
PHYSICAL REVIEW C 87, 054319 (2013)

Influence of electron screening on α decay
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The effect of electron screening on the α decay rate of typical nuclei is considered. To this end, the adiabatical
approach is exploited, which consecutively takes into account the adiabaticity of the motion of the α particle
through the shells. The effect is found to be of the order of 0.1% to 0.01% for the considered representative
nuclei. The prospects of an experimental study of the effect aimed at a search for the dynamics of α decay are
discussed. It is suggested that the presence of a muon in the orbit in muonic atoms should have an effect on the
α decay rate that is much stronger than the effect of removing the electron shell.
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I. INTRODUCTION

The influence of the electron shell on nuclear processes is
well studied. It may be huge in the case of electromagnetic
or weak interactions. In the former case, the electron shell
has a great effect on the nuclear lifetime by means of internal
conversion. Thus, the internal conversion coefficients reach
eight and more orders of magnitude, especially for low
transition energies and high multipole orders (e.g., [1] and
references therein), thus reducing the lifetime of the excited
nuclear states. Moreover, an illustrious example is given by
the resonance conversion in the case of the 45-fold ions
of 125Te, which takes the place of the conventional internal
conversion in the subthreshold region [2]. Analogously, in
the latter case, a new β mode is set when the β electron
can occupy a discrete atomic state (e.g., [3] and references
therein). In the case of nuclear K capture in hydrogen-like
ions, a tremendous difference may arise in the capture rates
for various components of the hyperfine structure [4]. The
situation changes in the case of α decay in view of a
high α-to-electron mass ratio, mα/me ∼ 104 ≫ 1. The space
scale of the α process is also completely different, being
predetermined by the short-range character of the nuclear
forces and the Coulomb barrier. This reduces the area of the
formation of the process to the vicinity of the nucleus, which
is small compared to the size of the atom. As a result, one
should not expect any noticeable effects from the electron
shell at energies of ∼1 MeV [5]. This does not exclude
dynamical effects, which can arise owing to the internal or
resonance conversion. The effects may manifest themselves,
e.g., in the form of violation of parity [6]. We also note the
similarity between α decay and fission. The fission probability
is predetermined by the probability of ascending the barrier,
the succeeding scenario being of no importance for the final
fission probability. This argument holds in the case of α decay:
why the shape of the α-nucleus potential, after an α particle
has passed the barrier, can influence the final decay probability.
There is only the outgoing component in the wave function
in this region, without any chance of reflection back for the
α particle. From this viewpoint, the influence of electron
screening on penetration of the barrier was analyzed in [7].
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It was demonstrated that the atomic effects are small and
actually of no importance for α decay. Also, Patyk et al.,
in their systematic study [8], showed that the expected effects
are at the level of percent.

On the contrary, opposite conclusions can be still noted
in the literature (e.g., [9] and [10]). On the other hand, the
Qα value in bare nuclei of heavy elements is about 40 keV
higher than the effective values in neutral atoms, which is
quite a significant value from the viewpoint of passing the
barrier. All this makes revisiting the subject worthwhile.
To be specific, we consider the α decay of a sole atom.
Furthermore, we want to stress an analogy to a well-studied
effect of barrier augmentation in prompt nuclear fission
induced by nonradiative transitions in muonic atoms ([11,12],
and references therein). In the latter case, the augmentation is
caused by a decrease in the binding energy of the muon, which
adiabatically moves in quasimolecular orbits in the field of the
elongating nucleus and, later on, of separating fragments. The
augmentation suppresses the fission probability by an order
of magnitude. This adiabatical picture is different from the
conventional model of a “frozen” electronic potential used for
estimation of the screening effects in nuclear reactions. Muons
are 207 times as heavy as electrons, and their 1s orbit is inside
the fissile nuclei and their fragments. Let us examine the effect
of adiabaticity in usual atoms.

II. THE ADIABATICAL MODEL
OF ELECTRON SCREENING

Let us consider a typical isolated atom undergoing α decay.
The adiabadicity condition reads

Vα � ve, (1)

with Vα and ve being the α and electron velocities, respectively.
Owing to the large mass, at typical energies of α decay Eα �
1 MeV, condition (1) is fulfilled for inner electrons [13]. It
was a surprise when it turned out that emission of α particles
is accompanied by radiation [14], though the probabilities of
ionization of inner shells in α decay were calculated earlier
(A. B. Migdal (1941) and J. Levinger (1953), as cited in
[13]). The adiabaticity condition, (1), is only violated for the
outermost electrons. At least two of them are ejected to the
continuum, leaving the daughter atom neutral. Otherwise, in
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the case of fully adiabatic motion of a very slow α particle,
they would be entrained on the α, “dressing” it up to a neutral
atom of He. We suppose that all other electrons remain in
their orbits, adiabatically adjusting their orbits to the passing
α particle. This picture is enough for the present purposes,
as the main contribution to the effect comes from the inner s
shells.

Consider the α-nucleus potential in the form

V (R) = VN (R) + VCoul(R) + E(R). (2)

In (2), VN (R) and VCoul(R) are the strong [15] and the Coulomb
parts of the potential, respectively, and E(R) is the electron
energy of the term. Actually, in order to calculate the electron
energy of the term, one has to solve a two-center problem
in the adiabatic quasimolecular basis. Consider two limiting
cases, which are important in our picture. At short α-nucleus
distances R � aK , with aK being the radius of the K shell,
the electrostatic potential produced by the α particle at a point
r, in comparison with the potential of the mother nucleus, can
be expressed as a multipole series:

V ′
R(r) = ze2

(
1

|r − R| − 1

r

)

= ze2

[∑
l

r l
<

rl+1
>

Pl(cos θ ) − 1

r

]
. (3)

In (3) z = 2 is the charge of the α particle. Keeping the
monopole term in (3), which gives a predominant contribution
in the first order of the perturbation series, we arrive at the
perturbation potential V ′

R(r). It reads

V ′
R(r) = ze2

(
1

R
− 1

r

)
(4)

for R0 � r � R, R0 being the nuclear radius, and 0 otherwise.
The resulting shift in the electron energy of the term reads

�E(R) ≡ E(R) − E(0)

=
∑

i

Ni

∫ R

R0

[
G2

i (r ′) + F 2
i (r ′)

]
V ′

R(r ′) dr ′, (5)

where Gi(r) and Fi(r) are the radial Dirac wave functions.
Summation in (5) is performed over shells i, with Ni the
occupation number. Note that potential (5) is far from being
constant in the nuclear vicinity, increasing approximately as
R2. This is in contrast with the picture in interstellar plasma [5].
The constant component, as we will see, exactly cancels in our
case.

On the contrary, at large α-nucleus distances R → ∞,
the interaction is a Coulomb plus polarization one. In the
asymptotic region, the solution can be expressed in analytical
form by making use of the asymptotics of the radial wave
functions [18,19]. This results in

�E = �I − (Z − z)ze2

R
− β

R4
, (6)

where �I is the difference in the total binding energies in the
mother and daughter atoms, Z is the atomic number of the
mother nucleus, and β is the polarizability. By definition,

E(0) ≡ −�I. (7)

We neglect a possible additional loss of energy by α’s for the
kinetic energy of the two ejected electrons. We also neglect
possible energy losses for an extra ionization, as mentioned
previously. Equation (7) plays a similar role in our approach
to the Hellmann-Feynman equation, (9), in Ref. [8] within the
framework of the frozen electron shell model.

Within the framework of the Gamow theory, a conventional
expression for the α decay probability is essentially given by
the product of two factors: the cluster preformation and the
penetration probabilities ([15]). The former is not affected by
the shell. The second factor P is determined by action S. For
a bare nucleus it reads as follows:

P = exp(−2S), (8)

S =
∫ Rout

Rin

√
2μ(VN (R) + VCoul(R) − Eα)dR, (9)

where Rin and Rout are the classical inner and outer turning
points.

Adding the electron energy E(R) to the potential energy in
(9) and allowing for the reduction of the asymptotic energy of
the α particle by an amount of �I , one arrives at the expression
for the action of a fully dressed atom:

Sat =
∫ Rout

Rin

√
2μ(VN (R) + VCoul(R) + E(R) − (Eα−�I ))dR

≡
∫ Rout

Rin

√
2μ(VN (R) + VCoul(R) + �E(R) − Eα)dR.

(10)

The reduction in the Q value for an atom compared to the bare
nucleus is thus canceled in (10), owing to (7), and does not
affect the penetration probability of the barrier. Comparing (8)
with (10), one arrives at the expression for the relative change
of the α decay rate in bare nuclei compared to atoms:

Y = (P/Pat) − 1. (11)

III. RESULTS OF THE CALCULATION

Results of the calculation for some representative nuclei
undergoing α decay are presented in Table I. Wave functions
and energies of atoms were calculated by means of the package
of computer codes RAINE [20]. In the case of a superheavy
element Z = 118, A = 294, the Q value and half-period
T1/2 taken from Ref. [16] have been used. For other nuclei,
these values were taken from Ref. [17]. Two of the listed

TABLE I. Results for the relative change in half-periods in bare
nuclides (last column).

Nuclide Q (MeV) T1/2 Y (%)

144
60Nd 1.905 2.29 × 1015 yr 0.24

214
86Rn 9.208 0.27 μs 0.02

226
88Ra 4.871 1600 yr 0.23

252
98Cf 6.217 2.645 yr 0.28

241
99Es 8.320 9 s 0.12

294118 11.81 0.89 ms 0.27
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nuclei, those of 226
88Ra and 214

86Rn, have close Z values but
very different Q values and half-periods. Comparison of the
Y values calculated for these nuclei with one another shows
that the effect of screening strongly decreases with increasing
Q and, correspondingly, decreasing T1/2. This is because for
larger Q, the barrier traversed by the α particle approaches
the nucleus, where the electron energy of the term �E(R) is
lower. The same conclusion can be drawn from comparison of
the results listed for another, heavier couple of nuclei, 252

98Cf
and 241

99Es. For these nuclides, the difference in the Q values is
smaller, nevertheless, the half-periods differ by six orders of
magnitude. As a consequence, the effect of electron screening
Y differs by 2.5 times. In contrast, in the case of 144

60Nd, the
calculated effect remains approximately the same, in spite of a
much smaller Q value and larger half-period. This comparison
shows that the effect also strongly depends on the atomic
number of the element, decreasing for smaller Z. This also
can be seen in the case of superheavy nuclei of 294118: despite
their having the highest Q value, the effect turns out to be
approximately like that for the much lighter nuclide of 252

98Cf.
As one can see in Table I, for the latter two nuclides, the effect is
maximal: 0.27% and 0.28%, respectively. The effect turns out
to be minimal in the case of 214

86Rn, where it decreases to 0.02%;
that is, the effect still becomes lower by an order of magnitude.

The numerical value of the effect obtained is in qualitative
agreement with Refs. [7] and [8]. It is remarkable that the
agreement exists despite the opposite characters of the under-
lying physical models used: the “frozen” electron screening
potential in the cited papers and the adiabatic model in our
approach. Actually, this stresses the fact that electron screening
generally has a minor effect on the α decay rate.

IV. SUMMARY AND DISCUSSION

The probability of α decay is considered with and without
taking into account the presence of the electron shell. An adi-
abatic quasimolecular model is developed, properly allowing
for the electron energy of the term. Taking the electron energy
into account considerably reduces the effective Q value.

On the other hand, this reduction occurs at a large distance
in comparison with the nuclear scale. This can be very dis-
tinctively seen in the adiabatical picture of the α motion. Over
nuclear distances, the reduction practically does not affect the
penetration probability of the barrier. Qualitatively, comparing
the adiabatical picture with the model of a “frozen” electron
shell, one should expect a lower effect in the adiabatical case.
This can be understood in terms of the polarization of the
electron shell during the α passage through. Owing to the
polarization, atomic electrons concentrate around the α parti-
cle, thus additionally lowering the local electrostatic potential.
In other words, the polarization increases the probability of
finding a piece of the electron cloud between the α particle

and the nucleus. This acts as an additional shield between the
α particle and the nucleus, partly compensating their mutual
repulsion and hence diminishing the Coulomb barrier.

As a result, the final value of the difference in natural α
decay turns out to be of the order of a tenth to a hundredth of a
percent. Quantitatively, comparing the results listed in Table I
with the results for the same nuclei which are presented in
Fig. 2 of Ref. [8], one can see that the present results are lower
by one and a half to three times. Furthermore, they are closer
to those given by the Rubinson and Perlman formula.

Within the lines of the previous discussion, it is noteworthy
that in muonic atoms, the effect on the α decay rate of the
presence of muons in the K orbits is expected to be much
greater than the effect of removing the electron shell in usual
atoms. In this relation, we would like to call attention to the
fact that the partial lifetime of the α decay of 214Rn exceeds
the anticipated lifetime of the muons in orbits by only an order
of magnitude.

Concluding the discussion, we note that testing the theoreti-
cal results in experiments is of great interest from the viewpoint
of studying the dynamics of α decay. As a matter of fact,
expression (8) with action (9) for the penetration probability is
valid in the quasiclassical approximation within the framework
of the Gamow theory of α decay of quasistationary states. A
general solution of the Schrödinger equation in the region
under the barrier consists of a linear combination of the two
fundamental coupled, linearly independent solutions [21]. One
of them is exponentially decreasing; the other, exponentially
increasing. Actually, their applicability is based on the condi-
tion that the linear combination is reduced to only one of them,
the exponentially decreasing one. This means that the energy
of the α particle coincides with the eigenvalue of the mean
α-nucleus potential field (cf. discussion in [21]). In turn, as the
basis for such a statement, one can refer, e.g., to Koopmans
theorem as well. In the nuclei, the theorem works with an
accuracy of ∼100 keV [22]. Strictly speaking, one could
suppose that the 37-keV shift of the α line (in the case of 226Ra)
could lead to a considerable related change in the half-period,
up to two orders of magnitude according to the results of [21],
[23], and [24]. Fine details of the theory may hence be verified
by comparison of the intensities of the α lines in bare nuclei
with those in neutral atoms, shifted by the �I value. This will
answer the quesion whether the α line in both processes, α
decay as well as the related reverse α-nucleus merging cross
section, is caused by either an α-nucleus eigenstate or a mere
coincidence with a real nuclear state [21,25].
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