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Structure of p-shell nuclei using three-nucleon interactions evolved with the similarity
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The similarity renormalization group (SRG) is used to soften interactions for ab initio nuclear structure
calculations by decoupling low- and high-energy Hamiltonian matrix elements. The substantial contribution
of both initial and SRG-induced three-nucleon forces requires their consistent evolution in a three-particle
basis space before applying them to larger nuclei. While, in principle, the evolved Hamiltonians are unitarily
equivalent, in practice the need for basis truncation introduces deviations, which must be monitored. Here we
present benchmark no-core full configuration calculations with SRG-evolved interactions in p-shell nuclei over a
wide range of softening. These calculations are used to assess convergence properties, extrapolation techniques,
and the dependence of energies, including four-body contributions, on the SRG resolution scale.
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I. INTRODUCTION

Configuration interaction methods have been used in recent
years to make increasingly accurate large-scale ab initio
calculations of nuclear structure and reactions (e.g., see
Refs. [1–6]). Improved algorithms and better use of increasing
computational resources are critical for these successes.
However, the reach of these methods may also be extended
by applying renormalization group (RG) transformations to
the input Hamiltonian. Renormalization techniques soften
the free-space interactions by reducing the coupling between
high and low momenta, leading to improved convergence
with the size of the basis for a fixed number of interacting
nucleons. The similarity renormalization group (SRG) [7,8] is
an attractive approach for this purpose owing to its relatively
simple implementation, general flexibility, and the feasibility
of consistently evolving many-body operators [9,10].

Previous studies of the SRG in nuclear physics established
its usefulness for few-body systems by demonstrating im-
proved convergence with two-nucleon (NN ) interactions alone
[11–13]. In Ref. [14], a detailed study of SRG convergence
with NN forces in the p shell was made. The present work
extends this study to include initial and induced three-nucleon
(NNN ) forces. We build upon the technology to evolve NNN
forces introduced in Ref. [15], which was applied in Ref. [16]
to 4He and 6Li to explore the effects of full two-plus-three-
body evolved interactions in light nuclei. Roth et al. have
subsequently used the importance truncated no-core shell
model (IT-NCSM) with the SRG [17] to significantly push
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the limits in A and model space size [18,19]. We focus here on
a wider set of p-shell nuclei and on wider ranges of softening
that, with our extrapolation methods, yield nearly converged
results without implementing importance truncation.

The SRG flow equations generate a continuous series
of Hamiltonians that is analogous to the running of the
strong coupling constant in quantum chromodynamics, having
both scale (or resolution) and scheme dependence [10]. The
scheme dependence arises from the choice of initial nuclear
Hamiltonian and the choice of the operator generating the
flow (see below). While the SRG offers a useful framework
for future comparisons of such choices for both NN and NNN
interactions and exploring the flow to universal forms [9,20],
in this work, we restrict our attention to just one choice. In par-
ticular, we use the chiral effective field theory (EFT) potential
at N3LO with 500-MeV cutoff from Ref. [21] together with an
NNN potential at N2LO [22] in the local form of Ref. [23].
This is also the Hamiltonian used in Refs. [15,16,18,24].

The scale dependence arising from the RG flow is mani-
fested as a decreasing decoupling scale that marks the energy
difference for which matrix elements between off-diagonal
energy states become highly suppressed. Formally, all of
the evolved Hamiltonians have equivalent physics content
to that of the initial Hamiltonian, so it would seem to be
advantageous to evolve to very low scales to optimize the
convergence of many-body calculations. However, in practice,
the initial and running Hamiltonians are expanded in a finite
basis (harmonic oscillators here) and many-body forces are
truncated at some level. Therefore, it is necessary to monitor
and characterize the evolution of many-body forces and the
residual running of calculated observables, which can vary
with the size of the nuclear system. In this paper, we present
benchmark calculations using SRG-evolved interactions in
p-shell nuclei. We use them to explore the characteristics
and practical limits of SRG evolution for these systems by
assessing convergence properties, extrapolation techniques,
and the stability of predicted observables.
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In Sec. II, we briefly review the formalism used in
this study and summarize some observations from previous
work. A more complete discussion is provided in Ref. [16].
The convergence properties of the evolved NN and NNN
potentials in various nuclei are explored in Sec. III and in
Sec. IV we examine the evolution with λ and the patterns
of induced many-body forces. Section V summarizes our
conclusions and provides an outlook for future calculations.

II. BACKGROUND

A. SRG evolution

The SRG for low-energy nuclear physics generates a
continuous series of Hamiltonians Hλ from an initial free-
space Hamiltonian Hλ=∞ by unitary transformations,

Hλ = UλHλ=∞U
†
λ, (1)

which is carried out by solving a set of flow equations,

dHλ

dλ
= − 4

λ5
[[G,Hλ],Hλ]. (2)

With an appropriate choice of the Hermitian operator G, the
Hamiltonian is evolved to band-diagonal form with respect
to energy [8,25]. In most nuclear applications to date, the
relative kinetic energy Trel has been used because of the
favorable convergence properties of the evolved Hamiltonians
and for its convenience in constructing basis expansions
[9,10]. We use it here exclusively but note that other choices
may be advantageous in reducing the growth of many-body
forces. This is being investigated separately [26,27]. The flow
parameter λ keeps track of the sequence of Hamiltonians (s
or α, with s = α = 1/λ4, are also used elsewhere [11,12,18]).
For G = Trel, λ has dimensions of momentum and runs from
∞ toward zero with increasing softening.

Evolution is performed in the Jacobi-coordinate harmonic
oscillator (HO) basis used for the no-core shell model (NCSM)
[2,6]. This is a translationally invariant, antisymmetric basis
for each A-body sector, in which a complete set of states
in the model space is defined by the maximum excitation of
Nmaxh̄� above the minimum energy configuration, where �
is the HO parameter. This basis is variational in Nmax; that
is, the energy converges asymptotically from above as more
basis states are included. The SRG preserves this variational
characteristic through smooth unitary evolution, in contrast to
Okubo-Lee-Suzuki-based renormalizations [2,6], which are
unitary transformations specific to the model space.

We start by evolving Hλ using Eq. (2) in the A = 2
subsystem, completely fixing the evolved two-body matrix
elements. Next, by evolving Hλ in the A = 3 subsystem we
determine the combined two-plus-three-body matrix elements.
We isolate the three-body matrix elements by subtracting
the evolved two-body elements within the A = 3 basis [28].
Having obtained the separate NN and NNN matrix elements
we can apply them as inputs to any ab initio nuclear structure
problem. We are also free to include an initial three-nucleon
force in the starting Hamiltonian without changing the proce-
dure.

While any initial interaction can be used as input to the
SRG evolution, here we use the chiral EFT NN potential from
the 500-MeV N3LO interaction of Ref. [21] exclusively. As
an initial NNN potential, we use the chiral N2LO potential
[22] in the local form of Ref. [23]. The low-energy constants
cD = −0.2 and cE = −0.205 are the result of a fit to the
average of triton and 3He binding energies and to triton β
decay as described in Ref. [29].

Hamiltonians obtained via free-space SRG evolution are
independent of the basis choice if the basis is sufficiently
complete. That is, a Hamiltonian evolved to a given λ
reproduces the results of a Hamiltonian evolved to the same λ
in a different basis. However, in practice, there are truncations
in both A-body forces and basis size, that are relevant
to controlling the quality and consistency of SRG-evolved
interactions.

In the present work, induced four-body (and higher) forces
are not included, so calculations for A � 4 will be only
approximately unitary. The many-body interaction matrix
elements induced by the evolution appear in a decreasing
hierarchy in few-body nuclei [15,16]. One of our goals is to
determine if that hierarchy is maintained for p-shell nuclei or
if the induced many-body contributions become unnaturally
large for certain systems and/or values of λ.

Because of computational constraints, we are forced to
apply separate truncations to the A = 2 and A = 3 sectors of
the initial Hamiltonian, which we denote NA2max and NA3max,
respectively (see Table I). These cutoffs in the basis size
must be large enough to fully accommodate the ultraviolet
(UV) contributions (or high-momentum components) from the
initial NN plus NNN Hamiltonian. The ultraviolet cutoff in
an oscillator basis scales like

√
Nh̄�, where N represents the

maximum number of single-particle oscillator quanta in the
basis, so there will be an h̄� below which the initial and,
therefore, evolved Hamiltonian projections onto the oscillator
basis are incomplete. When we use such an h̄� that is too low,
we are effectively working with a different Hamiltonian. As a
consequence, the calculations of observables in the many-body
basis with the too-low h̄� will not converge (or extrapolate) to
the same results found at larger h̄�. This is not a problem for
the NN interaction, for which NA2max is sufficiently large for
the chiral EFT Hamiltonian for all h̄� considered, but becomes
a factor for the NNN force, as illustrated below.

Hamiltonians are derived and evolved in the Jacobi basis for
A = 2 and 3 and then translated to a Slater determinant basis
for full configuration interaction (CI) calculations of larger
systems. The particular CI procedure used here, including the
extrapolation to infinite basis size and associated uncertainty
estimates, is referred to as no-core full configuration or
NCFC [1]. Other CI calculations in the literature using
SRG-evolved interactions and extrapolation are called NCSM
(e.g., Refs. [15,16]). While the original NCSM featured a finite
matrix truncation and an effective Hamiltonian renormalized
to that finite space [6], these SRG-based NCSM and NCFC
procedures are equivalent except for variations in the extrapo-
lation and uncertainty quantification procedures.

In these CI calculations, the size of the largest feasible
model space is highly constrained by the total number of two-
and three-body matrix elements in the full space. Fortunately,
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TABLE I. Definitions and values of basis-size truncations used on the initial Hamiltonian and on the model space for the CI calculations.
The value of NA3max is uniformly reduced for three-body partial-wave JπT channels with higher J to a minimum of 20.

NA2max Maximum sum of two-body oscillator quanta for initial two-body matrix element evolution 300
NA3max Maximum sum of three-body oscillator quanta for initial three-body matrix element evolution 40
Nmax Maximum sum of A-body oscillator quanta above the minimum for the A-body system 2–8

the MFDn code [30–32] that carries out the Lanczos matrix
diagonalization algorithm is highly optimized for parallel
computing. The calculations were performed on the Intel Xeon
cluster Sierra at LLNL, using up to about 15 TB of memory
across 7200 cores on the Cray XE6 Hopper at NERSC, using
up to about 100 TB of memory across 76 320 cores; and on
the Cray XK6 Jaguar at ORNL, using over 500 TB of memory
across 261 120 cores. MFDn has been demonstrated to scale
well on these platforms for these types of runs [33].

B. Guide to the calculations

To set the stage for our examination of p-shell nuclei, we
show in Fig. 1 the ground-state energy of 4He as a function of
λ [15,16]. Here, and throughout the paper, we will compare
three types of calculations, which are summarized in Table II.
The NN -only calculations include two-body matrix elements
that are phase-shift equivalent to the initial NN interaction.
When this part of the Hamiltonian is used alone to study A > 2
systems, the results are not unitarily equivalent at different
λ because the SRG has reorganized the degrees of freedom
to reduce coupling of high and low energies. Formally, in
the process of maintaining unitary equivalence in all sectors
the SRG induces new contributions to many-body matrix
elements, but in the NN -only result these induced interactions
are omitted. We get a characteristic pattern (see the NN -only
results in Fig. 1) where the converged result varies with
evolution, starting at some (underbound) level for the initial

FIG. 1. (Color online) Ground-state energy of 4He as a function
of λ for the three calculations in Table II. The results at all λ are
converged at the 2-keV level or better. The dotted line is the unevolved
result.

Hamiltonian, then falling and rising again with subsequent
evolution (decreasing λ).

In the NN + NNN -induced calculations, the Hamiltonian
includes the evolved NN matrix elements as well as all
three-body matrix elements induced by the SRG starting from
only an NN interaction (i.e., no initial NNN ). In an A = 3
system this will be unitarily equivalent to the initial NN -only
Hamiltonian, so the energy spectrum will be the same, up to
numerical truncation errors (e.g., because of an insufficient
NA3max). Finally, the NN + NNN calculations include an
initial three-body interaction as well as the induced three-body
matrix elements that now arise from the combined evolution of
the NN + NNN interactions. For A = 3, it should be unitarily
equivalent to the initial NN + NNN Hamiltonian. For A � 4,
there will be induced four-body (and higher-body) interactions
that are not included in any of the present calculations. Their
omission causes differences in the predicted energy spectra as
a function of λ.

The computed ground-state energies for 4He in Fig. 1 are
well converged at all λ, so the interpretation is clear. For the
NN -only calculations, deviations from unitary equivalence are
evident just below λ = 10 fm−1, where binding is increasing
by a maximum of about three MeV (10% of the total binding
energy), peaking just below λ = 2 fm−1 and then decreasing
rapidly and overshooting the original ground-state energy by
λ = 1 fm−1. A similar pattern for NN -only was shown in
Ref. [14] for several p-shell nuclei.

The NN + NNN -induced calculation shows a dramatic
reduction in the variation of the energy for λ > 1.5 fm−1,
with only a small decrease in the binding energy peaking near
λ = 2 fm−1. The deviations near λ = 1 fm−1, which imply net
induced four-body interaction contributions, are only about
300 keV, or still an order of magnitude reduced from the
largest NN -only variations. The same pattern for the (implied)
induced four-body interaction is seen when an initial NNN
interaction is included, with just a slight change in the pattern
at λ = 1 fm−1. When we compare to the larger nuclei in the
present work, we are not able to examine the full range of λ
used in Fig. 1 because convergence is only sufficient for reli-
able extrapolation with small errors for λ up to about 2 fm−1.

C. Extrapolation methods

For well-evolved Hamiltonians in lighter nuclei (e.g., 3H
or 4He at λ � 1.5 fm−1), our predictions for ground-state
energies are well converged at computationally accessible
values of Nmax. However, for larger nuclei and greater λ values
we need to extrapolate calculated energies to Nmax = ∞. To
do so, we primarily use empirical extrapolation procedures
based on those described in Refs. [1,14,16] but also compare
to a new procedure from Ref. [34].
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TABLE II. Guide to the calculations.

NN only No initial NNN interaction and do not keep NNN -induced interaction.
NN + NNN -induced No initial NNN interaction but keep the SRG-induced NNN interaction arising from the NN interaction alone.
NN + NNN Include an initial NNN interaction and keep the SRG-induced NNN interaction arising from the combination of

NN and NNN interactions.

The empirical model used for ground-state energies is

Eαi = E∞ + Aα e−bαNαi , (3)

where Aα and bα are (h̄� dependent) constants, Nαi are the
Nmax values, and α labels the h̄� value. The goal is to deter-
mine the common parameter E∞, which is the estimate for the
ground-state energy extrapolated to Nmax = ∞. This can be
cast as a one-dimensional constrained minimization problem
with the function

g(E∞) =
∑

α,i

[ln(Eαi − E∞) − aα − bαNαi]2/σ 2
αi, (4)

where the {aα} and {bα} are determined directly within the
function g by invoking a constrained linear least-squares
minimization routine. The constraint is the bound E∞ �
min({Eαi}), where E∞ < 0 and “min” means “most negative.”
(One can also allow for weights depending on Nmax and/or h̄�.)

In the present investigation, we have applied this ex-
trapolation model for individual values of h̄�, determining
error estimates as in “Extrapolation B” from Ref. [1], but
also including several values of h̄� in a constrained fit over
a range where they are considered reliable. We emphasize
that while this model has been generally successful when
applied in NCFC calculations with SRG-evolved interactions,
its validation is empirical rather than theoretical.

An alternative EFT-motivated approach to extrapolation
is based on explicitly considering the UV and infrared (IR)
cutoffs imposed by a truncated HO basis [34,35]. This has
led to a theoretically motivated IR correction formula and
an empirical UV correction formula [34] in which the basic
extrapolation variables are the effective hard-wall size L and
the analogous cutoff in momentum, �UV. In terms of the oscil-
lator length b ≡ √

h̄/(m�), rough estimates of these variables
are �UV ≈ √

2(N + 3/2)h̄/b and L ≈ √
2(N + 3/2)b, where

N = Nmax + 1 for p-shell nuclei [34,35]. A formula combin-
ing both corrections (i.e., they are treated independently) takes
the form [34]

E(�UV, L) ≈ E∞ + B0e
−2�2

UV/B2
1 + B2e

−2k∞L. (5)

Note that this formula contains exponentials with arguments
proportional to both N (from �2

UV) and
√

N (from L), in
contrast to Eq. (3).

Following Ref. [34], we apply Eq. (5) with E∞, B0, B1,
B2, and k∞ treated as fit parameters that are determined from
a simultaneous optimization to data at all h̄�, including the
intermediate region where both IR and UV corrections are
significant. It may be advantageous, in general, to isolate the
IR or UV corrections by using only large h̄� or small h̄�
results, respectively. However, most of the present calculations
were made with h̄� values close to the energy minimum,
which means comparable UV and IR contributions [34].

(The exception is for very low λ, where UV convergence
is reached for all h̄� considered.) We also exploit a recent
observation that the expressions for L and �UV give more
accurate energy corrections if we take N → N + 2, which
is particularly effective when Nmax is small [36]. Thus, we
will use N = (Nmax + 1) + 2 = Nmax + 3 for the calculations
in Sec. III C. Equation (5) has been successfully applied to
NN -only calculations from Ref. [14], but here we test it for
the first time with three-body forces included.

III. CONVERGENCE

For fixed Nmax, both the UV and IR momentum cutoffs scale
with

√
h̄�, which means that there is a trade-off: Increasing

h̄� increases the ability to accommodate high-momentum
components while decreasing the ability to accommodate
long-distance physics. The result is a familiar variational
minimum with respect to h̄�. For NN -only calculations,
it was observed in Ref. [14] that with decreasing SRG λ
at fixed Nmax, the minimum systematically shifts to lower
h̄� and convergence becomes much more rapid. Here we
examine if these observations are modified by the presence
of a three-nucleon force (3NF) in NN + NNN -induced and
NN + NNN calculations.

A. Size of three-body evolution basis

As noted earlier, the size NA3max of the A = 3 basis we use
to evolve the Hamiltonian before embedding in larger systems
is limited by computational constraints. In Fig. 2, the impact
on the calculated ground state of the triton is shown for the
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FIG. 2. (Color online) Ground-state energy of the triton for the
unevolved chiral EFT Hamiltonian in different three-body basis sizes
(NA3max) with a large, fixed two-body basis (NA2max = 300).
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FIG. 3. (Color online) Ground-state energy of 8Be for a fixed
many-body basis size of Nmax = 8 for Hamiltonians evolved to λ =
1.5 fm−1 in different three-body basis sizes (NA3max) with a fixed,
large two-body basis (NA2max = 300).

unevolved interaction using different values of NA3max with h̄�
ranging from 10 to 24 MeV. At each h̄�, the signal that NA3max

is sufficiently large is convergence of the ground-state energy,
which is evident for h̄� � 18. In contrast, the systematic
underbinding at lower h̄� values with the NA3max from Table I
will be preserved when the Hamiltonian is evolved; in effect, a
different initial Hamiltonian will be used. The spread of points
at fixed h̄� and particularly the deviations at NA3max = 40 from
the fully converged energy imply that low oscillator parameters
(i.e., below h̄� = 18 MeV) will be unreliable for energy
calculations in larger nuclei (because we cannot predict the
degree of underbinding, as shown in Fig. 4 discussed below).
In contrast, the size of the A = 2 basis used here is sufficient for
convergence within 1 keV in the full range of h̄� considered.

The implications of a too-small NA3max at smaller h̄� for
SRG evolution are illustrated in Fig. 3, which shows fixed
Nmax = 8 (and fixed NA2max = 300) calculations of the 8Be
ground state of the same initial NNN interaction evolved in
different three-body basis sizes for a range of h̄�. All results
are for λ = 1.5 fm−1. It is evident that h̄� = 12 MeV is far
from converged even at the largest value of NA3max available.
Note that we do not expect the different h̄� calculations in
this figure to have the same energy as NA3max → ∞, because
Nmax = 8 is still unconverged in the many-body system.
However, for each individual h̄� we need convergence for the
largest NA3max, as observed for h̄� = 20 MeV. We also note
that an exponential model for the convergence in NA3max does
not work, as shown in Fig. 4. For h̄� = 20 MeV we observe
good convergence at NA3max = 40. However, the quality of the
exponential fits in Fig. 4 deteriorates as h̄� decreases below
20 MeV. We conclude that simple exponential extrapolation
in NA3max is not an option for h̄� = 16 MeV and below. In
particular, while h̄� = 16 MeV is close to converged for 8Be,
this may be less true for larger nuclei, so we will (perhaps
conservatively) only consider h̄� � 18 MeV to be reliable in
the following.
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FIG. 4. (Color online) Attempted extrapolation in NA3max at fixed
Nmax = 8 of 8Be ground-state energies from Fig. 3 at several values
of h̄�.

B. Convergence with model space size Nmax

In Figs. 5 through 13, we show detailed results for the
ground-state energy for each of the calculations of Table II
as a function of h̄� for three representative nuclei (7Li,
10B, and 12C) and basis sizes Nmax from 2 to 8 (and 10
for some NN -only cases). Panels from left to right show
results for decreasing SRG λ. In all panels the symbols
connected by dashed lines denote the ab initio calculated
points at a single Nmax, while the solid lines are exponential
extrapolations at each individual h̄� based on Extrapolation
B from Ref. [1]. Extrapolations are given for Nmax = 2–6 and
Nmax = 4–8, with error bars in the latter determined by the
difference from the central prediction of the former. For 7Li
and 10B NN -only calculations, there are also extrapolations for
Nmax = 6–10 with error bars based on Nmax = 4–8; see Fig. 5
of Ref. [33] for 12C for results up to Nmax = 10 with the same
NN -only interactions, but without the Coulomb interaction.
These figures display the systematics of NCFC convergence
of SRG-evolved interactions with and without three-body
forces.

Here, we make various summary observations based on
these figures (with further discussion of extrapolations in the
next section).

(i) For all calculations, the rate of convergence with basis
size Nmax is greatly accelerated with decreasing λ for
h̄� near the variational minimum. The addition of
NNN interactions does not affect the rate substantially.
The dependence on h̄� at low λ is very flat for
higher Nmax.

(ii) In almost all cases, the location of the variational
minimum in h̄� for a given Nmax shifts to smaller h̄� as
λ decreases. This is expected because the minimum is
where the UV and IR corrections are roughly equal [34].
(See Fig. 17 and the accompanying discussion below.)
The contribution from high-momentum components of
the interactions to low-energy states decreases as λ
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FIG. 5. (Color online) Ground-state energy of 7Li for NN -only evolved Hamiltonians at λ = 2.5, 2.0, 1.5, and 1.0 fm−1, plus extrapolations
based on Extrapolation B from Ref. [1]. See text for further details.

decreases, so lower λ Hamiltonians are less sensitive
to the UV reach in momentum of a truncated HO
basis. In other words, the more evolved Hamiltonian
is less sensitive to the UV cutoff intrinsic to the HO
basis and thus the interplay between UV cutoff and IR
distortion is shifted. This results in a systematic shift of
the optimal h̄� to lower values as the Hamiltonian is
evolved.

(iii) The location of the minima for NN + NNN -induced
calculations are systematically lower in h̄� than for the
corresponding NN + NNN interaction calculations.
This is consistent with the induced NNN interaction
being softer than the initial NNN interaction. The
significance of high-momentum components in the
initial NNN interaction were already evident above
where we saw that they are not as well converged
in the A = 3 space used for evolution and require
larger h̄�. Furthermore, with NN + NNN -induced
interactions, the nuclei are systematically less bound

than with the NN + NNN interaction, so the wave
functions will have longer-range exponential tails;
as a consequence, the corresponding wave function
is better represented with a lower h̄� for NN +
NNN -induced calculations than for NN + NNN
calculations.

(iv) Results for λ = 1.5 and 1.0 fm−1 are sufficiently
converged that extrapolations in the nongray regions
(gray shadowing signifies the unreliable region of h̄�
discussed above) are the same for different h̄� within
the (small) error bars. Near the minima in this λ range
extrapolation is largely superfluous. In cases including
initial or induced NNN interactions, the minimum is
sometimes in the gray region. However, in such cases
the convergence for larger h̄� is well advanced and the
individual h̄� extrapolations are consistent with each
other.

(v) Extrapolated results for λ = 2.5 fm−1 (and to some
degree for λ = 2.0 fm−1) appear to depend system-
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FIG. 6. (Color online) Ground-state energy of 7Li for NN + NNN -induced evolved Hamiltonians at λ = 2.5, 2.0, 1.5, and 1.0 fm−1, plus
extrapolations based on Extrapolation B from Ref. [1]. The gray shadowing signifies an unreliable region; see text for further details.
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FIG. 7. (Color online) Ground-state energy of 7Li for NN + NNN evolved Hamiltonians at λ = 2.5, 2.0, 1.5, and 1.0 fm−1, plus
extrapolations based on Extrapolation B from Ref. [1]. The gray shadowing signifies an unreliable region; see text for further details.

atically on h̄�. Although it has generally been con-
sidered most reliable to extrapolate using energies for
h̄� near the variational minimum, selected results in
Nmax = 10 spaces (e.g., for 10B NN -only) suggest that
the extrapolations from 4,6,8 are overbound near the
minimum for larger λ (and 2,4,6 even more so), so
that estimates from larger h̄� are more robust. This
may be related to the fact that the location of the
variational minimum is shifting to larger values of
h̄� as Nmax increases. In general, our λ � 2.2 fm−1

extrapolations for these nuclei have error bars too
large to allow useful quantitative conclusions about
λ dependence.

(vi) In Figs. 11–13, the λ = 2 fm−1 results for 12C at h̄� =
20 MeV include a horizontal line marking the best
extrapolated value (with error bar) from the IT-NCSM
calculations of Roth et al. [18]. The Nmax � 6 values
are relatively consistent with the extrapolated IT-NCSM
results, but beginning with the extrapolated NCFC
results that include the Nmax = 8 points, we appear

to predict somewhat more binding than the IT-NCSM
extrapolated result, though our uncertainties are large
enough that a definitive conclusion is elusive. Note,
however, that the prescription for the NA3max truncation
is slightly different in Ref. [18] than what we use here.
Both in Ref. [18] and in our calculations NA3max = 40 is
used for the leading, J = 1

2 , 3NF contributions, but we
use different cutoffs for the higher-J terms. A detailed
analysis of the effect of importance truncation for this
particular case is in progress [37].

(vii) It is evident by comparing extrapolated values for
NN -only to the NN + NNN calculations that the λ
dependence of the extrapolated energies is significantly
reduced by including 3NFs. This is summarized in the
figures discussed in Sec. IV.

Overall, the convergence patterns with Nmax and h̄�
previously observed as a consequence of NN -only SRG
evolution [14] are still present when 3NF contributions are
included.
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FIG. 8. (Color online) Ground-state energy of 10B for NN -only evolved Hamiltonians at λ = 2.5, 2.0, 1.5, and 1.0 fm−1, plus extrapolations
based on Extrapolation B from Ref. [1]. See text for further details.
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FIG. 9. (Color online) Ground-state energy of 10B for NN + NNN -induced Hamiltonians evolved to λ = 2.5, 2.0, 1.5, and 1.0 fm−1, plus
extrapolations based on Extrapolation B from Ref. [1]. The gray shadowing signifies an unreliable region; see text for further details.

C. Comparison of extrapolation methods

The extrapolations in Figs. 5 through 13 are a series of
individual extrapolations using Eq. (3), each for a fixed value
of h̄�. As noted earlier, the plotted error bars for each h̄�
are determined by comparison of each individual Nmax = 4–8
extrapolation to that obtained from Nmax = 2–6. The resulting
set of predictions can then be analyzed to obtain a predicted
energy and overall error bar [1]. We consider two criteria
for determining a best Extrapolation B result for E∞ and the
corresponding error bar:

(i) the result at the h̄� value for which the amount
of extrapolation is minimal [i.e., the point where
E(Nmax) − E∞ is minimal];

(ii) the result at the h̄� value for which the numerical error
estimate is minimal.

In both cases, we restrict the best Extrapolation B to h̄�
values at or above the variational minimum at the highest Nmax

employed in the extrapolation. For the error estimates we use
the average of the error bars in a region of 8 MeV around

this best h̄� value. This initial error estimate is enlarged
as necessary to get consistent results, such that the central
values are within the error estimate in the entire 8-MeV
range.

Note that below λ = 1.5 fm−1 with 3NFs, we cannot apply
either of these criteria, because we are only using results for
h̄� � 18 MeV, and the variational minimum is typically at
or below h̄� = 18 MeV for the lowest λ values; however, for
these values of λ the results are quite close to convergence,
and we base our error estimate on the results for 18 � h̄� �
24 MeV. Above λ = 1.8 fm−1, the two criteria give (slightly)
different results, but generally with overlapping extrapolation
error estimates.

The convergence pattern and extrapolations of the NN -only
data up through Nmax = 10 (see Figs. 5 and 8, as well as Fig. 5
of Ref. [33]), suggest that for λ = 2.5 fm−1 the h̄� value
that minimizes the numerical error estimate, h̄� � 36 MeV,
is more reliable for the extrapolation (at least at this λ value)
than the h̄� value that minimizes E(Nmax) − E∞. (With the
nonlocal NN interaction JISP16, for which this extrapolation
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FIG. 10. (Color online) Ground-state energy of 10B for NN + NNN evolved Hamiltonians at λ = 2.5, 2.0, 1.5, and 1.0 fm−1, plus
extrapolations based on Extrapolation B from Ref. [1]. The gray shadowing signifies an unreliable region; see text for further details.
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FIG. 11. (Color online) Ground-state energy of 12C for NN -only evolved Hamiltonians at λ = 2.0, 1.5, and 1.0 fm−1, plus extrapolations
based on Extrapolation B from Ref. [1]. See text for further details.

has been used extensively [1,3,38] these two criteria rarely
lead to significant differences.)

An alternative approach is to use a constrained optimization
that uses all (or a specified subset) of h̄� data, requiring
the same extrapolated energy E∞ in Eq. (3) for every h̄�,
such as “Extrapolation A” of Ref. [1]. Here, we use basically
the same procedure for the constrained optimization, using
four subsequent Nmax values and five h̄� values for each
constrained fit, with the same weights and error estimate
as in Ref. [1]. (For the current calculations five h̄� values
span an 8-MeV range of h̄�, whereas in Ref. [1] it spans
a 10-MeV range.) Again, with 3NFs this procedure cannot
be applied below λ = 1.5 fm−1, but the results are close to
convergence for these cases, and therefore less sensitive to
the details of the extrapolation. For 1.5 fm−1 � λ � 2 fm−1

the results from Extrapolation A are consistent with those
from Extrapolation B, but for λ > 2 fm−1 the procedure
of Ref. [1] for Extrapolation A, modified as described

above, leads to results that show a systematic deficiency at
Nmax = 10.

Figure 14 shows a comparison of the single and the
constrained extrapolation schemes for λ = 2.5 fm−1. In this
example we use 7Li with NN -only calculations up to Nmax =
10. The variational minimum is at 24 MeV, so we use five h̄�
values from 22 to 30 MeV, and four Nmax values for each h̄�
for the each of the constrained fits. Figure 14 shows clearly
that this procedure with the Nmax = 2 to 8 results leads to an
overestimate of the binding energy and an underestimate of
the extrapolation uncertainty. In Fig. 14, we can also see why
this procedure leads to erroneous results: Near the variational
minimum the convergence is not a simple exponential for this
value of λ, as is evident from the single h̄� fits (blue curves).

The alternative EFT-motivated approach described in
Sec. II C is complementary to the schemes used in Figs. 5–14.
A sample application of Eq. (5), which includes both UV and
IR corrections to the energy at each Nmax and h̄�, is shown
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FIG. 12. (Color online) Ground-state energy of 12C for NN + NNN -induced Hamiltonians evolved to λ = 2.0, 1.5, and 1.0 fm−1, plus
extrapolations based on Extrapolation B from Ref. [1]. The gray shadowing signifies an unreliable region; see text for further details.
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FIG. 13. (Color online) Ground-state energy of 12C for NN + NNN evolved Hamiltonians at λ = 2.0, 1.5, and 1.0 fm−1, plus extrapolations
based on Extrapolation B from Ref. [1]. The gray shadowing signifies an unreliable region; see text for further details.

in Fig. 15 for the NN + NNN calculation of the 7Li ground
state. In this example, the 15 points with h̄� � 18 MeV and
Nmax from 4 to 8 are inputs to a simultaneous fit of the five
parameters of E(�UV, L), with �UV and L given as functions
of h̄� and Nmax (see Sec. II C for the formulas, recalling that we
will use N = Nmax + 3 for p-shell nuclei). The result for E∞
(dashed line) is consistent with the individual Extrapolation
B results (from Fig. 7) and the overall result is within the
error bars of that scheme. An error analysis procedure for the
IR/UV correction model is not yet available, which limits its

0 4 8 12 16 20
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FIG. 14. (Color online) Ground-state energy extrapolations of 7Li
as a function of Nmax with an N3LO NN interaction [21] evolved to
λ = 2.5 fm−1. The symbols are the calculated points. The curves
show single extrapolations using Eq. (3) with Nmax = 2–6 (dashed),
4–8 (dotted), and 6–10 (solid) at (blue circles) h̄� = 26 MeV,
which minimize the amount of extrapolation, and at (red diamonds)
h̄� = 36 MeV, which minimize the numerical error estimate. The
horizontal dotted and solid lines, with the band indicating the
associated error bars, are the result from a constrained fit following
the procedure of Ref. [1] for five h̄� values from 22 to 30 MeV.

utility for the present analysis, but the goodness-of-fit can be
assessed by the (very small) spread of corrected points about
the dashed line. Corrected points represent the use of the best fit
parameters with Eq. (5) (except E∞) to extend each finite basis
result to infinite Nmax at fixed h̄�. Note also the predictions
for the h̄� = 16 MeV points, although those data points were
not included in the fit.

A second extrapolation based on the IR/UV correction
model is shown in Fig. 16, where the spread of corrections
indicates a still good but less-than-ideal fit for the NN +
NNN calculation of the 12C ground state. Note that the largest
deviations of the corrected results from the fit E∞ occur for
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FIG. 15. (Color online) Ground-state energy of 7Li for NN +
NNN evolved Hamiltonians at λ = 2.0 fm−1, plus extrapolations
based on Extrapolation B from Ref. [1] (solid line and points with
error bars) and on the combined IR/UV correction formula Eq. (5) that
yields E∞ (dashed line) and individual corrections for each h̄� and
Nmax combination (points near the dashed line) based on the single
set of best-fit parameters. The gray shadowing signifies an unreliable
region (see text).
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FIG. 16. (Color online) Ground-state energy of 12C for the NN +
NNN evolved Hamiltonians at λ = 2.0 fm−1, plus extrapolations
based on Extrapolation B from Ref. [1] (solid line and points with
error bars) and on the combined IR/UV correction formula Eq. (5) that
yields E∞ (dashed line) and individual corrections for each h̄� and
Nmax combination (points near the dashed line) based on the single
set of best-fit parameters. The gray shadowing signifies an unreliable
region (see text).

two of the three highest Nmax points. The implication is that
the true E∞ should be slightly more negative, which is also the
conclusion from comparing with the Extrapolation B analysis.
Note, however, that although we used the same total number
of points for this IR/UV extrapolation, we have only three
Nmax = 8 points (see Fig. 13), compared to 5 of the 15 points
that we used for Fig. 15.

In general, a good fit requires the UV and IR functional
forms to be adequate models for smaller Nmax values (with
increasing Nmax there is decreasing sensitivity while the
computational cost is increasing dramatically). Much remains
to be explored for heavier nuclei but detailed investigation of
two-particle models and the deuteron suggest that the forms
in Eq. (5) can be improved and that the predictions can be
sensitive to optimizing the choice of expressions for L and
�UV [36] (e.g., using Nmax + 3/2 + 2 rather than Nmax + 3/2
for two-body systems). We are also not yet able to take
advantage of the theoretical prediction that k∞ should be
related to the nucleon separation energy and the empirical
observation that B1 is found to be numerically close to λ.

The two examples considered so far are for λ = 2 fm−1.
For λ � 1.5 fm−1, the new extrapolation method using data
up to Nmax = 8 gives predictions for the Nmax = ∞ energies
consistent with the other extrapolation schemes. As already
noted, there are some systematic differences for λ = 2 fm−1,
but they are within the Extrapolation B uncertainties. For larger
λ these differences grow, but it is not possible at present to
determine which approach is superior.

It is instructive after making a global fit to decompose each
correction for a given h̄� and Nmax into the individual IR
and UV contributions. This is done in Fig. 17 for the 7Li fit
of Fig. 15. This figure verifies our prior claim that IR and
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FIG. 17. (Color online) Ground-state energy of 7Li for the NN +
NNN evolved Hamiltonians at λ = 2.0 fm−1, with IR (vertical
dashed lines) and UV (vertical dotted lines) corrections from Eq. (5)
that add to predicted E∞ values (points near the horizontal dashed
line, which is the global E∞). The gray shadowing signifies an
unreliable region (see text).

UV corrections are roughly equal at the variational minima,
while the IR (UV) correction rapidly dominates when we
move to the right (left) of a minimum. If there are enough
(h̄�,Nmax) points calculated where one of the two corrections
is numerically insignificant, a simpler extrapolation with only
three fit parameters is possible. An example of an IR-only fit
is given for the NN -only calculation of 10B at λ = 2 fm−1

is given in Fig. 18. Such IR-only fits are not possible for the
calculations here, including NNN, because we do not have
enough points sufficiently removed from the minimum in h̄�.

The points in Fig. 18 were chosen to the right of the
variational minimum (see Fig. 8), where a fit to Eq. (5) implies
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FIG. 18. (Color online) Ground-state energy of 10B for the
NN -only evolved Hamiltonians at λ = 2.0 fm−1 for Nmax = 4–8 and
h̄� = 28–32 MeV plus Nmax = 10 and h̄� = 26, 28 MeV with an
IR-only fit using Eq. (6). The fit value of E∞ is the dashed line.
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that the UV correction to these points is much smaller than the
IR correction. The observation that the points with different
h̄� and Nmax values all lie on the same curve verifies that L is
the correct variable. We note similar demonstrations for 6He
results in Fig. 4 of Ref. [34] with the same NN -only interaction
and in Fig. 11 of Ref. [35] using a different NN interaction.
The fit to

E(L) ≈ E∞ + B2e
−2k∞L (6)

for the energies shown in Fig. 18 is very good. However, the
prediction for E∞ is about 0.6 to 1 MeV more bound than that
from the Extrapolation B analysis.

It would be premature to draw robust conclusions on
the relative efficacy of the extrapolation schemes used here.
In particular, further comparisons are needed where large
Nmax results are available to check small Nmax extrapolations.
However, for our present purposes it is sufficient that the
results of the different schemes are consistent with each other
to within the assessed uncertainties currently available. For the
remainder of this work, we use extrapolation procedures based
on Eq. (3).

IV. EVOLUTION

A. Running of ground-state energies

In Figs. 19–22, we show the dependence on λ of the
ground-state energy in 7Li, 8Be 10B, and 12C, respectively,
using our best estimate for infinite-basis space results based
on Extrapolation B described in the previous section. For
λ < 1.5 fm−1 there is good convergence with small error bars,
although the numerical accuracy of the extrapolation with
3NFs is limited by the NA3max cutoff. For λ > 1.5 fm−1 the
two criteria for selecting the optimal h̄� lead to (slightly)
different results, and their difference grows with λ; the shaded
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FIG. 19. (Color online) Extrapolated ground-state energy of 7Li
as a function of λ for each SRG calculation. The initial interaction
was N3LO NN [21] included up to NA2max = 300 and N2LO NNN

[29,39] up to NA3max = 40. The dashed curves connect data points
and error bars obtained using the extrapolations described in the text.
The small black arrow on the left shows the experimental value.
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FIG. 20. (Color online) Same as Fig. 19 but for the 8Be
ground state, as well as twice the 4He ground-state energy (solid
curves).

symbols in Figs. 19–22 correspond to using the h̄� value
that minimizes E(Nmax) − E∞, whereas the open symbols
correspond to using the h̄� value that minimizes the numerical
error estimate. For many cases we currently do not have data
available to perform extrapolations at or near the h̄� value that
would minimize the numerical error estimate.

Nevertheless, we see in these figures that for λ between 1.0
and 2.0 fm−1 the general pattern is the same as that observed
for 4He in Fig. 1. We expect that the NN -only (green circles)
start for λ = ∞ at an (underbound) energy but the larger λ’s
required to verify this are not sufficiently converged here.
However, the characteristic dip owing to omitted induced
NNN forces is clear in each of the nuclei. Including the
induced NNN matrix elements (blue squares) significantly
reduces but does not eliminate the dependence on λ. (Note
that, as observed in Fig. 1, the NN -only curve should be
equal to the NN + NNN -induced result at large λ, which is
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FIG. 21. (Color online) Same as Fig. 19 but for the 10B ground
state. The small black arrow on the left shows the experimental
value.
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FIG. 22. (Color online) Same as Fig. 19 but for the 12C ground
state, as well as three times the 4He ground-state energy (solid
curves).

plausible from Figs. 19–22 but not verifiable in the present
calculations.) The trend of the results with induced NNN
interactions is increased binding as λ decreases from 1.8 to
1.0 fm−1, consistent with 4He shown in Fig. 1. The magnitude
of the decrease is about 0.7–1.1 MeV, without a systematic
dependence on the nucleus. When initial NNN interactions
are included (red diamonds), the qualitative dependence on
λ over this same range is similar, but the magnitude of the
decrease is systematically larger by roughly 1 MeV or a factor
of two (less in 10B). The downward shift in ground-state
energies takes them below the experimental values for the four
nuclei of Figs. 19–22. The additional binding provided by the
initial 3NF increases from less than 1 MeV per nucleon in 7Li
to more than 1.5 MeV per nucleon in 12C, almost independent
of λ for λ between 1.0 and 2.0 fm−1.

The shape of an evolution curve (as in Figs. 19–22) is
determined by the interplay of short- and long-range effects in
a given A-body sector. This has been demonstrated explicitly
in Ref. [28] for a model but needs to be more systematically
verified in realistic systems. For a given Hamiltonian (i.e.,
fixed initial interactions and fixed truncation of the evolution
equations at the two-body or at the three-body level) we
observe close similarity between the various nuclear ground-
state evolution curves presented here. Focusing on the range
in λ where the error bars are smaller (λ = 1.0–1.8 fm−1), the
energy variations for the NN -only calculations are reduced by
a factor of 4–5 for the NN + NNN calculations (and more for
NN + NNN -induced). Thus, the induced NNN interaction
acts to (almost) restore λ independence in this region, with
the residual variation attributed to four-body (and higher)
forces.

This suggests that the induced NNN interaction, as in the
4He case, is the leading correction to the NN -only results
arising from SRG evolution. Moreover, the similarity in the
shapes of the evolution curves through the range of A is also
consistent with the preservation of hierarchical induced many-
body forces; that is, we expect that the induced four-body
forces will provide a residual contribution smaller than the

induced NNN interaction. This conclusion is also consistent
with previous analysis of expectation values for components
of the evolved interaction [16].

The net induced 4NF contribution in 4He was found to be
a few hundred keV at λ = 1 fm−1 (see Fig. 1). In Figs. 19–22
the effect of omitted induced four-body (and higher) forces at
lower λ (judging solely from the vertical range of each curve) is
at least of order 1 to 2 MeV, depending on whether initial 3NFs
are included. This is still small enough that for light nuclei it
may be possible to exploit very highly evolved Hamiltonians,
especially if a simple approximation for the 4NF contribution
can be found. Alternatively, incorporating the induced 4NF
contribution explicitly may become computationally feasible
in the near future. A quantitative understanding of the
magnitude and scaling of (assumed) induced 4NFs with λ
and with A is still lacking. This has become an important issue
in light of the growing overbinding with larger A observed
by Roth et al. when an initial 3NF is included (unless the
3NF cutoff is significantly reduced with respect to the NN
cutoff) [18].

In Fig. 20, we also show the evolution curves for two α
particles, noting that the λdependence is significantly stronger
for 8Be than for two α particles. With the NN -only interaction,
8Be is actually bound for λ � 2 fm−1, but once the induced
3NF is included, it appears to be unbound by about 1 MeV.
With the initial 3NFs we find that 8Be is bound for λ �
1.5 fm−1, but for larger values of λ we cannot draw a firm
conclusion. Experimentally, 8Be is unbound by about 0.1 MeV
(i.e., the lowest lying narrow resonance is 0.1 MeV above the
two-α threshold). In Fig. 22, we also show three times the
ground-state energy of 4He. With the NN -only potential, 12C is
bound by about 20 to 25 MeV relative to three α particles with
the same interaction for λ between 1 and 2 fm−1, but once the
induced 3NFs are taken into account, it is bound by only about
4 MeV. Once the initial N2LO chiral 3NFs are incorporated,
the binding relative to three α’s increases to about 14 MeV
and is nearly independent of λ. Experimentally, this energy
difference is about 7.5 MeV. We expect that the overbinding
by almost a factor of two relative to the three-α threshold with
the chiral N2LO 3NFs will have important consequences for
the low-lying spectrum of 12C, in particular for the Hoyle state.

B. Low-lying excited states

In Figs. 23–25, we show the excitation energies of the
lowest excited states in 7Li, 8Be, and 10B, respectively, as
function of h̄� for different values of λ at fixed Nmax = 8.
For 7Li and 8Be, the excitation energy of the first excited
state is almost independent of both λ and h̄� and in good
agreement with experiment. This independence suggests that
these excitation energies are close to being converged. The
second excited state of these nuclei shows a slight dependence
on both λ and h̄�. In particular, at larger values of λ the
excitation energies show a variation with h̄�, indicating that
these excitation energies are not yet converged. However, this
variation is significantly less than the estimated extrapolation
error in the absolute (ground state) energies for these nuclei.
More interesting is that the (albeit small) dependence on λ is
significantly larger with initial 3NFs than with induced 3NFs

054312-13



E. D. JURGENSON et al. PHYSICAL REVIEW C 87, 054312 (2013)

16 20 24 28
hΩ  (MeV)

0

1

2

3

4

5
E

xc
it

at
io

n 
en

er
gy

 (
M

eV
)

←

←

λ = 1.0 fm
-1

λ = 1.2 fm
-1

λ = 1.5 fm
-1

λ = 1.8 fm
-1

λ = 2.0 fm
-1

λ = 2.2 fm
-1

λ = 2.5 fm
-1

NN + NNN induced

7
Li

7/2
-

1/2
-

16 20 24 28
hΩ  (MeV)

0

1

2

3

4

5

E
xc

it
at

io
n 

en
er

gy
 (

M
eV

) ←

←

λ = 1.0 fm
-1

λ = 1.2 fm
-1

λ = 1.5 fm
-1

λ = 1.8 fm
-1

λ = 2.0 fm
-1

λ = 2.2 fm
-1

λ = 2.5 fm
-1

NN + NNN

7
Li

7/2
-

1/2
-

FIG. 23. (Color online) Lowest two excited states 7Li as a function of h̄� for each SRG λ value at Nmax = 8. The initial interaction was
N3LO NN [21] included up to NA2max = 300 and N2LO NNN [29,39] up to NA3max = 40. The small black arrows on the left show the
experimental values.

only, as is evident by the smaller spread of the curves in the
left panels of Figs. 23 and 24.

In 10B the situation is much more complicated. In Fig. 25,
we show the excitation energies of the lowest four ex-
cited states of 10B relative to the (3+, 0) (which is the
ground state of 10B): two (1+, 0) states, a (2+, 0) state, and a
(0+, 1) state (analog state of the ground state of 10Be and 10C).
It is immediately obvious that there is a much larger spread in
the excitation energies than for 7Li and 8Be, in particular with
initial 3NFs.

With induced 3NFs only, the lowest state is actually a
(1+, 0) state, rather than the (3+, 0) state. This state, however,
is rather poorly converged relatively to the (3+, 0) state, as is
evident from the strong h̄� dependence of its (mostly negative)
excitation energy, even for very small values of λ. Furthermore,
the second (1+, 0), as well as the lowest (2+, 0) and (0+, 1),
states are very close to each other, all with excitation energies
between 1 and 2 MeV and all with a similar weak λ and
moderate h̄� dependence. Experimentally, these three states
have excitation energies of 2.154, 1.740, and 3.587 MeV,
respectively. Thus, in the absence of initial 3NFs, the chiral
interactions not only predict the wrong ground state for 10B but
also a much-too-dense spectrum for the other low-lying states.

With initial 3NFs the spectrum looks quite different. One
of the two (1+, 0) becomes strongly dependent on λ, whereas
the other (1+, 0) state remains almost independent of λ. In
the region of parameter space where these two states are well
separated, they can be distinguished by their quadrupole and
magnetic moments. Although the quadrupole moments are not
converged, they are clearly different for these two states: One
has a small positive quadrupole moment of the order of one
e fm2 or smaller (open symbols in Fig. 25), whereas the other
has a negative quadrupole moment around −2 to −3 e fm2

(solid symbols in Fig. 25). The latter of these two states
depends only weakly on λ and h̄� and appears to be reasonably
well converged, whereas the former is very strongly dependent
on both λ and h̄� and is not converged at all. However, for λ
from 1.5 to 2.0 fm−1 these two states show significant mixing.
(Experimentally, they are separated by about 1.4 MeV.) For
comparison, the quadrupole moment of the ground state is
about +7 to +8 e fm2 with induced 3NFs only, and about
+6 to +7 e fm2 with initial 3NFs, in reasonable agreement
with the experimental value of +8.472(56) e fm2, given the
fact that the quadrupole moments are not yet converged in
these basis spaces. It will take a major effort to develop robust
extrapolation and error quantification tools for long-range
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FIG. 24. (Color online) Lowest two excited states 8Be as a function of h̄� for each SRG λ value at Nmax = 8. The small black arrows on
the left show the experimental values.
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FIG. 25. (Color online) Lowest excited states 10B as a function of h̄� for each SRG λ value at Nmax = 8. The small black arrows on the
left show the experimental values.

operators, such as quadrupole operators. We therefore defer
a detailed consideration of these operators until those tools are
developed.

For small values of λ, the slowly converging (1+, 0) state
with a small quadrupole moment actually becomes the lowest
state, even with initial 3NFs. It is likely that for this state the
induced four-body (and higher-body) interactions, which have
been omitted in the present calculations, are important, though
without convergence it is hard to draw firm conclusions. It is
also possible that the strong λ dependence is caused by the lack
of convergence and that once convergence (i.e., independence
of both Nmax and h̄�) is reached the results will be much less
dependent on λ.

The other excited states shown in Fig. 25, namely the
(0+, 1) (open symbols) and the (2+, 0) (solid symbols), show
a strong dependence on both λ and h̄� with initial 3NFs.
Clearly, these excitation energies are not very well converged,
but nevertheless we can see that the overall effect of the initial
3NFs is to increase their excitation energy and to separate these
two states from each other, in qualitative agreement with the
data.

A striking difference between Figs. 23 and 24, on the
one hand, and Fig. 25, on the other, is the strong λ and h̄�
dependence of the excitation energies in Fig. 25 [with the
possible exception of one of the two low-lying (1+, 0) states]
compared to the independence of λ and h̄� of the excitation
energies in Figs. 23 and 24. One possible explanation for
this observation is that the excited states in Figs. 23 and 24

can be interpreted as rotational excitations of the ground
state [40]. Thus, these states have a very similar structure and
are therefore likely to exhibit a similar convergence pattern
(i.e. h̄� dependence) and λ dependence. We also see this in
12C, where the lowest 2+ and 4+ states form a rotational band
with the ground state [33], but other low-lying states in 12C
are much more sensitive to the 3NFs and have a different
convergence pattern [37].

Finally, we also calculated the magnetic moments of 7Li,
7Be, and 10B; see Table III. The quoted numerical uncertainty
in Table III includes both the dependence on the basis

TABLE III. Magnetic moments for 7Li, 7Be, and 10B with the
NN + NNN -induced and NN + NNN interactions.

Nucleus state induced NNN Expt.

7Li 3
2

−
3.0(1) 3.0(1) 3.2564

7Li 1
2

− −0.8(1) −0.8(1)
7Li 7

2

−
3.5(2) 3.2(3)

7Be 3
2

− −1.15(5) −1.15(6) −1.399
7Be 1

2

−
1.18(3) 1.22(3)

7Be 7
2

−
0.24–0.56 0.37–1.07

10B 3+ 1.85(1) 1.83(2) 1.8006
10B 1+ 0.84(2) 0.78–0.85 0.63(12)
10B 1+ 0.35(2) 0.34–0.41
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space parameters (i.e., h̄� and Nmax dependence) and the λ
dependence. At Nmax = 8 the magnetic moments are typically
converged to within a few percent, and the influence of the
SRG evolution is less than a few percent, except for the 7

2
−

state of 7Be and the two (1+, 0) states in 10B. A closer look at
the different components contributing to the magnetic moment
of the 7

2
−

state of 7Be shows that the contributions from the
neutron intrinsic spin and from the proton angular momentum
nearly cancel, leaving the proton intrinsic spin contribution
to dominate the magnetic moment, both with and without
initial 3NFs. For the two states in 10B, most of the parameter
dependence of the magnetic moments for these two states is
attributable to (strong) mixing. In general, adding initial 3NFs
to the chiral N3LO NN interaction does not have a significant
effect on these magnetic moments.

These magnetic moments are calculated in impulse ap-
proximation, using the canonical M1 operator. Of course,
we should use a current operator that is consistent with the
chiral Hamiltonian that we are using: For the ground state
of 7Li and 7Be we might expect, based on Refs. [41,42], a
correction owing to meson exchange currents of about 10%,
in the direction that would bring our results toward agreement
with experiment.

V. CONCLUSIONS

We have presented ab initio NCFC calculations of energies
in the p shell using SRG-evolved two- and three-nucleon
forces. Several different procedures were considered to ex-
trapolate energies to infinite HO basis size; for the range in
the evolution parameter λ we focus on (from 1 to 2 fm−1)
they give consistent results within estimated error bars. Error
bars above 2 fm−1 grow rapidly and limit what we can
quantitatively conclude about λ dependence. As anticipated
from results with lighter nuclei, inclusion of induced NNN
interaction significantly reduced the λ dependence of ground-
state energies compared to NN -only calculations for all
nuclei considered. Furthermore, the rapid improvement of
convergence with decreasing λ of ground-state and low-lying
state energies observed for NN -only calculations [14] carries
over when only induced NNN interactions are included.
With initial NNN interactions, ground-state convergence is
similarly improved but some excited states show very different
behavior; see Fig. 25.

With NN + NNN -induced interactions (but without initial
NNN interactions), the net change in total ground-state
energy for nuclei in the p shell was found to be small (and
within extrapolation error bars) between λ = 2.0 fm−1 and
λ = 1.5 fm−1, but systematically decreases (becomes more
bound) as λ decreases to 1.0 fm−1 by about 1 MeV. The A
dependence is small. This additional binding can be attributed
to four- and higher-body forces, which is of natural size (as
implied by EFT power counting) despite the extreme degree
of softening. While this might appear to be a narrow range in
λ, we emphasize that there is significant evolution (e.g., note
that the natural SRG evolution variable s = 1/λ4 increases
by a factor of 16 as λ decreases from 2 to 1 fm−1). When
initial 3NFs are included, a similar pattern is found, but the

decrease is more nucleus dependent and larger by as much
as a factor of 2 (i.e., up to about 2 MeV). This increase in
binding is consistent with the difference in running between
NN + NNN induced and NN + NNN observed for 12C in
Ref. [18] with the same interactions.

Results with 3NFs for higher λ are consistent with small
changes, but the uncertainties after extrapolation are too
large to be definitive. In contrast, Roth et al. found a
steady linear increase in binding from λ above 2.2 fm−1

down to 1.6 fm−1 for 12C [18]. This is not evident in the
systematics of the central values of our extrapolations, but
possible within the estimated error bars. It would be most
helpful to have accurate energy calculations for the initial
Hamiltonian to fully assess the degree of running down to
λ = 2 fm−1. For excited states we also find similar quantitative
differences between NN + NNN -induced and NN + NNN
calculations and for some particular states there are qualitative
differences.

Further investigations are warranted. For example, it will
be important to compare our present results, which use
HO-evolved SRG 3NFs, to forthcoming calculations using the
same initial interactions but evolved in momentum space using
recently developed SRG technology [20]. Further explorations
at low λ will help to map out the quantitative scaling of
induced 4NF contributions. Improved convergence at these
low resolutions motivates searching for simple approximations
to account for these 4NF contributions to the energy and other
observables. Besides additional CI calculations, application
of highly evolved two- and 3NFs may also be fruitful for
coupled-cluster [43] methods, ab initio density functional
theory [44], and NCSM/RGM [5,45–48] calculations of light
nuclear reactions.

Our studies were limited in basis size by the available codes
and computer resources. We anticipate further developments
in improved basis construction and evolution algorithms.
We could also study nonoscillator basis spaces [49,50] and
apply the importance truncation technique [17] to increase
available basis sizes. We look forward to a detailed ex-
trapolation analysis of such results. In addition, a difficulty
encountered here with an insufficient initial A = 3 basis at
smaller h̄� (see Sec. III A) might be circumvented by the
momentum-space evolution technology [20], so that matrix
elements in the oscillator basis are only calculated after
evolution.

We considered only a single initial NN + NNN
Hamiltonian in our analysis. While in past investigations [16]
other choices of initial NN Hamiltonians have displayed no
qualitative difference in the effects of the SRG procedure,
studies with a range of Hamiltonians are highly desirable.
It will also be important to consider consistent operators for
other observables. In this regard, new extrapolation methods
for radii and other long-distance operators may be particularly
valuable [34].

Our results demonstrate a level of precision in induced
many-body force effects that allows further analysis of the
impact of additional χEFT inputs. In all cases presented
here the addition of 3NFs from the initial χEFT Hamiltonian
overbinds the ground states. Our results suggest that the effects
of missing induced forces owing to softening transformations
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are small (at least in larger nuclei) compared to discrepancies
with experiment. These discrepancies may be reduced by
additional 3NF and 4NF contributions at N3LO in the χEFT.
Suitable matrix elements of these terms will be available for
calculations in the near future and it will be important to
incorporate them.
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