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Giant dipole resonance in 88Mo from phonon damping model strength functions averaged over
temperature and angular momentum distributions
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The line shapes of giant dipole resonance (GDR) in the decay of the compound nucleus 88Mo, which is formed
after the fusion-evaporation reaction 48Ti + 40Ca at various excitation energies E∗ from 58 to 308 MeV, are
generated by averaging the GDR strength functions predicted within the phonon damping model (PDM) using
the empirical probabilities for temperature and angular momentum. The average strength functions are compared
with the PDM strength functions calculated at the mean temperature and mean angular momentum, which are
obtained by averaging the values of temperature and angular momentum using the same temperature and angular
momentum probability distributions, respectively. It is seen that these two ways of generating the GDR linear
line shape yield very similar results. It is also shown that the GDR width approaches a saturation at angular
momentum J � 50 h̄ at T = 4 MeV and at J � 70 h̄ at any T .
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I. INTRODUCTION

Many theoretical and experimental studies in nuclear
structure during the last three decades were devoted to the
giant dipole resonance (GDR) in highly excited nuclei (see
Refs. [1–3] for reviews of the subject). A recent compilation
of the experimental systematics of the GDR built on excited
states is given in Ref. [4]. The most recent experimental
measurements are reported in Refs. [5,6] for GDR in the
fusion-evaporation reaction forming the compound nucleus
88Mo at high temperature and angular momentum, and in
Ref. [7], where the GDR width in 201Tl in the α induced
fusion reaction was extracted at low temperature. The center of
attention has been the evolution of the GDR width as functions
of temperature T and angular momentum J . The GDR line
shape and its full width at half maximum (FWHM) �GDR

are experimentally extracted from the statistical calculations,
which use the Lorentzian strength function to reproduce the
γ -ray spectra detected from the decay of the highly excited
compound nucleus at the excitation energy E∗. They are often
compared with the theoretical predictions, which are obtained
at a given values of T and/or J .

The extraction of nuclear temperature T and angular
momentum J is crucial for a meaningful comparison between
experiment and theory because the initial temperature Tmax

and/or angular momentum Jmax at the first step in the decay of
the compound nucleus are significantly higher than the mean
values T and J , obtained by averaging over all daughter nuclei
in the decay process. Moreover, while the theoretical GDR
strength function is calculated at a fixed value of T and/or J , its
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experimental counterpart is extracted by fitting the spectrum,
which is generated by a multistep cascade decay, where the
nucleus undergoes a cooling down from the initial maximal
value of Tmax (and/or Jmax). Because of this mechanism, the
authors of Ref. [8] have proposed to incorporate the theoretical
strength functions into the full statistical decay calculations
and compare the results obtained with the experimental data.
This method was applied to test the validity of several
theoretical models in Refs. [8,9], namely, the collisional
damping model (CDM) [10], the thermal shape fluctuation
model (TSFM) [11], and the phonon damping model (PDM)
[12–14]. The CDM studies the GDR evolution within the
framework of the macroscopic Landau-Vlasov theory that
includes the collision term in the Landau integral. The TSFM
describes the GDR line shape by calculating the GDR cross
section as a thermal average over all shape-dependent cross
sections under quadrupole deformations. The PDM describes
the broadening of the GDR width at low and medium T and J
as well as its saturation at high T and J via coupling of the GDR
to noncollective particle-hole (ph), particle-particle (pp), and
hole-hole (hh) configurations. The detailed analysis in Ref. [8]
shows that neither the TSFM nor CDM could reproduce
the GDR data for 120Sn, whereas Ref. [9] demonstrates that
the PDM describes reasonably well the GDR line shape at
T � 2 MeV. By including the nonvanishing thermal pairing
gap, the PDM is also capable of correctly describing the
temperature dependence of the GDR width at low temperature
(T < 2 MeV) [13,15]. However, a question still remains open,
namely, it is not clear if the GDR line shape obtained by
averaging the GDR strength functions in the whole interval
of T and/or J within which the daughter nuclei are populated
is equivalent to the GDR strength function obtained at the
mean values T of temperature and J of angular momentum in
these intervals. Resolving this issue has a practical importance
since if the answer is positive, one can avoid the calculations
of many strength functions as the temperature and/or angular
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momentum decreases starting from Tmax and/or Jmax to obtain
the average line shape, and use the strength function obtained
at one given pair of values T and J instead. The aim of the
present paper is to answer this question.

The paper is organized as follows. The formalism is
presented in Sec. II. The results of numerical calculations
for GDR strength functions within the PDM, which are
averaged by using the empirical probabilities distributions
for temperature and angular momentum in 88Mo at various
excitation energies E∗, are discussed in Sec. III. The paper is
summarized in the last section, where conclusions are drawn.

II. FORMALISM

A. Model Hamiltonian and GDR strength function at finite
temperature and angular momentum

The formalism of the PDM, whose Hamiltonian describes
a hot spherical system noncollectively rotating about the
symmetry z axis, has been presented and discussed thoroughly
in Ref. [14]. Therefore we summarize here only the final
results, which are necessary for the analysis in the present
paper.

The model Hamiltonian is given as

H = H0 − γ M̂, (1)

where H0 is the PDM Hamiltonian of the nonrotating system,
described in Refs. [12,13], and M̂ represents the total angular
momentum Ĵ , which, in the present case, coincides with its z
projection M̂ , that is,

Ĵ ≡ M̂ =
∑
k>0

mk(Nk − N−k). (2)

Here the subscripts k denote the single-particle states |k,mk〉
in the deformed basis with the angular momentum k and
the positive single-particle spin projection mk , whereas the
subscripts −k denote the time-reversal states |k,−mk〉 (mk >
0). The particle number operator N̂ is written as

N̂ =
∑
k>0

(Nk + N−k), N±k = a
†
±ka±k, (3)

where a
†
±k (a±k) is the creation (annihilation) operator of a

particle with spin k, spin projection ±mk , and energy εk . By
using Eqs. (2) and (3), the Hamiltonian (1) transforms into

H =
∑
k>0

(εk − λ − γmk)Nk

+
∑
k>0

(εk − λ + γmk)N−k +
∑

q

ωqQ
†
qQq

+
∑

k,k′>0

∑
q

F (q)
kk′ (a

†
kak′ + a

†
−ka−k′ )(Q†

q + Qq), (4)

where λ denotes the chemical potential. The particle (p) states
correspond to those with εk > λ, whereas the hole (h) states
are those with εk < λ. The operator Q

†
q (Qq) is the phonon

creation (annihilation) operator for a collective vibration with
energy ωq . In this way, Hamiltonian (4) describes two mean
fields: the single-particle mean field [the first two terms on the
right-hand side of Eq. (4)] and the phonon one associated with

the GDR (the third term), as well as the coupling between them
(the last term) with matrix elements F (q)

kk′ . The GDR acquires
a width and the phonon energy ωq undergoes a shift because
of this coupling. By including the angular momentum in the
first two terms, each of spherical orbital j with energy εj splits
into 2�j = 2j + 1 distinctive levels, half of which consist of
levels with energies εk + γmk , whereas the other half consist
of levels with energies εk − γmk , with k = 1, . . . , �/2, where
� = 2

∑
j �j is the total number of levels. Because the effect

of thermal pairing on the GDR width is negligible in the region
of moderate (high) T and J (E∗ � 58 MeV for 88Mo [13,15]),
we neglect it it in the calculation of the GDR strength functions
for simplicity.

The chemical potential λ and the rotation frequency γ are
defined from the equations for conservation of the angular
momentum J and particle number N as

J =
∑

k

mk(f +
k − f −

k ), N =
∑

k

(f +
k + f −

k ), (5)

where J = 〈Ĵ 〉 = M = 〈M̂〉, N = 〈N̂〉, f ±
k = 〈N±k〉 with the

grand canonical ensemble average 〈· · ·〉 ≡ Tr[· · · exp(−βH )]/
Tr[exp(−βH )] (β = T −1). The single-particle occupation
numbers f ±

k are approximated with the Fermi-Dirac distri-
bution:

f ±
k = 1

exp(βE∓
k ) + 1

, E∓
k = εk − λ ∓ γmk. (6)

By using the Hamiltonian (4) and the method of double-
time Green’s functions, the final equation for Green’s function,
which describes the phonon propagation, was derived in
Ref. [14] as

Gq(E) = 1

2π

1

E − ω̃q

, ω̃ = ωq + Pq(E),
(7)

Pq(E) =
∑
kk′

[F (q)
kk′

]2
[

f +
k′ − f +

k

E − E−
k + E−

k′
+ f −

k′ − f −
k

E − E+
k + E+

k′

]
.

The principal value of the polarization operator Pq(ω) at a
real ω defines the energy shift from the unperturbed phonon
energy ωq to ω̃q under the effect of particle-phonon coupling,
whereas the imaginary part γq(ω) = Im Pq(ω ± iε) of the
analytic continuation of Pq(E) into the complex energy plan
E = ω ± iε defines the phonon damping γq(ω), whose final
explicit expression reads

γq(ω) = ε
∑
kk′

[F (q)
kk′

]2
[

f +
k′ − f +

k

(ω − E−
k + E−

k′ )2 + ε2

+ f −
k′ − f −

k

(ω − E+
k + E+

k′ )2 + ε2

]
, (8)

where the representation δ(x) = limε→0 ε/[π (x2 + ε2)] is
used to smooth the δ functions and to effectively take into
account the contribution of the escape width owing to the
coupling to continuum.

The spectral intensity is found from the analytic properties
of Green’s function (7) as Jq(ω) = i[Gq(ω + iε) − Gq(ω −
iε)]/[eβω − 1], from which one obtains the GDR strength
function S(ω) as S(ω) = J̃q(ω)[exp(βω) − 1], where J̃q(ω)
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denotes Jq(ω) calculated at the GDR energy ω̃q = EGDR

[12–14]. The final result is a Breit-Wigner-like distribution
with the energy-dependent half width γq(ω):

SBW(ω) = 1

π

γq(ω)

[ω − EGDR]2 + γ 2
q (ω)

. (9)

The FWHM �(T ) of the GDR is defined as a function of T
and J as [12,13]

�(T , J ) = 2γq[ω = EGDR]. (10)

The evaporation width of the compound nuclear states, which
comes from the quantum mechanical uncertainty principle
[16], is not included because its effect on the GDR width
is expected to be significant only at large values of the average
temperature (	3.3 MeV) and average angular momentum
(	30 h̄) [8]. For the comparison with the experimental line
shape, which is fitted by using the Lorentzian distribution,
it is convenient to use the following Lorentzian-like strength
function [17], which is composed of two Breit-Wigner-like
distributions (9) [see, e.g., Eq. (16) of Ref. [18]]:

SL(ω) = ω

EGDR
[SBW(ω,EGDR) − SBW(ω,−EGDR)]. (11)

B. Averaging over the probability distributions of
temperature and angular momentum

In the fusion-evaporation reactions, where two heavy nuclei
coalesce at high energy E∗ far above the Coulomb barrier,
the resulting compound system at high angular momentum
decays by evaporating particles in competition with high-
energy γ rays. The GDR is extracted from the high-energy
γ -ray spectrum as a Lorentzian located at energy of around
EGDR = 17A−1/3 + 25A−1/6 [1]. During this γ -ray emission
the nuclear temperature decreases from its initial value Tm,
resulting in a probability distribution pT (Ti) of temperature,
where Ti is the temperature of the ith step in the statistical
decay. The same takes place with the angular momentum,
which decreases from its initial value Jn, resulting in the
probability distribution pJ (Jj ).

Given the temperature and angular momentum probabilities
distributions pT (Ti) and pJ (Ji), the average strength function
at the excitation energy E∗ is calculated as

Sk(ω,E∗) =
∑

i pJ (Ji)Sk(ω, Ji)∑
i pJ (Ji)

,

(12)

Sk(ω, J ) =
∑

j pT (Tj )Sk(ω, Ti, J )∑
j pT (Tj )

,

where the strength function Sk(ω, T , J ) can be either
SBW(ω) [Eq. (9)] (k = BW) or SL(ω) [Eq. (11)] (k = L)
obtained at a given pair of values (T , J ) = (Ti, Ji), whereas
Sk(ω, J ) is the strength function obtained by averaging
Sk(ω, T , J ) over the probability distribution of tempera-
ture at each value Ji of the angular momentum. The
average temperature T within the interval T1 � Ti � Tm,
where the probability distribution pT (Ti) is determined (i =
1, 2, . . . , m), and the average angular momentum J within

the interval J1 � Ji � Jn, where the probability distribution
pM (Mj ) is determined (j = 1, 2, . . . , n), are calculated as

T =
∑m

i=1 pT (Ti)Ti∑m
i=1 pT (Ti)

, J =
∑n

j=1 pJ (Ji)Jj∑n
j=1 pJ (Jj )

. (13)

In the present paper the average strength function SL(ω,E∗)
in Eq. (12) will be compared with the strength function
SL(ω, T , J ) in Eq. (11), which is calculated at the average
temperature T and average angular momentum J in Eq. (13).

III. ANALYSIS OF NUMERICAL RESULTS

A. Ingredients of the numerical calculations

We employ the single-particle energies εk , which are
obtained from the Woods-Saxon potentials for neutrons and
protons in 88Mo. They span a large space at J = 0 starting from
the bottom 1s1/2 level located at around −40 MeV for neutrons
and −30 MeV for protons up to around 22 MeV, where the
part of the spectrum with positive values εk simulates an
effective discretized continuum. These single-particle energies
are assumed to be temperature independent based on the
estimation within the temperature-dependent self-consistent
Hartree-Fock calculations [19], which have demonstrated that
the single-particle energies in heavy nuclei weakly change
with T up to T ∼ 5 MeV.

The matrix elements F (q)
ph for the coupling of the GDR to

non-collective ph configurations, causing the quantal width
already at T = 0, are assumed to be the same and equal to
F1, whereas those for the coupling of the GDR to pp (hh)
configurations, F (q)

pp and F (q)
hh , causing the thermal width at

T �= 0, are assumed to be equal to F2. (See, e.g., Sec. II B
of Ref. [13] for the detailed discussion on the justification of
these assumptions.) The unperturbed energy omega ωq and the
parameter F1 are chosen to reproduce the experimental value
for the energy (around 15 MeV) and the width (around 4 MeV)
for the GDR in 88Mo at T = 0 and J = 0. The parameter F2

is chosen so that the GDR energy, which is obtained as the
solution of the equation ω − ωq − Pq(ω) = 0 at J = 0, does
not change significantly as T varies. The selected values of
F1 = 0.071 MeV andF2 = 0.163 MeV with EGDR = 15 MeV
for GDR in 88Mo are then kept unchanged throughout the
calculations as T and J vary. A value ε = 0.5 MeV is adopted
for the smoothing parameter in Eq. (8), which mimics the effect
of the escape width caused by coupling to the continuum.

B. Average temperatures and angular momenta

Shown in Figs. 1 and 2 are the probability distributions
pT (Ti) for temperature and pJ (Ji) for angular momentum
as functions of temperature T and angular momentum J ,
respectively. They are obtained by using the GEMINI++ code
[20,21], which generates the statistical decays for the recent
fusion-evaporation reaction 48Ti + 40Ca, and produces the
compound nucleus 88Mo∗ at nine values of beam energy
Eb = 150, 170, 200, 300, 400, 450, 500, 600, and 700 MeV.
The calculations take into account the competition owing to
fission under the assumption that the angular momentum of
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FIG. 1. (Color online) Temperature distributions for 88Mo at
excitation energies E∗ = 58, 67, 80, and 126 MeV (a) and 172, 194,
217, 262, and 308 MeV (b), which are calculated by the GEMINI++
code (see text for details). The lines are drawn to guide the eye. The
value of average temperature T (in MeV) at each energy is shown as
a number at the corresponding line.

the compound nucleus 88Mo∗ is preserved, that is, not affected
by the decay paths over all daughter nuclei. This assumption
is justified by the fact that the GDR energies and widths for
the molybdenum isotopes are essentially the same at similar
values of T and J [4]. The excitation energy E∗ of the
compound nucleus in a complete fusion is obtained from the
beam energy by using the relation E∗ = Ec.m. + Q, where
Ec.m. is the total kinetic energy in the center-of-mass system
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FIG. 2. (Color online) Angular momentum distributions for 88Mo
at different excitation energies E∗, which are calculated by the
GEMINI++ code (see text for details), as shown in the panel (in MeV)
with the corresponding average angular momenta J (in h̄).

TABLE I. Beam and excitation energies, maximal and average
temperatures, and maximal, highest, and average angular momenta
in the fusion-evaporation reaction 48Ti + 48Ca →88Mo∗.

Eb E∗ Tmax T Jmax (h̄) σ (h̄) Jhigh (h̄) J (h̄)
(MeV) (MeV) (MeV) (MeV)

150 58 1.95 1.46 32 2 42 22
170 67 2.19 1.61 44 2 52 29
200 80 2.49 1.73 55 1 60 37
300 126 3.06 2.04 57 2 67 38
400 172 3.71 2.43 57 3 72 39
450 194 3.92 2.56 57 3 72 39
500 217 4.34 2.87 57 3 72 39
600 262 4.68 3.06 57 4 77 38
700 308 5.12 3.37 56 5 81 38

and the reaction Q value is equal to the sum of projectile and
target masses minus the mass of the compound nucleus. The
values of excitation energy E∗ that correspond to these beam
energies are deduced as E∗ = 58, 67, 80, 126, 172, 194, 217,
262, and 308 MeV and listed in the column 2 of Table I. The
deduced values of temperature correspond to the evaporation
of the daughter nuclei transmitted by the high-energy γ rays,
that is, to the nuclei upon which the GDR is built. The value
Jmax of angular momentum, at which fission starts to set in,
is found from the fit of the angular momentum distribution
by using the formula p′

J (Ji) = N (2Ji + 1)/{1 + exp[(Ji −
Jmax)/σ ]}, where σ is the diffuseness of the distribution, and
N = ∑

i pJ (Ji)/
∑

i p
′
J (Ji) is the normalization factor. The

value Jhigh = Jmax + 5σ is defined as the highest value of Ji ,
starting from which the high-J tail in the angular momentum
distribution at J > Jhigh becomes negligible. Indeed, by using
the values Jmax and σ at the excitation energies E∗ shown in
Table I, we found that the sum of pJ (J ) within the interval
Jmax + 5σ � J � 100 h̄ does not exceed 0.1% of the total sum
of pJ (J ) within 0 � J � 100 h̄. Figures 1 and 2 as well as
Table I clearly show that the maximal temperature Tmax and
the highest angular momentum Jhigh increase with excitation
energy E∗, and reach the values as high as Tmax = 5.12 MeV
and Jhigh = 81 h̄ (see the columns 3 and 7 of Table I). However,
the average values of temperatures and angular momenta are
actually much lower (see the columns 4 and 8 of Table I). It is
also worth noticing that the maximal angular momentum Jmax

increases first with excitation energy E∗ up to E∗ = 172 MeV,
where it saturates, because of fission competition, at the value
of 56–57 h̄. Consequently the average angular momentum also
reaches the maximum equal to 38–39 h̄ at E∗ � 172–217 MeV.

C. Average GDR strength functions

Displayed in Fig. 3 are the GDR strength functions
SL(ω, T , J ), calculated from Eq. (11) at various temperatures
T and J equal to J that correspond to the excitation energies
E∗ listed in Table I. The temperatures T are those Ti at
which the temperature probability distribution pT (Ti) in Fig. 1
is obtained and also T = T from Table I. These strength
functions are those obtained at given values of T and J at
each step of the statistical decay. They are not the actual
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FIG. 3. (Color online) GDR strength function SL(ω, T , J ) for 88Mo at different values T = Ti taken from the temperature probability
distribution pT (Ti) in Fig. 1 [(green) thin lines with a lower maximum at a higher Ti] and at J = J (in h̄). The (red) thick solid lines denote
SL(ω, T , J ) at T = T (in MeV).

strength functions, which are generated by averaging over all
the cascades. An illustration of a partial averaging is shown
in Fig. 4, where the strength functions SL(ω, J ), obtained

from Eq. (12) by averaging over the temperature probability
distribution pT (Ti), are shown at J running in steps of 1 h̄
from 0 up to Jmax. One can see that both temperature angular
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FIG. 4. (Color online) GDR average strength function SL(ω, J ) for 88Mo at different values J = J taken from the angular momentum
probability distribution pJ (Ji) in Fig. 2 [(pink) shaded areas]. The (green) solid lines denote SL(ω, J ) at the values J = J (in h̄) shown in the
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T = T and J = J (as in Table I).

momentum variations in the broad regions between 0� T �
5.21 MeV and 34 � J � 85 h̄ cause large changes in the
individual GDR line shapes.

The central results of the present paper are displayed in
Fig. 5, where the GDR average strength function SL(ω,E∗)
[Eq. (12)] for 88Mo is compared with the strength function
SL(ω, T , J ) obtained at (T , J ) = (T , J ) at various E∗. It is
seen from this figure that the GDR width increases with
E∗ despite the fact that the value J of the average angular
momentum actually decreases with increasing E∗ > 217 MeV.
The most important feature is that the GDR line shape obtained
by averaging over the temperature and angular momentum
probability distributions is very similar to that obtained
at the average values (T , J ) of temperature and angular
momentum in these fusion-evaporation reactions, where the
compound nucleus 88Mo is formed and produces the GDR
in its subsequent statistical decays. In fact, except for a slight
difference around the GDR peak, the average strength function
SL(ω,E∗) practically coincides with SL(ω, T , J ) with the
same FWHM.

The GDR width obtained within the PDM for 88Mo is
plotted against E∗ in Fig. 6 in comparison with the available
GDR experimental widths for molybdenum isotopes. The data
point for 88Mo is taken from Refs. [5,6], and those for 92,100Mo
are from Ref. [22]. Also shown is the GDR experimental width
for 106Cd [23], which is located approximately at the same
EGDR at that for 88Mo. The GDR experimental line shapes
in 92,100Mo have been obtained by fitting the γ -ray spectra
with two Lorentzians located at E1 ∼ 14.5–15 MeV and
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FIG. 6. (Color online) GDR width in the fusion-evaporation
reaction 48Ti + 48Ca →88Mo∗ as a function of E∗. The (red) full
circles are PDM predictions, connected with the dashed line to guide
the eye. The experimental data for 88,92,100Mo and 106Cd are taken
from Refs. [5,6,22,23].

E2 � 19 MeV, showing that these isotopes are well deformed
nuclei. This explains why the FWHM of the GDR in 92Mo and
especially 100Mo, where E2/E1 reaches 1.28–1.58, are larger
than the corresponding PDM predictions for the GDR width
in spherical 88Mo. In general, at E∗ � 80 MeV the increase
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FIG. 8. (Color online) GDR width in 88Mo vs 2 � T � 4 MeV
at 10 � J � 90 h̄. The lines are drawn to guide the eye.

in the width is rather strong, but at E∗ > 80 MeV the width
increase is weaker because of the saturation of Jmax. To see
if the width saturation at high excitation energy is caused
by the saturation of angular momentum, a test is made to
examine the competition between the temperature and angular
momentum effects on the width increase as T varies from 2
to 4 MeV in steps of 0.5 MeV and J is allowed to increase
from 10 to 90 h̄ in steps of 20 h̄. The GDR strength functions
SL(ω, T , J ) obtained at T = 2, 3, and 4 and at all J in use
are displayed in Fig. 7, whereas the GDR widths are plotted in
Fig. 8 versus T at all values of J in use. These figures clearly
show a significant contribution of the angular momentum
effect to the width increase at a lower T (T = 2 MeV),
whereas at high T = 4 MeV the width obviously goes to a
saturation at J � 50 h̄. Moreover, at larger J � 70 h̄, a width
saturation starts to take place at any T . This feature is in qualita-
tive agreement with the result obtained previously in Ref. [14].

IV. CONCLUSIONS

In the present paper the PDM is employed to calculate the
strength functions for the GDR in the statistical decays after

the fusion-evaporation reaction 48Ti+40Ca, which produces
the compound nucleus 88Mo∗ at various excitation energies
E∗. The calculations use the empirical probability distributions
for temperature and angular momentum, which are generated
by the GEMINI++ statistical code to produce the GDR average
strength functions SL(ω,E∗) as well as the average tempera-
ture T and average angular momentum J at each energy E∗.

The calculations show that while the GDR width increases
with E∗, it approaches a saturation at high T = 4 MeV when
the angular momentum J reaches the value larger than 50 h̄.
At a larger J � 70 h̄, the width saturation shows up at any T .
The most important observation in the present paper in that the
GDR strength function SL(ω,E∗) obtained by averaging the
individual strength functions SL(ω, T , J ) over the empirical
temperature and angular momentum probability distributions
turns out to be almost identical to SL(ω, T , J ) calculated
at the average values T and J of temperature and angular
momentum. This conclusion has a practical importance in the
comparison between theory and experiment since, once T are
J are known, one may compare the theoretical prediction for
the individual strength function SL(ω, T , J ) and its width,
obtained at T and J , with the data, without the need of
generating and averaging the strength functions over the whole
temperature and angular momentum distributions. For the
direct comparison with experimental data, the changes in
the original angular momentum distribution of the compound
nucleus during the evaporation process have also to be taken
into account. This will be carried out in the forthcoming
paper [6].
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