gives the following density-dependent two-body residual in-
teraction: t3ρnδ

3(r − r ′), t3ρδ3(r − r ′)/2, and t3ρpδ3(r − r ′)
for the proton-proton, proton-neutron, and neutron-neutron
interactions, respectively, where ρp, ρn, and ρ are the proton,
neutron, and total densities, respectively. In the RPA, mRPA
and ERPA calculations the one-body amplitudes x

μ
αα′ are

defined using a large number of single-particle states, including
those in the continuum. We discretize the continuum states
by confining the wave functions in a sphere with radius
15 fm and take all the single-particle states with εα � 50
MeV and jα � 11/2h̄. As the residual interaction, we use
the same simple force as that used in the ground-state
calculation. Since the residual interaction is not consistent
with the effective interaction used in the calculation of the
single-particle states, it is necessary to adjust its strength so
that the collective states calculated in RPA come at the right
positions. We use the reduction factor f = 0.62 so that the
spurious mode corresponding to the center-of-mass motion
comes at zero excitation energy in RPA. The p-h interaction in
the second term on the right-hand side of Eq. (4) is multiplied
with this f . This rather large reduction of the strength is a
direct consequence of inconsistency of the residual interaction
but the reduction procedure has been found [1] to give an
excitation energy of the giant quadrupole resonance of 16O that
is comparable to the result of a self-consistent RPA calculation.
To define the two-body amplitudes X

μ
αβα′β ′ , we use the small

TABLE I. Single-particle energies εα and occupation probabilities
nαα calculated in TDDM.

Orbit εα [MeV] nαα

Proton Neutron Proton Neutron

1p3/2 −18.3 −21.9 0.894 0.893
1p1/2 −12.3 −15.7 0.868 0.865
1d5/2 −3.8 −7.1 0.108 0.109
2s1/2 1.1 −1.6 0.019 0.021

single-particle space consisting of the 1s1/2, 1p3/2, 1p1/2,
1d5/2, 2s1/2, 1d3/2, 2p3/2, 2p1/2, and 1f7/2 for both protons and
neutrons. To reduce the number of the two-body amplitudes,
we consider only the 2p-2h and 2h-2p components of X

μ
αβα′β ′

with |εα + εβ − εα′ − εβ ′ | � Emax MeV. By comparing the
results with Emax = 40, 50, and 60 MeV, we found that Emax =
60 MeV is sufficient for the truncated single-particle space. For
the matrix elements of the residual interaction which couple to
X

μ
αβα′β ′ , we use the same residual interaction (with f = 1) as

that used for the ground-state calculation because the single-
particle space for X

μ
αβα′β ′ is much smaller than that for x

μ
αα′ .

The occupation probabilities calculated in TDDM are
shown in Table I. The deviation from the HF values (nαα = 1 or
0) is more than 10%, which means that the ground state of 16O
is a strongly correlated state. A recent shell-model calculation
by Utsuno and Chiba [2] also gives a similar result for the
ground state of 16O. The correlation energy Ec in the ground
state, which is defined by Ec = ∑

αβα′β ′ 〈αβ|v|α′β ′〉Cα′β ′αβ/2,
is −23.7 MeV. A large portion of the correlation energy is
compensated by the increase in the mean-field energy due
to the fractional occupation of the single-particle states. The
resulting energy gain due to the ground-state correlations,
which is given by the total energy difference between HF
and TDDM, is 6.4 MeV, which is much smaller than |Ec| =
23.7 MeV.

The strength functions for the isoscalar octupole excitation
calculated in RPA (blue [gray] dot-dashed line), SRPA (red
[gray] dashed line), mRPA (dotted line), and ERPA (solid
line) are shown in Fig. 1. The excitation operator used is

FIG. 1. (Color online) Strength functions calculated in RPA (blue
[gray] dot-dashed line), SRPA (red [gray] dashed line), mRPA (dotted
line), and ERPA (solid line) for the octupole excitation in 16O. The
distributions are smoothed with an artificial width � = 0.5 MeV.
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r3Y30(θ ). In mRPA and ERPA the fractional occupation of
the 2s1/2 states makes the transitions from these states to
the continuum states possible, which gives some unphysical
strength distributions in the very low-energy region. As is
shown below, the unphysical contributions could in principle
be eliminated by using the correlation matrix Cα′β ′αβ . However,
it is difficult to completely eliminate the unphysical states.
Therefore, we neglected the single-particle transitions from
the 2s1/2 states. In RPA the summed energy-weighted strength
exhausts 97% of the EWSR value. The energy-weighted sum
of the octupole strength in ERPA and mRPA is about 10%
larger than that in RPA. However, 〈r2L−2〉 (with L = 3) for the
TDDM ground state is also larger than that for the HF ground
state. Consequently, 96% of the EWSR value is exhausted
in ERPA and mRPA. The excitation energy of the first 3−
(3−

1 ) state in RPA is 3.54 MeV, which is much smaller than
the experimental data 6.13 MeV [17]. In SRPA the state
corresponding to the 3−

1 state becomes an imaginary solution
due to the coupling to the 2p-2h configurations. The results
in RPA and SRPA suggest that the approaches based on the
HF ground state cannot give a correct excitation energy of
the 3−

1 state. The excitation energy of the 3−
1 state in mRPA

is 9.1 MeV, which is much larger than that in RPA. This is
explained by the self-energy contributions [see Eq. (4)] in the
p-h pairs such as (1p1/2)−1 × 2d5/2 and (1p3/2)−1 × 2d5/2. The
self-energy contributions increase the energy of the p-h pairs,
reflecting the fact that the ground-state energy is lowered by the
ground-state correlations. We found that the last four terms in
Eq. (4), which describe the modifications of the p-h interaction,
play a role in slightly increasing the attractive p-h correlations.
In ERPA the 3−

1 state is shifted downward to 6.56 MeV due
to the coupling to the 2p-2h configurations. The B(E3) value
of the 3−

1 state calculated in ERPA is 130e2 fm6, while the
experimental value is 204 ± 6e2 fm6 [17]. The results in mRPA
and ERPA demonstrate that both the ground-state correlations
and the coupling to 2p-2h configurations play an important role
in describing the properties of the 3−

1 state. Similar effects of
ground-state correlations on collective excitations of metallic
clusters have been reported by Gambacurta and Catara [12]
using an extended SRPA approach.

We point out that the 3−
1 state in RPA somewhat depends

on the parameters of the Skyrme interactions. For example, it
has been reported that the SkM∗ parameter set [18] gives the
3−

1 state at 6.06 MeV with B(E3) = 91.1e2 m6 [19] and that
a simple Skyrme type interaction with t0 = −1048 MeV fm3,
t3 = 19150 MeV fm6, and w0 = 95 MeV fm5 gives the 3−

1
state at 6.05 MeV, which exhausts 10.5% of EWSR [20]. We
also found that the parameter set of the Skyrme III force with
f = 0.62, x0 = 0, and w0 = 90 MeV fm5 gives the 3−

1 state
at 6.12 MeV with B(E3) = 211e2 fm6 in RPA, which are
close to the experimental data 6.13 MeV and 204 ± 6e2 fm6

[17]. However, this force also induces strong ground-state
correlations and the 3−

1 state calculated in ERPA comes at
8.26 MeV, which is much higher than the data.

The strength functions for the isovector dipole excitation
calculated in RPA (blue [gray] dot-dashed line) and SRPA
(red [gray] dashed line) are shown in Fig. 2 and those in
mRPA (dotted line) and ERPA (solid line) are shown in Fig. 3.
The single-particle transitions from the partially occupied

FIG. 2. (Color online) Strength functions calculated in RPA (blue
[gray] dot-dashed line) and SRPA (red [gray] dashed line) for the
isovector dipole excitation in 16O. The distributions are smoothed
with an artificial width � = 0.5 MeV.

2s1/2 states are neglected in mRPA and ERPA. In RPA
the summed energy-weighted strength exhausts 84% of the
dipole sum rule including the enhancement term, which is
given by the t1 and t2 parameters of the Skyrme III force
and accounts for 26% of the sum rule value. To increase
the sum of the energy-weighted strength, we need to in-
clude the momentum-dependent terms of the Skyme force
in the residual interaction and also expand the single-particle
space. The energy-weighted sums of the dipole strength in
the other approximations give a value similar to that in RPA.
Comparison of the result in SRPA with that in RPA shows
that the main effect of the coupling to the 2p-2h configurations
is to shift the RPA strength distribution downward. A similar
downward shift of the dipole strength has been reported in
large-scale SRPA calculations [21,22]. The centroid energies
given by Ē = ∫

ES(E)dE/
∫

S(E)dE are 22.5, 21.9, 23.9,
and 23.3 MeV in RPA, SRPA, mRPA, and ERPA, respectively.
In mRPA the largest peak is upwardly shifted to 21.5 MeV from
the position at 19.5 MeV in RPA. This upward shift is due to
the self-energy contributions, mainly in the (1p3/2)−1 − 1d5/2

pairs. In the case of the isovector dipole excitation, the last
four terms in Eq. (4) play a role in slightly reducing the
repulsive p-h correlations. The increase in the dipole strength
below 15 MeV in mRPA and ERPA, which is consistent

FIG. 3. Strength functions calculated in mRPA (dotted line) and
ERPA (solid line) for the isovector dipole excitation in 16O. The
distributions are smoothed with an artificial width � = 0.5 MeV.
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FIG. 4. (Color online) Strength functions calculated in mRPA
(solid line) and RPA (red [gray] dotted line) for the isovector
dipole excitation in 16O. The partially occupied single-particle states
obtained in TDDM are used in the RPA calculation. The correlation
matrix Cα′β ′αβ is inserted only to the 2s1/2-2p3/2 and 2s1/2-2p1/2 pairs
in the mRPA calculation. The distributions are smoothed with an
artificial width � = 0.5 MeV.

with the experiment [23], is due to the partial occupation
of the 1d5/2 states allowing such low-energy p-h transitions
as 1d5/2 → 2p3/2. The strength distribution above 20 MeV
in mRPA is about 2 MeV downwardly shifted in ERPA due
to the coupling to the 2p-2h configurations. However, there is
little difference between the mRPA and ERPA distributions in
the energy region below 17 MeV. This indicates that the dipole
states in the low-energy region weakly couple to the 2p-2h
configurations. In the case of the isovector dipole excitation
the effects of the ground-state correlations play a role in
increasing the fragmentation of the dipole strength in the
low-energy region. However, in the giant dipole resonance
(GDR) region it seems that the increase in the energy of
the p-h pairs is compensated by a downward shift of the
dipole strength due to the coupling to the 2p-2h configurations.
The experimental photoabsorption cross section [23] shows
a broader GDR distribution than the result in ERPA. More
two-body configurations should be included to improve the
ERPA result. A similar downward shift of negative-parity
states due to coupling to multiphonon states have been reported
in a recent application of a multiphonon model to 16O [24].

As mentioned above, partial occupation of the particle
states could cause some unphysical low-lying transitions
possible. To show this, we performed an RPA calculation for

the isovector dipole excitation using the partially occupied
single-particle states including the 2s1/2 states. The result is
shown in Fig. 4 with the dotted line. The strength seen below
5 MeV comes from the transitions from the 2s1/2 states to
the 2p3/2 and 2p1/2 states. The solid line in Fig. 4 shows
the result in mRPA where the correlation matrix Cα′β ′αβ is
included only in the 2s1/2-2p3/2 and 2s1/2-2p1/2 p-h pairs.
Since the norm matrix S1 given by Eq. (5) for the 2s1/2-2p3/2

and 2s1/2-2p1/2 pairs is quite small (≈0.02, see Table I),
the terms in Eq. (4) which contain Cαβα′β ′ can drastically
shift the energies of these pairs. In fact the inclusion of the
correlation matrix eliminates the strength in the low-energy
region and slightly increases the strength distribution around
25 MeV, as seen in Fig. 4. When the coupling of the p-h
pairs to 2p-2h configurations is included in ERPA, it becomes
difficult to completely eliminate the unphysical low-energy
transitions from the partially occupied 2s1/2 states. This is the
reason why we neglected such transitions in the mRPA and
ERPA calculations shown above. The problems of unphysical
components in beyond-RPA approaches have been discussed
in Ref. [11], where a way to disentangle them is also suggested.

IV. CONCLUSION

In summary, the effects of the correlations in the ground
state of 16O on the octupole and dipole excitations were studied
using the extended RPA. It was found that the ground-state
correlation effects on the first 3− state are significant: The first
3− state is shifted upward due to the self-energy contributions.
It was also found that the coupling to two-particle–two-hole
states plays a role in producing the first 3− at right excitation
energy. In the case of the isovector dipole excitation, the effects
of the ground-state correlations were found to increase the
fragmentation of the dipole strength in low-energy region.
However, the giant dipole resonance calculated in ERPA
is little changed from that in RPA due to the competing
effects: The increase in particle-hole energy and the coupling
to two-particle–two-hole configurations. The mechanism to
eliminate unphysical low-energy transitions originating from
partial occupation of the particle states was also discussed. Our
results demonstrate that the ground-state correlation effects in
16O should be properly taken into account in the study of
collective excitations. It is interesting to study these effects in
other nuclei.

[1] M. Tohyama, Phys. Rev. C 75, 044310 (2007).
[2] Y. Utsuno and S. Chiba, Phys. Rev. C 83, 021301(R) (2011).
[3] S. J. Wang and W. Cassing, Ann. Phys. 159, 328 (1985).
[4] M. Gong and M. Tohyama, Z. Phys. A 335, 153 (1990).
[5] D. Janssen and P. Schuck, Z. Phys. A 339, 43 (1991).
[6] J. Dukelsky and P. Schuck, Nucl. Phys. A 512, 466 (1990).
[7] J. Dukelsky and P. Schuck, Phys. Lett. B 387, 233 (1996).
[8] D. J. Rowe, Phys. Rev. 175, 1283 (1968).
[9] A. Klein, N. R. Walet, and G. Do Dang, Nucl. Phys. A 535, 1

(1991).
[10] A. A. Raduta, C. M. Raduta, A. Faessler, and W. A. Kaminski,

Nucl. Phys. A 634, 497 (1998).

[11] D. Gambacurta, F. Catara, and M. Grasso, Phys. Rev. C 80,
014303 (2009).

[12] D. Gambacurta and F. Catara, Phys. Rev. B 81, 085418 (2010).
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