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The self-consistent relativistic random-phase approximation (RPA) in the radial coordinate representation
is established by using the finite-amplitude method (FAM). Taking the isoscalar giant monopole resonance in
spherical nuclei as example, the feasibility of the FAM for the covariant density functionals is demonstrated,
and the newly developed methods are verified by the conventional RPA calculations. In the present relativistic
RPA calculations, the effects of the Dirac sea can be automatically taken into account in the coordinate-space
representation. The rearrangement terms due to the density-dependent couplings can be implicitly calculated
without extra computational costs in both iterative and matrix FAM schemes.
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I. INTRODUCTION

The density functional theory (DFT) of Kohn and Sham [1]
has achieved great success in many different fields of modern
physics. No other method achieves comparable accuracy at
the same computational costs. In nuclear physics, the DFT
has been widely used since the 1970s [2]. In particular, its
covariant version in the relativistic framework has received
much attention during the past decades. The covariant density
functional theory (CDFT) [3,4] takes the Lorentz invariance
into account. This covariant framework puts stringent restric-
tions on the number of parameters, achieving a consistent
treatment of the spin degrees of freedom as well as the
unification of the time-even and time-odd components. Over
the years, a large variety of nuclear phenomena have been
described successfully by the CDFT [5–8].

The random-phase approximation (RPA) [9] is one of
the leading theories applicable to both low-lying excited
states and giant resonances. In the relativistic framework, the
self-consistent and quantitative RPA calculations were realized
after recognizing the importance of the Dirac sea [10–16]. It
has been proven that the relativistic RPA is equivalent to the
corresponding time-dependent relativistic mean-field (RMF)
theory in the small amplitude limit, only if the particle-hole
(ph) configurations include not only the pairs formed from
the occupied and unoccupied Fermi states but also the pairs
formed from the Dirac states and occupied Fermi states [12].

From then on, great efforts have been dedicated to devel-
oping the self-consistent RPA approaches in the relativistic
framework [7]. The formalism for the nonlinear meson-
exchange interactions can be traced back to Refs. [17,18]. For
the density-dependent meson-nucleon couplings, the explicit
rearrangement terms in the ph residual interactions have been
derived [19]. The relativistic quasiparticle RPA (QRPA) [20]
has been developed based on the canonical single-nucleon
basis of the relativistic Hartree-Bogoliubov theory for giant
resonances [21–23], pygmy resonances [24–26], and low-lying

vibrational states [27–29]. The relativistic (Q)RPA has also
been extended to the charge-exchange channels [30,31] for
the nuclear spin-isospin resonances [32–36], β-decay rates
[37,38], muon-capture rates [39], and neutrino-nucleus re-
actions [40,41]. In addition, the relativistic RPA with finite
temperature [42,43] and the continuum (Q)RPA [44–47] have
been established. To go beyond the mean field, the particle
vibrational coupling has also been taken into account [48,49].

Recently, a fully self-consistent relativistic RPA [50] has
been established based on the relativistic Hartree-Fock theory
[51–53]. It is shown that not only the Gamow-Teller resonances
but also the fine structure of spin-dipole resonances can
be well reproduced without any readjustment of the energy
functional [50,54]. This self-consistent RPA has also been
applied to evaluate the isospin symmetry-breaking corrections
to the superallowed β transitions for the unitarity test of
Cabibbo-Kobayashi-Maskawa matrix [55]. The corresponding
QRPA [56] based on the relativistic Hartree-Fock-Bogoliubov
theory [57] has been developed and used for a systematic
study of β-decay half-lives of neutron-rich even-even nuclei
with 20 � Z � 50, where the isospin-dependent isoscalar
proton-neutron pairing is found to play a very important role.

However, the above investigations are essentially restricted
within the spherical symmetry. The conventional RPA calcu-
lations in the matrix form face a big computational challenge
when the number Nph of ph configurations becomes huge as in
the deformed cases. So far, the only self-consistent deformed
(Q)RPA in the relativistic framework was developed by Peña
Arteaga et al. [58,59]. Note that, even in the nonrelativistic
framework, the deformed (Q)RPA in the matrix form is
also a hard task. There are a few recent attempts for the
Skyrme energy density functionals in the axially symmetric
case [60–64] and in the triaxial case [65], as well as for the
Gogny energy density functionals in the axial case [66]. The
full three-dimensional calculations have been carried out only
using the real-time methods [67–70].
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As a promising solution for this computational challenge,
the so-called finite-amplitude method (FAM) was proposed
in Ref. [71]. In this method, the effects of residual inter-
actions are evaluated in a numerical way by considering a
finite density deviation around the ground state. In such a
way, the self-consistent RPA calculations become possible
with a little extension of the static Hartree (-Fock) code.
Furthermore, by using the iterative methods for the RPA
equation, the computation time is close to a linear dependence
on Nph, instead of a dependence between N2

ph and N3
ph in

the diagonalization scheme [72]. This advantage is crucial
when Nph becomes huge. In the nonrelativistic framework
with Skyrme energy density functionals, the feasibility, ac-
curacy, and efficiency of FAM have been demonstrated for
the RPA in the three-dimensionally deformed cases in the
coordinate-space representation [71,73,74] and for the QRPA
in the spherical [72,75] and axially deformed [76] cases in
the quasiparticle-basis representation. Iterative algorithms for
(Q)RPA solutions have also been developed recently, based
on the Arnoldi process [77,78] and on the conjugate gradient
method [79]. The readers are also referred to Ref. [80] for a
recent review.

Therefore, it is worthwhile developing the self-consistent
relativistic RPA by using the finite-amplitude method. In
particular, special attention should be paid to the unique
features of covariant density functionals, including the effects
of the Dirac sea and the rearrangement terms for the density-
dependent interactions. These rearrangement terms are usually
more sophisticated than those in the Skyrme functionals
and cause heavy computations [19]. On the other hand, the
covariant density functionals hold the Lorentz invariance,
which leads to the unification of their time-even and time-odd
components. This makes the modification in the ground-state
code straightforward.

In this work, our premier purpose is to verify the feasibility
of the FAM in the CDFT, with special attention to the Dirac
sea and the rearrangement terms. For a basic demonstration,
the self-consistent RPA is established based on the spherical
density-dependent point-coupling RMF theory by using the
FAM.

The paper is organized as follows: In Sec. II, the key
formulas of the density-dependent point-coupling RMF theory
and the corresponding self-consistent RPA, and the formalism
of both iterative and matrix FAM will be presented. In Sec. III,
the numerical details will be shown with the main focus on
the boundary conditions of the X and Y amplitudes in the
coordinate-space representation. In Sec. IV, a benchmark test
will be given and the effects of the box size, Dirac sea,
and rearrangement terms on the isoscalar giant monopole
resonances (ISGMR) will be discussed. Finally, a summary
will be given in Sec. V.

II. THEORETICAL FRAMEWORK

A. Point-coupling relativistic mean-field theory

Successful CDFT can be traced back to the RMF mod-
els introduced by Walecka and Serot [3]. Since then, the
popular RMF models [4–6] are based on the finite-range

meson-exchange representation, in which the nucleus is
described as a system of Dirac nucleons that interact with
each other via the exchange of mesons.

Recently, the CDFT framework has been reinterpreted
by the relativistic Kohn-Sham scheme, and the functionals
have been developed based on the zero-range point-coupling
interactions [81]. In this framework, the meson exchange in
each channel is replaced by the corresponding local four-point
contact interaction between nucleons. Such a point-coupling
model has attracted more and more attention during the
past years due to its simplicity and several other advantages
[8,82–91]. In particular, for the present study, by directly
expressing the mean-field potentials in terms of nucleon
densities and currents, the FAM can be applied in a more
straightforward way.

In this section, we recapitulate the key formulas of the
point-coupling RMF theory for the FAM calculations; in
particular, those related to the currents and space-component
of the Coulomb field.

The effective Lagrangian density of the density-dependent
point-coupling RMF theory reads [83]

L = ψ̄(iγ μ∂μ − M)ψ − 1

2
αS(ψ̄ψ)(ψ̄ψ)

− 1

2
δS(∂νψ̄ψ)(∂νψ̄ψ) − 1

2
αV (ψ̄γ μψ)(ψ̄γμψ)

− 1

2
αtV (ψ̄ �τγ μψ) · (ψ̄ �τγμψ)

− eψ̄γ μAμ

(1 − τ3)

2
ψ − 1

4
FμνFμν, (1)

where M is the nucleon mass, and the field tensor for photons
reads Fμν = ∂μAν − ∂νAμ. While the coupling parameter
δS is a constant, the coupling strengths of the four-nucleon
interactions in the scalar (S), vector (V ), and isovector-vector
(tV ) channels are analytical functions with respect to the
baryonic density ρb,

αS(ρb) = aS + (bS + cSx)e−dSx, (2a)

αV (ρb) = aV + bV e−dV x, (2b)

αtV (ρb) = btV e−dtV x, (2c)

with x = ρb/ρsat, where ρsat denotes the saturation density of
symmetric nuclear matter.

In this paper, the vectors in coordinate space are denoted by
bold type, and vectors in isospin space are denoted by arrows.
Greek indices μ, ν run over the Minkowski indices 0, 1, 2, and
3.

The effective Hamiltonian H can be obtained with the
general Legendre transformation. Together with the trial
ground state |�0〉 as a Slater determinant, as well as the
Hartree and no-sea approximations, the energy functional can
be written as

E = 〈�0|H |�0〉 = Ek + ES + EV + EtV + EA, (3)

where the first term is the kinetic energy, and the others
correspond to contributions from the scalar, vector, and
isovector-vector channels and the Coulomb field, respectively.
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The Dirac equation for nucleons,

h|ψα〉 = εα|ψα〉, (4)

is then obtained by the variation principle. The one-body mean-
field Hamiltonian h is composed of the kinetic term hk , the
scalar hS , vector hV , isovector-vector htV , and Coulomb hA

terms, i.e.,

hk = −iα · ∇ + γ 0M, (5a)

hS = γ 0(αSρS + δS�ρS), (5b)

hV = γ 0γμαV j
μ
V , (5c)

htV = γ 0γμαtV �τ · �jμ
tV , (5d)

hA = eγ 0γμ

(1 − τ3)

2
Aμ, (5e)

together with the additional rearrangement term due to the
density-dependent coupling strengths,

hR = 1

2

{
∂αS

∂ρb

ρ2
S + ∂αV

∂ρb

j
μ
V jV μ + ∂αtV

∂ρb

�jμ
tV · �jtV μ

}
. (6)

In the above expressions, ρS , j
μ
V , �jμ

tV , and Aμ are the scalar
density, the isoscalar and isovector four-currents, and the
Coulomb field, respectively. The nuclear baryonic density
ρb corresponds to the time component of the isoscalar four-
current j 0

V .
It is worthwhile emphasizing here that the space-

components of the four-currents and the Coulomb field must
be kept explicitly for the following applications of FAM, even
though, in general, they vanish in the ground state of systems
with the time-reversal symmetry; e.g., even-even nuclei.

For systems with spherical symmetry, the single-particle
wave functions have the form

ψα(r) = 1

r

{
iGa(r)

Fa(r)σ̂ · r̂

}
Ya(r̂)χ 1

2
(qa), (7)

where Y la
jama

(r̂) are the spherical harmonic spinors and
χ 1

2
(qa) are the isospinors. The single-particle eigenstates are

specified by the set of quantum numbers α = (a,ma) =
(qa, na, la, ja,ma), and the good quantum number κa =
∓(ja + 1/2) for ja = la ± 1/2. Within this phase convention
between the upper and lower components, the wave functions
G(r) and F (r) can be simultaneously chosen as real functions
for the ground-state descriptions. In contrast, for the FAM built
beyond, both G(r) and F (r) become complex functions, so
one should be careful to distinguish them from their complex
conjugates G∗(r) and F ∗(r) from the very beginning.

The radial Dirac equation reads

(
M + �S(r) + �0(r) − d

dr
+ κa

r
+ �V (r)

d
dr

+ κa

r
− �V (r) −M − �S(r) + �0(r)

) (
Ga(r)

Fa(r)

)

= εa

(
Ga(r)

Fa(r)

)
, (8)

with the scalar and vector potentials

�S(r) = αSρS(r) + δS

(
ρ ′′

S (r) + 2

r
ρ ′

S(r)

)
, (9a)

�0(r) = αV ρV (r) + αtV ρtV (r)τ3 + e
1 − τ3

2
A0(r) + �R(r),

(9b)

�V (r) = αV jV (r) + αtV jtV (r)τ3 + e
1 − τ3

2
AV (r). (9c)

The rearrangement terms only contribute to the time-
component of the vector potential, which reads

�R(r) = 1

2

{
∂αS

∂ρb

ρ2
S(r) + ∂αV

∂ρb

[
ρ2

V (r) + j 2
V (r)

]
+ ∂αtV

∂ρb

[
ρ2

tV (r) + j 2
tV (r)

]}
. (10)

The densities and currents are expressed as

ρ
(qa )
S = 1

4πr2

qa∑
ĵ 2
a [G∗

a(r)Ga(r) − F ∗
a (r)Fa(r)], (11a)

ρ
(qa )
V = 1

4πr2

qa∑
ĵ 2
a [G∗

a(r)Ga(r) + F ∗
a (r)Fa(r)], (11b)

j
(qa )
V = 1

4πr2

qa∑
ĵ 2
a [G∗

a(r)Fa(r) − F ∗
a (r)Ga(r)], (11c)

with ĵ 2
a = 2ja + 1. The isoscalar densities and currents are

the sum of the neutron and proton contributions, while the
isovector ones are the difference between the neutron and
proton contributions. The Coulomb fields are calculated with
the Green’s function method, i.e.,

A0(r) = e

∫
dr ′r ′2ρ(p)

V (r ′)
1

r>

, (12a)

AV (r) = e

3

∫
dr ′r ′2j (p)

V (r ′)
r<

r2
>

, (12b)

where r> ≡ max{r, r ′} and r< ≡ min{r, r ′}.

B. Linear response and random-phase approximation

The RPA equation is known to be equivalent to the time-
dependent Hartree (-Fock) equation in the small-amplitude
limit [9]. In order to make the FAM clear in the next section, we
first briefly recall the derivation of the standard RPA equation
by following the notations in Ref. [71].

The static Hartree or Hartree-Fock equation,

[h[ρ], ρ] = 0, (13)

determines the ground-state density ρ = ρ0 satisfying ρ2 = ρ,
and the one-body mean-field Hamiltonian h0 = h[ρ0].

When a time-dependent external perturbation Vext(t) is
present, the density deviation δρ(t) ≡ ρ(t) − ρ0 obeys

i
d

dt
δρ(t) = [h0, δρ(t)] + [δh(t) + Vext(t), ρ0] (14)
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as a linear response to the weak perturbation. In the frequency
representation, the above equation is expressed as

ωδρ(ω) = [h0, δρ(ω)] + [δh(ω) + Vext(ω), ρ0]. (15)

In practical calculations, it is convenient to adopt the single-
particle (Kohn-Sham) orbitals to represent the density matrix,

ρ(t) =
A∑

i=1

|ψi(t)〉〈ψi(t)|. (16)

As a result, the density deviation in the frequency
representation can be expressed as

δρ(ω) =
A∑

i=1

{|Xi(ω)〉〈φi | + |φi〉〈Yi(ω)|}, (17)

with the so-called forward X(ω) and backward Y (ω) ampli-
tudes and the occupied eigenstates {|φi〉} of h0 in Eq. (4). It is
slightly tricky that one must take the ket |Xi(ω)〉 and bra 〈Yi(ω)|
states independently, since δρ(ω) is not Hermitian. But this
point is, in fact, well known as the solutions of the RPA equa-
tion shown below. Hereafter, |φa〉 represent the eigenstates of
h0, and indices i, j (m, n) run over the hole (particle) states.

By expanding the X(ω) and Y (ω) amplitudes on the basis
of particle states,

|Xi(ω)〉 =
∑
m>A

|φm〉Xmi(ω), (18a)

|Yi(ω)〉 =
∑
m>A

|φm〉Y ∗
mi(ω), (18b)

one can derive the well-known RPA equation in matrix form:{(
Ami,nj Bmi,nj

B∗
mi,nj A∗

mi,nj

)
− ω

(
1 0

0 −1

)} (
Xnj (ω)

Ynj (ω)

)

= −
(

fmi(ω)

gmi(ω)

)
. (19)

The RPA matrices A and B and vectors �f and �g read

Ami,nj = (εm − εi)δmnδij + 〈φm| ∂h

∂ρnj

∣∣∣∣
ρ=ρ0

|φi〉

= (εm − εi)δmnδij + 〈φmφj |Vph|φnφi〉, (20a)

Bmi,nj = 〈φm| ∂h

∂ρjn

∣∣∣∣
ρ=ρ0

|φi〉 = 〈φmφn|Vph|φjφi〉, (20b)

fmi = 〈φm|Vext(ω)|φi〉, gmi = 〈φi |Vext(ω)|φm〉.
(20c)

For the self-consistent RPA calculations [9], the particle-
hole residual interactions Vph should be strictly derived from
the second derivative of the energy functional E shown in
Eq. (3). The ph residual interactions for the point-coupling
RMF theory with nonlinear couplings can be found in
Ref. [92]. In contrast, the density dependence in the coupling
strengths α introduces additional rearrangement terms in Vph

[19]. Explicitly, the ph residual interactions are composed of

V S
ph(1, 2) =

{
αS[γ 0]1[γ 0]2 + ∂αS

∂ρb

ρS([γ 0]1[I]2 + [I]1[γ 0]2)

+ 1

2

∂2αS

∂ρ2
b

ρ2
S[I]1[I]2 − δS[γ 0∇]1 · [γ 0∇]2

}
× δ(r1 − r2), (21a)

V V
ph(1, 2) =

{
αV [γ 0γ μ]1[γ 0γμ]2 + 2

∂αV

∂ρb

ρV [I]1[I]2

+ 1

2

∂2αV

∂ρ2
b

ρ2
V [I]1[I]2

}
δ(r1 − r2), (21b)

V tV
ph (1, 2) =

{
αtV [γ 0γ μ�τ ]1 · [γ 0γμ�τ ]2

+ ∂αtV

∂ρb

ρtV ([τ3]1[I]2 + [I]1[τ3]2)

+1

2

∂2αtV

∂ρ2
b

ρ2
tV [I]1[I]2

}
δ(r1 − r2), (21c)

V A
ph(1, 2) = e2

4π

[
γ 0γ μ 1 − τ3

2

]
1

[
γ 0γμ

1 − τ3

2

]
2

1

|r1 − r2| ,
(21d)

where I denotes the 4 × 4 unit matrix. The rearrangement
terms correspond to those containing ∂α/∂ρb or ∂2α/∂ρ2

b . They
are calculated term by term separately in the conventional RPA
calculations.

Meanwhile, it is also important to emphasize the effects
of the Dirac sea. The relativistic RPA is equivalent to the
time-dependent RMF theory in the small-amplitude limit, only
when the particle states m, n include not only the states above
the Fermi surface but also the states in the Dirac sea [12].
It is due to the no-sea approximation used in the ground-
state calculations. In other words, the ensemble of all these
unoccupied states together provides a complete basis set for
particle states.

C. Iterative finite-amplitude method

In Ref. [71], the FAM was proposed as a simpler and
more efficient approach to the solutions of the linear response
equation (15). This method does not require explicit evaluation
of the residual interactions δh/δρ as in Eq. (20). Instead, by
multiplying with the ket |φi〉 and bra 〈φi | of only hole states
on both sides of Eq. (15), respectively, one has

ω |Xi(ω)〉 = (h0 − εi) |Xi(ω)〉 + Q̂(Vext(ω) + δh(ω)) |φi〉 ,

(22a)

ω∗ |Yi(ω)〉 = −(h0 − εi) |Yi(ω)〉 − Q̂(V †
ext(ω) + δh†(ω)) |φi〉,

(22b)

where Q̂ = 1 − ∑
j |φj 〉〈φj | is a projection operator onto the

particle space.
The induced fields δh(ω) and δh†(ω) shown above are

calculated by using the following finite difference with a
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sufficiently small number η:

δh(ω) = 1

η
(h[〈ψ ′|, |ψ〉] − h[〈φ|, |φ〉]), (23)

with 〈ψ ′
i | = 〈φi | + η〈Yi(ω)| and |ψi〉 = |φi〉 + η|Xi(ω)〉, and

δh†(ω) = 1

η
(h[〈ψ ′|, |ψ〉] − h[〈φ|, |φ〉]), (24)

with 〈ψ ′
i | = 〈φi | + η〈Xi(ω)| and |ψi〉 = |φi〉 + η|Yi(ω)〉.

For the present calculations with spherical symmetry, it is
convenient to rewrite Eq. (22) in coordinate space. Assuming
the monopole perturbation,

Vext(r, ω) = Vext(r, ω)Y00(r̂), (25a)

Xi(r) = Xi(r)Y00(r̂), (25b)

Yi(r) = Yi(r)Y00(r̂), (25c)

the corresponding radial FAM equations read

Q̂ [(h0(r) − εi − ω)Xi(r, ω) + δh(r, ω)φi(r)]

= −Q̂Vext(r, ω)φi(r), (26a)

Q̂[(h0(r) − εi + ω∗)Yi(r, ω) + δh†(r, ω)φi(r)]∗

= −Q̂[V †
ext(r, ω)φi(r)]∗. (26b)

In the relativistic framework, h(r) is a 2 × 2 matrix as shown
in the radial Dirac equation (8), and φi(r) = (Gi(r)Fi(r))T .
Therefore, the X and Y amplitudes are also composed of the
upper and lower components,

Xi(r) =
(

XGi(r)
XFi(r)

)
, Yi(r) =

(
YGi(r)
YFi(r)

)
. (27)

As emphasized in the previous section, the effects of the
Dirac sea must be taken into account, which is expressed in an
explicit way in the conventional expansions (18). In contrast,
here the X and Y amplitudes are expanded on the mesh points
{rk} in coordinate space. In such a way, on one hand, the effects
of the Dirac sea cannot be identified or isolated; on the other
hand, from the mathematical point of view, the coordinate
space

∑
r |r〉〈r| − ∑

j |φj 〉〈φj |, can also provide a complete
basis set for particle states.

The induced fields δh(r) and δh†(r) are evaluated by using
Eqs. (23) and (24). The procedure in practice is as follows: with
a given set of {Xi(r)} and {Yi(r)}, one calculates the nucleon
densities and currents [Eq. (11)], new coupling strengths
[Eq. (2)], Coulomb fields [Eq. (12)], rearrangement self-energy
[Eq. (10)], scalar and vector potentials [Eq. (9)], and then the
one-body Hamiltonian h(r) [Eq. (8)], sequentially. Since now
the X(r) and Y (r) amplitudes are independent because of the
non-Hermitian nature of δh(r) and δh†(r), it is clear that the
nucleon currents are no longer vanishing. This is the reason
why these time-odd terms must be kept from the beginning.

In order to include both the normal and rearrangement
terms in the ph residual interactions as explicitly shown in
Eq. (21), one simply needs to recalculate the coupling strengths
α appearing in Eq. (9) and their derivatives ∂α/∂ρb in Eq. (10)
by using Eq. (2) for each given set of {Xi(r)} and {Yi(r)}. If one
skips this step, i.e., keeps α and ∂α/∂ρb always unchanged,
the consequence is that the normal terms in Vph remain, but
all of the rearrangement terms are neglected.

This FAM equation is a standard linear algebraic equation
of the form, A�x = �b, which can be solved within the iterative
scheme. In such a way, we do not need to construct the
matrix elements of A explicitly, but only to evaluate A�x for
a given vector �x. In the following, we denote this iterative
finite-amplitude method as i-FAM.

Adopting the ω-independent local external field
Vext(r, ω) = O(r), the corresponding transition strengths can
be calculated with the solutions of Eq. (26) as

dB(ω; O)

dω
≡

∑
n

|〈�n|O|�0〉|2δ(ω − En)

= − 1

π
Im

∑
i

ĵ 2
i

∫
dr{φ†

i (r)O†(r)Xi(r, ω)

+Y
†
i (r, ω)O†(r)φi(r)}. (28)

D. Matrix finite-amplitude method

We introduce another usage of the FAM: the so-called
matrix finite-amplitude method (m-FAM) shown in Ref. [72].
In this method, the RPA matrices A and B are explicitly
constructed, but the tedious calculations concerning the ph
residual interactions Vph in Eqs. (20) and (21) can be
avoided.

First of all, both the occupied and unoccupied eigenstates
of h0, {|φi〉} and {|φm〉}, are calculated at the ground state.
Then, instead of dealing with Vph, the kernels ∂h/∂ρ in
Eq. (20) are directly calculated with finite difference provided
the real parameter η is small enough to neglect the higher-order
terms; i.e.,

∂h

∂ρnj

∣∣∣∣
ρ=ρ0

= 1

η
(h[〈ψ ′|, |ψ〉] − h[〈φ| , |φ〉]). (29)

The key point here is to keep all 〈ψ ′
i | = 〈φi | and |ψi〉 = |φi〉

unchanged, except for the specific orbital j which slightly
mixes with another specific orbital n as |ψj 〉 = |φj 〉 + η|φn〉.
In the same way,

∂h

∂ρjn

∣∣∣∣
ρ=ρ0

= 1

η
(h[〈ψ ′|, |ψ〉] − h[〈φ| , |φ〉]), (30)

by keeping all 〈ψ ′
i | = 〈φi | and |ψi〉 = |φi〉 unchanged, but

slightly mixing specific orbitals j with n as 〈ψ ′
j | = 〈φj | +

η〈φn|.
To include the effects of the Dirac sea, states n run over the

unoccupied states in both the Fermi and Dirac sea. To include
the effects of the rearrangement terms, one follows the same
procedure as that in i-FAM shown above.

III. NUMERICAL DETAILS

For all the calculations in this paper, the density-dependent
point-coupling RMF parametrization DD-PC1 [83] is used and
spherical symmetry is assumed. For the ground-state calcula-
tions, the radial Dirac equation (8) is solved in coordinate space
by the fourth-order Runge-Kutta method, also known as the
shooting method, within a spherical box with a box radius R
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and a mesh size dr [93]. The mesh size is fixed as dr = 0.1 fm,
while the choice of box size R will be discussed below.

For the conventional RPA and m-FAM calculations, the
single-particle energy truncation for constructing the RPA
matrices A and B in Eq. (19) is [−M, M + 200 MeV], i.e.,
all the bound states in the Dirac sea are taken into account. As
an example, the corresponding number of ph configurations
Nph for Jπ = 0+ excitations in 208Pb is 1355 with R =
25 fm, where 524 of them are formed with the particle states
in the Dirac sea. The convergency of this truncation has been
examined. The subroutine rg.f in the EISPACK library is used
to diagonalize the nonsymmetric real RPA matrix. In m-FAM,
the parameter η is taken as η = 10−2.

For the i-FAM calculations, the frequency ω = E + i�/2
contains an imaginary part, and the corresponding Lorentzian-
smearing parameter is � = 1 MeV. The first derivative of
{Xi(r)} and {Yi(r)} with respective to r is performed by the
nine-point formula with the boundary conditions discussed
below. The parameter η differs for every iteration to ensure the
linearity [71,73]:

η = 10−6

max{N (X), N(Y )} , N (ψ) = 1

A

√√√√ A∑
i=1

〈ψi |ψi〉. (31)

The truncated version of the generalized conjugate residual
(GCR) method [94], also called the ORTHOMIN method, is
used as the iterative solver, where at maximum 1000 iterations
are stored. The convergent criterion is ||A�x − �b||2/||�b||2 <
10−6, which provides the relative accuracy 10−3 for the
transition strengths.

A. Boundary conditions

Before further discussions, it is worthwhile examining the
boundary conditions of the X and Y amplitudes (27) in the
coordinate-space representation. It turns out somehow tricky
since these amplitudes contain two components instead of one
as in the nonrelativistic case.

The boundary conditions for the ground-state radial Dirac
equation (8) used in the shooting method are following [93]:
(i) At the origin point, G(r)|r=0 = F (r)|r=0 = 0. (ii) At small
distance r → 0, G(r) ∝ r−κ , F (r) ∝ r1−κ for κ < 0 and
G(r) ∝ r1+κ , F (r) ∝ rκ for κ > 0. (iii) At the box boundary,
G(r)|r=R = 0, but F (r)|r=R must have a nonvanishing value,
otherwise the whole wave function will be identically zero.
The value of F (r)|r=R is eventually determined by the
normalization condition.

Accordingly, the consistent boundary conditions of X(r)
and Y (r) used in i-FAM include: (i) At the origin point,
XG(r)|r=0 = XF (r)|r=0 = YG(r)|r=0 = YF (r)|r=0 = 0. (ii) At
small distance r → 0, XG(r), YG(r) are odd functions
and XF (r), YF (r) are even functions for even l, while
XG(r), YG(r) are even functions and XF (r), YF (r) are odd
functions for odd l. (iii) The remaining but critical point is
the boundary conditions at the box boundary r = R. In addi-
tion, outside the box, XG(r)|r>R = XF (r)|r>R = YG(r)|r>R =
YF (r)|r>R = 0, since it is an area out of consideration.

FIG. 1. (Color online) The J π = 0+ unperturbed excitation
strengths in 16O calculated by the matrix finite-amplitude method
(m-FAM) (solid line) with R = 20 fm and dr = 0.1 fm. The
corresponding results calculated by the iterative finite-amplitude
method (i-FAM) with different box boundary conditions are shown
by the short-dotted, dash-dotted, and dashed lines, respectively. A
Lorentzian-smearing parameter � = 1 MeV is used.

In order to verify the boundary conditions at r = R, in
Fig. 1, we show with the solid line the Jπ = 0+ unperturbed
excitation strengths in 16O calculated by m-FAM with a box
radius R = 20 fm and a mesh size dr = 0.1 fm. In m-FAM, the
particle states {φm(r)} correspond to the eigenstates of h0(r)
with the boundary conditions used in the shooting method.
Naturally, these boundary conditions are consistent with the
ground-state description.

In the same figure, the corresponding results calcu-
lated by i-FAM with different boundary conditions of X(r)
and Y (r) at r = R are shown for comparison. The re-
sults obtained by constraining XG(r)|r=R = XF (r)|r=R =
YG(r)|r=R = YF (r)|r=R = 0 are shown with the dash-dotted
line, those obtained by constraining only XG(r)|r=R =
YG(r)|r=R = 0 are shown with the short-dotted line, and those
obtained without any constraint at r = R are shown with the
dashed line. The tiny difference between the dash-dotted and
dashed lines shows the effect of changing the box size by one
mesh point dr , but the visible difference between the short-
dotted line and the other two is due to the different prescriptions
for the upper and lower components at the same position. It
can be clearly seen that only the short-dotted one with proper
boundary conditions is identical to the m-FAM result.

Therefore, the consistent boundary conditions around r =
R for the X(r) and Y (r) amplitudes in the i-FAM calculations
read

XG(r)|r�R = XF (r)|r>R = YG(r)|r�R = YF (r)|r>R = 0.

(32)

IV. RESULTS AND DISCUSSION

In the following discussions, we take the stable and
radioactive neutron-rich doubly magic nuclei, 208Pb and 132Sn,
as examples. It has been shown that the RMF theory can
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FIG. 2. (Color online) Isoscalar giant monopole resonance (IS-
GMR) in 208Pb calculated by m-FAM (solid line) and conventional
RPA (short-dash-dotted line). A Lorentzian-smearing parameter � =
1 MeV is used.

in general nicely reproduce the corresponding ground-state
properties (see, e.g., Ref. [95]).

A. Benchmark tests

In order to verify the newly developed FAM codes, bench-
mark tests have been performed together with the conventional
RPA code. The transition strengths of the ISGMR in 208Pb
calculated by m-FAM is compared with the conventional RPA
results in Fig. 2, where all of the common numerical parame-
ters are the same, including R = 25 fm, dr = 0.1 fm, single-
particle energy truncation [−M, M + 200 MeV], and � =
1 MeV. One can barely distinguish these two lines in the figure.

Although we do not show one by one, we have also
performed the conventional RPA calculations for the cases
without Dirac sea or without rearrangement terms discussed
below. It is found that all of these results are identical to those
by the i-FAM and m-FAM calculations. This demonstrates the
feasibility and accuracy of the present FAM codes.

B. Box size

In Fig. 3, the transition strengths of ISGMR in 208Pb and
132Sn calculated by m-FAM with box sizes R = 20, 25, 30,
35 fm are shown with the dashed, solid, dotted, and dash-dotted
lines, respectively. It is shown that the detailed shapes of the
resonances change with R to some extent. Nevertheless, one
of the most important properties, the centroid energy m1/m0,
does not depend on R up to the digit of 0.01 MeV. Integrating
the excitation energy from 5 to 25 MeV, the centroid energies
in 208Pb and 132Sn are 14.33 and 16.28 MeV, respectively. The
experimental data in 208Pb, m1/m0 = 13.96 ± 0.20 MeV [96],
can be well reproduced. In the following calculations, the box
size R = 25 fm and the mesh size dr = 0.1 fm are used.

C. Effects of Dirac sea

Comparing with the nonrelativistic FAM, it is interesting to
investigate the effects of the Dirac sea in the relativistic FAM

FIG. 3. (Color online) ISGMR in (a) 208Pb and (b) 132Sn calcu-
lated by m-FAM with different box sizes R. The results calculated
with R = 20, 25, 30, 35 fm are shown by the dashed, solid, dotted,
and dash-dotted lines, respectively. The experimental centroid energy
in 208Pb [96] is denoted by the arrow.

calculations; in particular, for those using the coordinate-space
representation.

The effects of the Dirac sea can be explicitly identified
in the m-FAM calculations. In Fig. 4, the transition strengths
of ISGMR in 208Pb and 132Sn calculated with and without
the Dirac sea are compared. The results including the con-
figurations formed from the occupied states in the Fermi sea
and unoccupied negative-energy states in the Dirac sea are
shown by the solid line, while the results excluding these
configurations are shown by the dashed line. It is found that
the effect of the Dirac sea on the centroid energies m1/m0 of
ISGMR in 208Pb and 132Sn are as much as 4.00 and 4.26 MeV,
respectively. This substantial influence is due to the strong
coupling between the Fermi sea and Dirac sea in the scalar
channel [12]. The experimental data [96] is reproduced only
when the Dirac sea is taken into account.

In the coordinate-space representation as in i-FAM, one
can identify no other single-particle eigenstates but only the
occupied states in the Fermi sea. Just from the mathematical
point of view, the coordinate space should generate another
complete basis set for particle states. In Fig. 4, we also plot
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FIG. 4. (Color online) ISGMR in (a) 208Pb and (b) 132Sn calcu-
lated by i-FAM and m-FAM. The i-FAM results are shown by the dot-
ted symbols, while the m-FAM results calculated with and without the
Dirac sea are shown by the solid and dashed lines, respectively. The
experimental centroid energy in 208Pb [96] is denoted by the arrow.

the corresponding i-FAM results with the dotted symbols by
taking the energy spacing �E = 0.1 MeV. It can be clearly
seen that the i-FAM results are exactly on top of the m-FAM
results that include the Dirac sea. This confirms that these two
different basis sets are both complete and these two methods
are equivalent. This also demonstrates that the existence of
Dirac sea does not introduce additional difficulties for the
present iterative method in the relativistic scheme, while the
only price to pay is that the total dimension of the i-FAM
equations (26) is now as twice the nonrelativistic counterpart.

D. Effects of rearrangement terms

It is tedious to calculate the contributions of the rear-
rangement terms in Vph to the RPA matrix elements in
the conventional calculations. From Eq. (21), one can see
that, for one normal term in each channel, there are up
to three rearrangement terms accompanied. In fact, in the
meson-exchange picture, this number increases to six, as
shown in Ref. [19]. Even worse, in the RPA based on

FIG. 5. (Color online) ISGMR in (a) 208Pb and (b) 132Sn cal-
culated by i-FAM and m-FAM. The i-FAM results without the
rearrangement terms are shown by the dotted symbols, while the
m-FAM results calculated with and without the rearrangement terms
are shown by the solid and dash-dotted lines, respectively.

the density-dependent relativistic Hartree-Fock theory, the
number of rearrangement terms accompanied can be ∼102 as
a result of an additional summation over the occupied orbitals
due to the nonlocality of the self-energies [97].

In contrast, as illustrated in Secs. II C and II D, the effects
of the rearrangement terms can be simply taken into account
in FAM by recalculating the coupling strengths α in Eq. (9)
and their derivatives ∂α/∂ρb in Eq. (10) with Eq. (2) for each
given set of 〈ψ ′| and |ψ〉. The numerical cost of such a step is
totally negligible, thus this method is extremely efficient.

In Fig. 5, the transition strengths of ISGMR in 208Pb
and 132Sn calculated by m-FAM with and without the re-
arrangement terms are shown by the solid and dash-dotted
lines, respectively. Around the main-peak region, by taking
�E = 0.1 MeV, the i-FAM results calculated without the
rearrangement terms are also shown with the dotted symbols
for comparison. The equivalency of these two finite-amplitude
methods is illustrated once more, since the rearrangement
terms can be switched on or off in the same way. Quantitatively,
it is found that the rearrangement effects on the centroid
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energies m1/m0 of ISGMR in 208Pb and 132Sn are 0.53 and
0.26 MeV, respectively, which are also substantial.

V. SUMMARY

Based on the spherical density-dependent point-coupling
RMF theory, the self-consistent relativistic RPA approaches
have been established by using the finite-amplitude method,
where the i-FAM and m-FAM schemes are employed, respec-
tively.

For the FAM coding and calculations, the time-odd com-
ponents of the functional, i.e., the nucleon currents and
the space component of the Coulomb field, must be kept
explicitly. In the present covariant density functional, these
time-odd components have the same coupling strengths as
the corresponding time-even components due to the Lorentz
symmetry. This makes the extension of FAM straightforward.
Another key point for the FAM coding is the difference
between the single-particle wave functions and their Hermitian
conjugates. The formulas related to these key points are shown
in Sec. II in detail.

By taking the ISGMR in 208Pb and 132Sn as examples, the
newly developed methods are verified by the conventional RPA
calculations. It is also found that, although the detailed shapes
of the resonances depend on the box size R to some extent,
the calculated centroid energies m1/m0 are precise up to
0.01 MeV. The experimental data for 208Pb is well reproduced.

For the effects of the Dirac sea, it is confirmed that
the ph configurations concerning the particle states in the
Dirac sea must be included explicitly in the m-FAM scheme.

On the other hand, such effects can be automatically taken
into account in the coordinate-space representation as in the
i-FAM scheme, because the coordinate space,

∑
r |r〉〈r| −∑

j |φj 〉〈φj |, provides an equivalent complete basis set for
particle states. For the rearrangement terms, instead of being
calculated term by term in the conventional RPA, they can be
implicitly calculated without extra computational costs in both
i-FAM and m-FAM schemes. One simply needs to recalculate
the coupling strengths α and their derivatives ∂α/∂ρb for each
given set of 〈ψ ′| and |ψ〉.

In conclusion, the feasibility of the FAM for the covariant
density functionals has been demonstrated, and the advantages
of treating the Dirac sea and rearrangement terms in the
relativistic RPA have been presented. This opens a new door for
developing the self-consistent relativistic RPA for deformed
nuclei.
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