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Background: Well-developed third minima, corresponding to strongly elongated and reflection-asymmetric
shapes associated with dimolecular configurations, have been predicted in some non-self-consistent models to
impact fission pathways of thorium and uranium isotopes. These predictions have guided the interpretation of
resonances seen experimentally. On the other hand, self-consistent calculations consistently predict very shallow
potential-energy surfaces in the third minimum region.
Purpose: We investigate the interpretation of third-minimum configurations in terms of dimolecular (cluster)
states. We study the isentropic potential-energy surfaces of selected even-even thorium and uranium isotopes at
several excitation energies. In order to understand the driving effects behind the presence of third minima, we
study the interplay between pairing and shell effects.
Methods: We use the finite-temperature superfluid nuclear density functional theory. We consider two Skyrme
energy density functionals: a traditional functional SkM∗ and a recent functional UNEDF1 optimized for fission
studies.
Results: We predict very shallow or no third minima in the potential-energy surfaces of 232Th and 232U. In
the lighter Th and U isotopes with N = 136 and 138, the third minima are better developed. We show that
the reflection-asymmetric configurations around the third minimum can be associated with dimolecular states
involving the spherical doubly magic 132Sn and a lighter deformed Zr or Mo fragment. The potential-energy
surfaces for 228,232Th and 232U at several excitation energies are presented. We also study isotopic chains to
demonstrate the evolution of the depth of the third minimum with neutron number.
Conclusions: We show that the neutron shell effect that governs the existence of the dimolecular states around
the third minimum is consistent with the spherical-to-deformed shape transition in the Zr and Mo isotopes around
N = 58. We demonstrate that the depth of the third minimum is sensitive to the excitation energy of the nucleus.
In particular, the thermal reduction of pairing, and related enhancement of shell effects, at small excitation
energies help to develop deeper third minima. At large excitation energies, shell effects are washed out and third
minima disappear altogether.
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I. INTRODUCTION

The phenomenon of nuclear fission is a large-amplitude col-
lective motion in which the nucleus undergoes a series of shape
rearrangements before splitting into distinct fragments. The
observables for a fissioning system, such as fission half-life and
properties of fission fragments, are sensitive to the sequence of
nuclear configurations through which the nucleus is driven on
the way to fission [1–3]. Local minima in the potential-energy
surface, often representing metastable configurations, can
profoundly affect the dynamics and timescale of fission. Of
particular importance are superdeformed fission isomers [4,5],
corresponding to the “second minimum” in actinide nuclei,
separating inner and outer saddles. Another important class
of states consists of hyperdeformed “third minima”, predicted
theoretically in the early seventies [6,7] and soon afterwards
attributed to the resonance microstructures observed in the
fission cross sections found in the light actinides [8]. Continued
experimental studies of the actinides [9–20] inferred the
existence of highly elongated minima, and its reflection-
asymmetric structure has been supported by the presence of
parity doublets [21].

The appearance of third minima around 232Th has been
attributed to large shell effects associated with reflection-
asymmetric configurations corresponding to dimolecular
structures [22–25], with one fragment resembling doubly
magic 132Sn [26–28]. Pronounced third minima have been
predicted in theoretical studies of thorium and uranium
isotopes, especially those carried out with the macroscopic-
microscopic (MM) approach [6,7,26,27,29,30]. On the other
hand, self-consistent studies based on the nuclear density
functional theory [31–35], as well as recent MM work [36],
typically find a third minimum that is much shallower than
that of the earlier MM calculations or the empirical barrier fits
[37,38]. This result is puzzling in light of of the accumulated
experimental evidence (resonances in fission cross sections,
mass and kinetic-energy distributions of fission fragments,
fits to experimental cross sections, moments of inertia, and
presence of parity doublets).

To clarify the situation, we carry out self-consistent calcu-
lations for eight even-even Th and U isotopes within the su-
perfluid, finite-temperature nuclear density functional theory
(FT-DFT), investigating how the potential-energy surfaces and
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the third minima evolve with excitation energy. In particular,
we seek to isolate the contributions to the nuclear energy that
may be responsible for third minima. We review the FT-DFT
model in Sec. II. Section III presents an analysis of the trends
seen in potential-energy curves and shell correction energies
across Th and U isotopic chains, finding that deep third minima
appear in lighter isotopes. To study the interpretation of
third-minimum configurations in terms of dimolecular states,
we analyze total nucleonic densities. We proceed to analyze
two-dimensional, finite-temperature potential-energy surfaces
of 228,232Th and 232U in Sec. IV. As the excitation energy
increases and pairing quenches, we actually find a regime
in which the third minimum is slightly deepened for 232Th.
Finally, the conclusions of our work are given in Sec. V.

II. THE MODEL

To study the potential-energy surfaces (PESs) as a function
of the excitation energy E∗, we employ the superfluid FT-DFT
theory [39–41] in the implementation of Refs. [35,42]. We
employ the symmetry-unrestricted Skyrme DFT code HFODD

[43,44], which solves the the finite-temperature Hartree-
Fock-Bogoliubov (HFB) equations in the Cartesian harmonic
oscillator (HO) basis. The oscillator length is varied according
to the method of Refs. [45–47]. This basis choice is a
compromise between accuracy and time of calculation that has
been studied and used successfully in the past (see Ref. [46]
and Fig. 6 of Ref [48]). The work of Ref. [49] estimates that the
use of 1000 to 1200 HO basis states can produce an error up
to 2 to 3 MeV beyond the second fission barrier. For 232Th, we
compare a calculation of the SkM∗ PES with 1140 and 1771
HO basis states in Fig. 1. We do see that including more basis
states reduces the absolute value of the potential energy beyond
the second barrier by about 0.5 MeV, but that the topology of
the PES is hardly affected. Therefore, in our two-dimensional
and finite-temperature PESs, we chose to utilize the basis of
the lowest 1140 stretched HO basis states originating from 31
major oscillator shells.

To constrain the total quadrupole moment Q20 (elonga-
tion) and total octupole moment Q30 (reflection asymmetry,
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FIG. 1. (Color online) Potential-energy curve for 232Th with
SkM∗ obtained with a basis of 1140 (solid line) and 1771 (dashed
line) stretched HO basis states.

important at outer saddle and on to scission) we employ
the augmented Lagrangian method [50]. We use a mesh
with step sizes of five units in each collective degree of
freedom—for smooth PESs, we interpolate with second-order
splines. We also apply a constraint on the triaxial quadrupole
moment Q22 to force the system to break axial symmetry,
subsequently relaxing this constraint to allow the system
to follow the minimum-energy path in the Q22 direction.
Consequently, the inner fission barrier heights are lowered
due to the axial symmetry breaking. As discussed in previous
papers [51–53], exploring many collective coordinates and
associated symmetry breaking enables us to identify saddle
points and static valleys [54,55] as the competing adiabatic
fission pathways are well separated in the collective space.

The finite-temperature HFB equations are obtained from
the minimization of the grand canonical potential, so that the
free energy F = E − T S is formally calculated at a fixed
temperature T . While the fission process is not isothermal, it
is reasonable to treat the collective motion during fission as
an adiabatic process [56]. We thus assume that the entropy
is constant during this adiabatic motion, and we exploit the
correspondence between surfaces of free energy at constant
temperature and surfaces of internal energy at constant entropy
[57,58]. This equivalence, based on Maxwell’s relations, has
been verified numerically in the self-consistent calculations of
Ref. [41].

We map the excitation energy of the nucleus E∗ to the fixed
temperature T via

E∗(T ) = Eg.s.(T ) − Eg.s.(T = 0), (1)

where Eg.s.(T ) is the minimum energy of the nucleus at
temperature T . This corresponds well to the excitation energy
of a compound nucleus [41,42].

To study the role of shell effects in producing the third
minimum, we use the the Strutinsky energy theorem [59] to
decompose the self-consistent energy E:

E = Esmooth + δEsh, (2)

where Esmooth is a bulk contribution to the energy that varies
smoothly with nucleon number and δEsh is a shell correction
energy. To extract δEsh from the HFB energy, we employ the
procedure described in Refs. [48,60] with the smoothing width
parameters γn = 1.54, γp = 1.66 (in units of h̄ω0 = 41/A1/3

MeV) and the curvature correction p = 10.
The nuclear interaction in the particle-hole channel has

been approximated through the SkM∗ parametrization [61] of
the Skyrme energy density functional (EDF). This traditional
EDF achieves realistic surface properties in the actinides,
allowing a good description of the evolution of the energy
with deformation [51–53]. In the particle-particle channel,
we use the density-dependent mixed-pairing interaction [62].
Our calculations with SkM∗ at each excitation energy were
performed at the HFB level with a quasiparticle cutoff energy
of Ecut = 60 MeV. The pairing strengths Vτ0 (τ = n, p) are
chosen to fit the pairing gaps determined from experimental
odd-even mass differences in 232Th [63]. For SkM∗ EDF,
the pairing strengths are Vn0 = −273.5 MeV and Vp0 =
−334.0 MeV.
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At E∗ = 0 MeV, we also performed calculations with the
recently developed EDF parametrization UNEDF1 [47]. In
UNEDF1 calculations, we restore approximately the particle
number symmetry broken in HFB by using the variant of
the Lipkin-Nogami scheme with the cutoff energy Ecut =
60 MeV [64]. Because the UNEDF1 functional relies on the
Lipkin-Nogami treatment of pairing, and the corresponding
finite-temperature HFB Lipkin-Nogami extension has not been
implemented, the free-energy results presented in this paper
are based on SkM∗.

III. THIRD MINIMA IN Th AND U ISOTOPES

Self-consistent calculations tend to predict either a very
shallow or no third minimum for 232Th and 232U. As seen in
Fig. 2, the potential-energy curves for 232Th, obtained with
several EDFs, each exhibit a gentle downwards slope beyond
the second saddle (EB)—none of these models predicts a
large third hump. A shallow third minimum appears around
Q20 = 165 b in our SkM∗ model and Q20 = 150 b in the
HFB-14 calculations of Ref. [65]. This minimum seems to
be more pronounced in the relativistic DFT calculations of
Ref. [31] employing PL-40, NL1, and NL-SH functionals.
Our UNEDF1 results show a local plateau at Q20 ≈ 200 b, but
the third barrier is practically nonexistent.

The accuracy of any statement about the existence of the
third minimum relies on the use of a sufficiently large HO
basis. Indeed, previous calculations with D1S [33] exhibited
a shallow third minimum in 232Th. With a larger basis [67],
however, this minimum flattens into a plateau similar to that
seen in the SkM∗ and HFB-14 calculations of Fig. 2. As
discussed in Sec. II, in this work we use a sufficiently large HO
basis so that the final results are not sensitive to basis choice.

The results shown in Fig. 2 and Ref. [31] indicate that
self-consistent models predict a shallow third minimum, or
a softness in the PES of 232Th, in the region beyond the
outer saddle with Q20 ≈ 150–200 b. This indicates that the

FIG. 2. (Color online) Potential-energy curves for 232Th obtained
with several EDFs: UNEDF1 and SkM∗ (this work) and HFB-14 [65].
The empirically inferred values of the first and second barrier heights
EA and EB [37], as well as the measured energy of the fission isomer
EII [66], are marked.

(c)

UNEDF1SkM*

(a) (b)
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FIG. 3. (Color online) (top) Cross section of total density of 232Th
in yz plane calculated with (a) SkM∗ and (b) UNEDF1 at third
minimum (Q20 = 165 b), compared to cross sections of 132Sn and
100Zr densities. (bottom) Density profiles for 232Th and the 132Sn
and 100Zr fragments along the z axis obtained in (c) SkM∗ and
(d) UNEDF1.

shell effects responsible for this structure are systematically
present in DFT calculations, but their strength is strongly
model dependent. To identify the model features that are most
conducive to third minima, we turn to focus on our calculations
with SkM∗ and UNEDF1.

The third minimum of 232Th has been associated with a di-
molecular configuration, in which one fragment bears a strong
resemblance to the doubly magic 132Sn [26,27]. The nuclear
density profiles of 232Th, 132Sn, and 100Zr, calculated with
SkM∗ and UNEDF1, are displayed and compared in Fig. 3.
(In making this comparison, we followed the methodology of
Ref. [52].) Namely, the configuration of 232Th corresponds
to Q20 = 165 b, the configuration of 132Sn corresponds to its
spherical ground state, and the 100Zr fragment configuration
corresponds to its prolate ground state with Q20 = 10 b. The
resemblance of the left-hand fragment of 232Th to 132Sn is
clearly seen in both models, although the nascent fragments
overlap to produce the sizable neck seen in Fig. 3.

As discussed in, e.g., Refs. [13,14,27], the high likelihood
of obtaining 132Sn-like fragments in the fission of actinides
can be attributed to the doubly magic nature of 132Sn. The
recent theoretical studies of the asymmetric fission around
180Hg [52,68] indicate that the shell effects at prescission
configurations associated with the deformed fragment also
play a significant role in the determination of fission yields.

A more comprehensive survey with SkM∗ and UNEDF1
shown in Fig. 4 reveals that the lighter isotopes of thorium and
uranium, 226,228Th and 228U, are expected to have deeper third
minima. For 230Th and 230U, our SkM∗ calculations exhibit a
shallow third minimum, which vanishes in UNEDF1.

Is there evidence that third minima are exactly correlated
with a dimolecular clustering in the density? In Figs. 3
(top) and 5, we compare the density profiles of isotopes that
exhibit third minima in our SkM∗ and UNEDF1 calculations
(228Th, 228U) with those that do not (232Th, 232U). In fact,
there is evidence for dimolecular clustering in each case. It is
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FIG. 4. (Color online) Potential-energy curves predicted for
(left) 226,228,230,232Th and (right) 228,230,232,234U with (top) SkM∗ and
(bottom) UNEDF1 EDFs.

interesting that both 228Th and 228U show slightly smaller
necks than 232Th and 232U, respectively. But the differences
between the density profiles are not very dramatic—isotopes
that are predicted to have third minima do not show signif-
icantly more dimolecular clustering than isotopes in which
third minima are absent.

For each of the cases presented, the heavier fragment is the
spherical 132Sn while the lighter fragment is in a deformed
configuration with Q20 = 10 b. As seen in Fig. 6, except
for 100Zr, each of these nuclei is spherical in its ground
state—it is not reasonable to argue that a third minimum can be
associated with nascent lighter fragments close to the nuclide’s
ground state. However, it is interesting to note that in all

FIG. 5. (Color online) Contour plots for total densities of
(a) 228Th, (b) 228U, and (c) 232U calculated with UNEDF1 (solid lines)
and SkM∗ (dashed lines) compared with fragment densities: spherical
132Sn and a lighter deformed nucleus around 100Zr. The contour
levels shown are at 50%, 90%, and 95% of the saturation density
(ρ0 = 0.16 fm−1).
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FIG. 6. (Color online) Potential-energy curves for 96,100Zr and
96,100Mo calculated with (a) UNEDF1 and (b) SkM∗.

the nuclei discussed there is a competition between spherical
and deformed configurations [69–71]. For instance, 96Zr is
believed to be spherical, but it has a deformed excited 0+
state [69]. The ground state of 100Zr is strongly deformed,
with the coexisting spherical configuration lying higher in
energy. The balance between relative position of spherical and
deformed configurations around 98Zr primarily depends on the
size of predicted Z = 40 and N = 56 single-particle gaps that
vary from model to model [71]. The differences between SkM∗
and UNEDF1 predictions seen in Fig. 6 are thus indicative of
subtle differences between the shell effects, which also play
out to result in a shallower third-minimum region in UNEDF1.

Why does the dimolecular configuration result in a deeper
third minimum in lighter nuclei such as 228Th, and not in 232Th
or 232U? And why are the third minima present in UNEDF1
shallower than those of SkM∗? The density profiles shown for
UNEDF1 and SkM∗ in Figs. 3 and 5 indicate that the densities
predicted by UNEDF1 and SkM∗ are in fact very similar, and
the isotopic dependence is weak. We seek an answer in the
underlying shell effects.

The total shell energies calculated with SkM∗ are displayed
in Fig. 7. (The shell corrections obtained with UNEDF1
have a similar pattern but they are reduced in magnitude;
hence, they are not shown.) The shell corrections for the N =
136, 138 isotopes, 226,228Th and 228,230U, indicate a strong
shell effect at Q20 ≈ 150 b. For the N = 140, 142 isotopes
(230,232Th and 232,234U), δEsh tends to stabilize more elongated
configurations, at Q20 ≈ 200 b. This result is reminiscent of
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FIG. 7. (Color online) Total shell energies from SkM∗ for
(a) 226,228,230,232Th and (b) 228,230,232,234U.
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FIG. 8. (Color online) (solid lines) Neutron and (dashed lines)
proton shell correction energies as functions of Q20 for (left) Th and
(right) U even-even isotopes calculated in SkM∗.

a spherical-to-deformed shape transition around N = 58 in
the Zr and Mo isotopes discussed above—associated with
the lighter fragments in the dimolecular picture of the third
minimum.

To study the dependence of this shell effect on neutron
and proton numbers, in Fig. 8 we plot the individual neutron
and proton shell corrections in SkM∗ for Th and U isotopes
as a function of Q20. As expected, proton shell corrections
weakly depend on the neutron number, and they all exhibit
a minimum around Q20 = 160 b. For N = 142, the neutron
shell correction shows two minima: one around Q20 =
120 b and the second one around Q20 = 200 b. While the
first minimum weakly depends on N , the second one is
absent in N = 136, 138 isotones. It is tempting, therefore,
to associate the large neutron shell effect at Q20 ≈ 200 b
with the prolate-deformed N ≈ 60 fragments, and the large
neutron shell effect at Q20 ≈ 120 b with the nearly spherical
N ≈ 54 fragments. Since the maximum of the proton shell
effects appears at the minimum of the neutron shell effect,
the total shell correction is sensitive to both N and Q20. This
cancellation helps to explain the shallow third minima obtained
in DFT calculations.

In summary, we have found that our self-consistent SkM∗
and UNEDF1 models predict third minima for the N =
136, 138 isotopes of Th and U. How do the shell effects that
favor third minima evolve with excitation energy? In the next
section, we turn to study PESs of 228,232Th and 232U as a
function of excitation energy E∗.

IV. EXCITATION-ENERGY DEPENDENCE

To discuss the excitation-energy dependence of the third
minimum, Fig. 9 displays the SkM∗ potential-energy curves
at constant entropy for 232Th at several excitation energies. As
excitation energy increases from E∗ = 0 to E∗ = 48 MeV, the
second fission barrier is gradually reduced while a third barrier
changes little. This deepens the third-minimum pocket. The
apparent stabilization of the third minimum at intermediate

FIG. 9. (Color online) Isentropic potential-energy curves for
232Th computed in SkM∗ at several values of excitation energy
(in MeV). The minimum potential energy at given E∗ is normalized
to zero in each case.

values of E∗ can be attributed to the interplay between
pairing and shell effects [56,72]. Indeed, as discussed in,
e.g., Ref. [73], as the excitation energy increases, pairing
correlations are quenched faster than the shell effects. This
gives rise to a reentrance of shell effects with E∗ in the
third barrier region, so that the third minimum becomes
more pronounced for moderate excitation energies. Between
E∗ ≈ 21 MeV and E∗ ≈ 48 MeV, the second barrier vanishes
but the extended plateau around the third minimum is still
visible.

Because the presence of the third minimum at each
excitation energy is sensitive to the accuracy with which
the neighboring saddle points are found, we calculated two-
dimensional PESs to assure us that the third minimum would
not disappear when another degree of freedom is accounted for
explicitly. The two-dimensional PESs also enable us to assess
whether the character of the dimolecular configuration at the
third minimum changes with excitation energy.

We display the isentropic PESs in the (Q20,Q30) plane
for 228,232Th and 232U in Fig. 10. By constraining the triaxial
moment Q22, we account for the effect of triaxiality on inner
barriers. We trace the lowest-energy pathway from the ground
state to the exit point of the barrier.

Is there evidence that the dimolecular structure present at
the third minimum for E∗ = 0 MeV persists as excitation
energy increases? As seen in Fig. 10, the third minimum in
228Th is actually rather robust—a 1 MeV pocket still remains
at nearly the same collective coordinates (and nearly the same
density profiles) at E∗ = 21 MeV, where pairing is completely
quenched. At higher excitation energies, the third minimum
disappears as the symmetric fission pathway opens.

The two-dimensional PES shows the same evolution for
232Th as seen in the one-dimensional plots of Fig. 9. Namely, as
pairing is quenched around E∗ = 21 MeV, the plateau around
Q20 = 160 b deepens into a well-developed third minimum.
As with 228Th, at higher energies the third minimum disappears
as the symmetric fission channel opens.

For 232U, however, our SkM∗ calculations do not appear
to predict a clear third minimum anywhere in the range of
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FIG. 10. (Color online) Isentropic potential-energy surfaces in the (Q20,Q30) plane for 228,232Th and 232U calculated with SkM∗ at E∗ = 0,
21, and 47 MeV. The static fission pathways are indicated. A constraint on the triaxial quadrupole moment Q22 has been applied to minimize
the total energy in the direction of Q22. Consequently, the inner fission barriers are lowered due to the breaking of axial symmetry.

E∗ studied. A potential-energy shoulder appears at the lowest
energies, so this may be the source of the resonances observed
in the experimental data presented in Ref. [18].

For all three isotopes, there is a strong preference for an
asymmetric fission pathway that passes through the (Q20,Q30)
coordinates of the third minima at low energies. As E∗
increases, the barrier to symmetric fission lowers substantially
so that the symmetric fission pathway gradually begins to
compete with the asymmetric channel.

This describes the situation seen experimentally: the mass
distribution of fission fragments in actinides is strongly
asymmetric at low energies, and the symmetric mass
yield increases with E∗. For example, the experiment of
Ref. [74] measured the mass yield for the photofission of 232Th,
reporting that the ratio of symmetric yield to asymmetric yield
increases from 2% to 10% for a bremsstrahlung energy range
(corresponding approximately to our excitation energy) of 15
to 55 MeV.

V. CONCLUSIONS

This self-consistent FT-DFT study predicts very shallow
third minima, or shoulders, in the potential-energy surfaces
of 232Th and 232U. In the lighter isotopes with N = 136
and 138, 226,228Th and 228,230U, the third minima are better
developed. This can be traced back to the neutron shell effect
that reduces the third outer barrier at Q20 ≈ 200 b at N = 140
and 142. The shallowness, or absence, of the third minimum in

232Th and 232U is a robust feature of many DFT calculations,
including SkM∗, UNEDF1, D1S, and HFB-14 models. We
do not, therefore, confirm earlier MM predictions of deep
hyperdeformed minima in 232Th and 232U.

Our paper demonstrates that the third minimum can be
associated with a dimolecular configuration involving the
spherical doubly magic 132Sn and a lighter Zr or Mo fragment
in a deformed configuration. We show that the neutron shell
effect that governs the existence of the third minimum and
makes the third minimum more pronounced in N = 136
isotopes as compared to N = 142 systems is consistent with
the spherical-to-deformed shape transition in the Zr and Mo
isotopes around N = 58 [69–71].

While the dimolecular structure persists through a range
of excitation energy, the depth of the third minimum is found
to be quite sensitive to excitation energy. Our FT-DFT study
predicts that third minima in Th isotopes become deeper at
moderate excitation energies, where pairing correlations are
quenched and shell effects become locally enhanced. At large
values of E∗, the conditions needed for the hyperdeformed
metastable states to exist deteriorate as the symmetric fission
channel opens up.

While the inference of a hyperdeformed fission isomer
from experimental data does rely on many assumptions,
the accumulated experimental evidence for the presence of
resonances associated with reflection-asymmetric shapes is
substantial and should not be considered lightly. Shallow third
minima (or shoulders) obtained in self-consistent calculations
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are in fact consistent with the observed fission fragment
distributions and resonances in fission probability. The absence
of a well-developed local minimum in a static PES, a sole focus
point of Ref. [36], does not tell the full story. Oftentimes,
observed states can be associated with configurations, which
do not correspond to a minimum in PES [56,75] but are well
separated from other states through the presence of specific
quantum numbers. In this context, it would be a natural
extension of this work to study the competition between the
symmetric and asymmetric fission pathways, and clustering
effects, with a framework that accounts for fission dynamics,
such as the generator coordinate method [76–78] generalized
to finite temperature. Also, the energetics of local minima,
as well as diabatic configurations that may be associated with
fission probability resonances, can be impacted by correlations
associated with symmetry restoration, such as those discussed
in Refs. [79,80]. We see some early evidence of this impact in
our UNEDF1 calculations employing the approximate number
projection, in which third minima are generally shallower
and even disappear for all but the lightest isotopes. Isolating
the effects due to particle number projection would be an
interesting topic for future study. An additional topic for
future study consists in following whether the dimolecular
configuration persists from the third minimum to scission. To
this end, one could apply the techniques of Ref. [81]. In light

of the recent experiment on 238U [82], it would be particularly
interesting to extend this study to heavier isotopes of uranium
and thorium.
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