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Microscopic study of tetrahedrally symmetric nuclei by an angular-momentum
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We study the properties of the nuclear rotational excitations with hypothetical tetrahedral symmetry by
employing the microscopic mean-field and residual-interaction Hamiltonians with angular-momentum and parity
projection method; we focus on the deformed nuclei with tetrahedral doubly closed shell configurations. We find
that for pure tetrahedral deformation the obtained excitation patterns satisfy the characteristic features predicted
by group-representation theory applied to the tetrahedral symmetry group. We find that a gradual transition
from the approximately linear to the characteristic rigid-rotor, parabolic energy-vs.-spin dependence occurs as
a function of the tetrahedral deformation parameter. The form of this transition is compared with the similar
well-known transition in the case of quadrupole deformation.
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I. INTRODUCTION

Symmetries play an important role in physics, often serving
as guidelines in studying characteristic features of motion
of quantum systems. In particular, in nuclear physics, the
spatial symmetries of the nuclear mean-field potential are
crucial in determining both the properties of the independent
particle motion and of the nuclear stability. The best known,
the spherical symmetry of the potential, implies the high
degeneracy of the single-particle level energies, the so-called
magnetic degeneracy, (2j + 1), of the orbitals characterized
by the spherical-shell angular-momentum quantum number,
j , and leads to the well-known spherical magic numbers in
nuclei. The spontaneous breaking of the spherical symmetry
arises when the energies of the spherical configuration of the
system with certain particle numbers are higher as compared to
the energies of the alternative nonspherical spatial distribution
of nucleons, the mechanism to which the Pauli exclusion
principle contributes importantly. The spherical symmetry
breaking removes the (2j + 1) degeneracy and leads to the
deformed single-particle orbital scheme [1,2].

More generally, nuclei which are not spherical may acquire
the forms governed by the point-group symmetries, some
being more likely than the others—depending on the actual
number of nucleons. In this context, it has been suggested,
cf. Ref. [3] and references therein, that each symmetry group
‘sufficiently rich’ in terms of symmetry elements may lead
to its proper scheme of magic numbers, which in turn can
be seen as characterising such a symmetry group from the
point of view of realistic realisations of the nuclear mean-field
theories. In particular, a series of earlier publications related
to point-group symmetries focused on the tetrahedral and
octahedral symmetry groups which are the only ones that lead
to an extra (fourfold) degeneracy of single-nucleonic levels in
deformed nuclei and to an increased nuclear stability. In other
words, the tetrahedral and octahedral symmetries are the only
ones within which both the fourfold degeneracy (‘unusual’

case) appears for some levels and the twofold degeneracy
(‘usual’ case) appears for some other levels. This should
be compared to the habitual twofold (Kramers) degeneracy
associated with all the levels known in all other deformed
nuclei as, e.g., in the case of the quadrupole deformation,
see, e.g., Ref. [3]. In fact, the symmetry-implied large shell
gaps occur at some specific nucleon numbers and they can be
comparable to the spherical shell gaps. The tetrahedral magic
numbers, Nt and Zt , for the neutrons and protons, respectively,
are [4] Nt or Zt = 16, 20, 32, 40, 56, 68–70, 90–94, 112, and
136/142.

The possibility that tetrahedral symmetry is present in
atomic nuclei has been discussed as early as in the 1970s
for 16O in relation to the hypothetical four α-cluster structure
[5–8]. Calculations employing the microscopic-macroscopic
method [9] or the Skyrme Hartree-Fock (HFB) method
[10–12] suggested that, in heavier nuclei, the tetrahedral
shapes may appear in low-lying excited or even in the ground
states for specific nucleon numbers; see, e.g., Refs. [13–16]
for more recent works. It is, therefore, both timely and
interesting to employ the well-established methods of the
theory of nuclear structure in an attempt of examining the
leading features of the excitation spectra of collective motion
associated with of the tetrahedral shape.

In this article we focus on certain properties of nuclear rota-
tional bands in tetrahedrally deformed nuclei using advanced
microscopic techniques which employ the angular-momentum
and particle-number projection methods. Although the meth-
ods of performing the projections are straightforward and well
known [2,17], their numerical realization is a nontrivial task,
especially for the nonaxially symmetric and non-time-reversal
invariant systems described using the cranking approximation
(see, e.g., Refs. [18,19]). We have developed an efficient
method to perform the projection from general and realistic
mean-field wave functions calculated with large number of
basis states [20]. Characteristic features of our method which
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have an important impact on an increased efficiency in the
numerical realisation of the algorithm can be summarized
as follows: (a) An efficient truncation scheme using the
information about the occupation probabilities in the canonical
basis; (b) The full use of the Thouless amplitude with respect
to a Slater determinant state in place of the generalized
Bogoliubov amplitudes; (c) Avoiding the sign problem for
the norm overlap in terms of the Pfaffians [21] with using the
Thouless amplitude.

The tetrahedral-symmetry nuclear states have not been so
far identified in nature. In order to facilitate the associated
experimental research program in the case of a possible dis-
covery of a new quantum phenomenon, one needs to establish
first of all the global and leading characteristic properties of the
tetrahedrally symmetric nuclei. The main focus of the present
article is to test the projection techniques associated with the
mean-field methods, as far as the characteristic features of
the energy spectra are concerned rather than trying to be as
realistic as possible in terms of the energy scale predictions.
Another aspect is to test the projection techniques necessary
to calculate the electromagnetic transition probabilities within
the nuclear-mean field theory. Such transition probabilities
and/or their branching ratios can be used as characteristic
signs of the symmetries and will become a necessary tool for
establishing such symmetries in nature. The related research
program is in progress and results will be published elsewhere.

In the next section, Sec. II, the principal mathematical
expressions of the method are briefly recapitulated; the details
can be found in Ref. [20]. The results of calculation are
presented and discussed in Sec. III. The final section, Sec. IV,
is devoted to the summary and possible future perspectives.

II. METHOD OF CALCULATION

In what follows we assume that a nucleus is in a state cor-
responding to a tetrahedral-symmetry minimum, one possibly
among other competing minima in the total energy landscape.
Assuming purely static configurations, i.e., ignoring the collec-
tive effects such as the zero-point vibrations or any other form
of, e.g., large-amplitude motion which may be particularly
needed in the case of the flat energy landscapes, we will
calculate the excitation pattern using the angular-momentum,
parity, and particle-number projection techniques, the latter in
relation to pairing, combined with the mean-field techniques.

Thus, the most general symmetry-conserving wave function
is sought in the form∣∣�I (±)

Mα

〉 =
∑
K

g
I (±)
K,α P̂ I

MKP̂±|�〉, (1)

where P̂ I
MK and P̂± are the angular-momentum and parity

projectors (see, e.g., Ref. [2]). The mean-field state |�〉 is
taken in the form of the antisymmetrized product (HFB type)
wave functions, which is specified in Sec. II A. The K-mixing
coefficients, g

I (±)
K,α , are obtained by solving the generalised

eigenvalue problem of the Hill-Wheeler equations∑
K ′

HI (±)
KK ′ g

I (±)
K ′,α = EI (±)

α

∑
K ′

N I (±)
KK ′ g

I (±)
K ′,α, (2)

with the Hamiltonian and norm kernel matrices being defined
as usual as (HI (±)

KK ′

N I (±)
KK ′

)
= 〈�|

(
Ĥ
1

)
P̂ I

KK ′ P̂±|�〉. (3)

In the present approach we wish to go beyond the mean-field
approximation without perturbing the tetrahedral symmetry of
the problem. This can be done by introducing in Eq. (3) a
two-body spherically-symmetric Hamiltonian Ĥ , whose form
will be discussed in Sec. II B.

The neutron and proton number projections require the
number projectors (P̂ N and P̂ Z), which are further included in
Eqs. (1)−(3). However, we found that the effect of the number
projections on the quantum spectra in the present work is small,
see Sec. III B, and they are simply neglected in most cases after
verifying that such a neglect is justified.

A. Mean-field model and its Hamiltonian

It is often of interest to employ the consistency condition
between the mean field and the many-body Hamiltonians like,
e.g., in the Skyrme-Hartree-Fock models, since it is believed
that such a consistency offers a more realistic description of
the many-body systems in question. In this article we wish
to focus first of all on the nuclear excitation spectra in the
presence of pure tetrahedral symmetry of the mean field. In
this context it is preferable to work with the model allowing
to completely control the deformation and the underlying
geometrical symmetry. For this purpose, a phenomenological
deformed mean field is more convenient.

We use the product-type states composed of the eigenfunc-
tions of the Woods-Saxon (WS) potential [22], for which the
general deformed shape is parametrized with the help of the
spherical-harmonic {Yλμ} basis:

R(θ, ϕ) = R0 cv({α})
[

1 +
∑
λμ

α∗
λμYλμ(θ, ϕ)

]
, (4)

where the coefficient cv({α}) takes care of the volume-
conservation condition. In the present application, the pure
tetrahedral deformation is realised by requiring all deformation
parameters αλμ = 0 except α32 (more precisely, α3+2 and
α3−2). In this particular case, the problem of the center of
mass does not arise since tetrahedrally symmetric uniform
distributions preserve the position of the center of mass
independently of the value of the tetrahedral deformation.
The deformed WS single-particle Hamiltonian, ĥdef , is di-
agonalized in the spherical harmonic oscillator basis with
the oscillator quantum numbers n and l satisfying the usual
relations nx + ny + nz = 2n + l � Nmax.

The HFB type product state is obtained by further including
the monopole pairing field with the particle number constraint:

ĥpair = −
∑

τ=n, p

	τ (P̂ †
τ + P̂τ ) −

∑
τ=n, p

λτ N̂τ . (5)

The pairing gap 	 in the Hamiltonian above is either
parametrized, cf. Sec. II C, or self-consistently calculated by
using the HFB treatment assuming the seniority interaction for
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neutrons and protons,

ĤP = −
∑

τ=n, p

Gτ P̂ †
τ P̂τ . (6)

The simple-minded usage of this pairing interaction with
large model space may lead to a divergence. We replace the
monopole pairing operator, P̂ †, by the one with a cut-off
function, fc(ε),

P̂ † =
∑
i>0

d
†
i d

†
ı̃ →

∑
i>0

fc(εi) d
†
i d

†
ı̃ , (7)

where the quantity εi and d
†
i are the eigenenergy of the

deformed WS single-particle state and its creation operator,
respectively, so that ĥdef = ∑

i εid
†
i di , and ı̃ refers to the

time-reversal conjugate state of i. The form of the cut-off
function is chosen to be [23]

fc(ε) = 1

2

[
1 + erf

(
ε − λ + �low

dcut

)]1/2

×
[

1 + erf

(−ε + λ + �up

dcut

)]1/2

, (8)

with the error function defined as usual by
erf(x) = 2√

π

∫ x

0 e−t2
dt . Following Ref. [23] the parameter

values adopted here are �up = �low = 1.2 h̄ω and
dcut = 0.2 h̄ω with h̄ω = 41/A1/3 MeV. The chemical
potential λ in Eq. (8) is simply chosen as (εi0 + εi0+1)/2,
where i0 is the last occupied orbital in the case of no pairing.
Such a treatment results in preserving typically +(25-to-35)
and −(15-to-25) states around the Fermi level for rare earth
nuclei depending somewhat on the deformation used.

In the present article we wish to account, even if in
a model dependent way, for at least some microscopic
mechanisms whose existence is known already. In particular
we are interested in the rotational state wave functions for
increasing angular momenta. It is known that an increase
of the angular momentum causes an increasing effect of the
Coriolis coupling, the latter resulting in a gradual increase in
the rotation-induced K-mixing. Since the presence of angular
momentum introduces an extra direction in space, on top
of the original tetrahedral symmetry, the latter is gradually
more and more perturbed. Studying of tetrahedral symmetry
of a microscopic many-body system under the condition of
increasing spin is a matter of a compromise between the
original mean-field symmetry properties and the Coriolis
perturbation. As long as the Coriolis effects can be considered
small, one may talk about the tetrahedral symmetry in the
system.

In the pure mean-field context the rotational motion has
been studied in the past by simulating the Coriolis coupling
effects with the so-called cranking term which is linear in angu-
lar momentum and which contains the Lagrange multiplier ω
in the case of the one-dimensional rotation. More generally, in
the case of three-dimensional rotation, as in the present case, a
triplet of Lagrange multipliers {ωx, ωy, ωz} ≡ ω is introduced.
The notation can be shortened to ω = ω n, where the unit
vector n points to the direction of the total spin. One can show
further that the term ω can be given an interpretation of the

rotational frequency valid asymptotically for increasing spin
and regular nuclear energy-vs.-spin dependence—where from
the notation ω → ωrot.

To take into account the tetrahedral symmetry mean-field,
here through ĥdef , the pairing correlation through the term
ĥpair, which does not impact the symmetry considerations, and
a gradual effect of the Coriolis mechanism through the (|K| =
1)-mixing term, ĥ|K|=1, we finally introduce the mean-field
Hamiltonian

ĥ′
mf = ĥdef + ĥpair + ĥ|K|=1, ĥ|K|=1 ≡ −ωrot n · Ĵ . (9)

As it turns out the third term in the above equation with a
small ωrot, typically of the order of h̄ωrot = 0.010 MeV, is
sufficient to break the time-reversal invariance and to introduce
the (|	K| = 1) K-mixing in the wave function, which is
important to obtain more reliably the moment of inertia [20]
within the Hill-Wheeler system of equations for the states not
far from the ground state. It has been tested, cf. Fig. 7 in
Ref. [20], that the resulting spectra do not depend very much
on the particular choice of values of h̄ωrot, as long as the spin
values involved are not too high. Since in this paper we are
interest in the spins of up to a dozen of h̄, the particular value
of this coefficient does not play any essential role and we keep
the above value without modification for the present purpose.

Let us emphasize that the present use of the third term
in Eq. (9), as compared to its role in the standard cranking
model, is different. Whereas in the cranking-model approach in
numerous articles on the high spin physics, ωrot plays either the
role of the Lagrange multiplier adjusted to each new spin value
and thus, on the average, increasing with spin, or, alternatively,
is currently being used as an independent cranking variable in
function of which observables such as, e.g., single-nucleon
Routhians are plotted—here it may be seen as a coupling
constant in front of a certain phenomenological interaction
term.

B. Two-body model Hamiltonian for projection calculations

As commented already earlier, we wish to go beyond the
mean-field approximation to be able to take into account,
at least partially, certain two-body correlations which have
proven to be successful in a phenomenological description of
not strongly deformed nuclei. For this purpose, we employ
the model Hamiltonian used in the Hill-Wheeler formalism,
cf. Eqs. (1)–(3), with an auxiliary spherically symmetric WS
potential and separable, schematic two-body interactions as
the ones employed in Ref. [20]. The two-body Hamiltonian of
this form does not perturb the tetrahedral symmetry, whereas
at the same time allows for including a richer structure of the
nucleon-nucleon interactions.

More specifically, we define

Ĥ = ĥ0 + ĤF + ĤG, (10)

where ĥ0 is a one-body Hamiltonian composed of the kinetic
energy term and the spherical WS potential (with the Coulomb
interaction for protons). The schematic particle-hole (F -type)
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interaction, ĤF , is chosen to be isoscalar and is defined by

ĤF = −1

2
χ

∑
λ�2

∑
μ

: F̂
†
λμF̂λμ :, F̂λμ =

∑
τ=n, p

F̂ τ
λμ, (11)

where : : denotes the normal ordering and τ = n, p dis-
tinguishes neutrons and protons. Furthermore, the spatial
representation of the above particle-hole type operator, F̂ τ

λμ, is
defined through the one-body field,

F τ
λμ(r) = Rτ

0
dV τ

c

dr
Yλμ(θ, φ), (12)

with V τ
c (r) and Rτ

0 being the central part of the WS potential
and its radius, respectively. The so-called self-consistent value
[1] of the force strength, χ , common to all multipolarities, is
calculated by

χ = (κn + κp)−1,

κτ ≡ (
Rτ

0

)2
∫ ∞

0
ρτ

0 (r)
d

dr

(
r2 dV τ

c (r)

dr

)
dr, (13)

where ρτ
0 (r) is the density of a hypothetical spherical ground

state, which is calculated with the filling approximation for
each nucleus based on the spherical WS single-particle state
of ĥ0. On the other hand, the pairing type (G-type) interaction,
ĤG, acts only within like-particles, and is given by

ĤG = −
∑

τ=n, p

∑
λ�0

gτ
λ

∑
μ

Ĝ
τ†
λμĜτ

λμ,

Ĝ
τ†
λμ ≡ 1

2

∑
ij

〈i|Gτ
λμ|j 〉c†i c†j̃ , (14)

where the matrix elements of the pairing type operator, Ĝ
τ†
λμ,

are calculated with the help of the standard multipole form,

Gλμ(r) =
(

r

R̄0

)λ
√

4π

2λ + 1
Yλμ(θ, φ), (15)

with R̄0 = 1.2A1/3 fm.
The present formalism follows the main lines of Ref. [20]

with a few modifications. Firstly, the extra one-body terms
(ĥ1 = −ĥF − ĥG in §3.1 in [20]) are included in Ref. [20] in
order to cancel out the one-body exchange contributions of the
multipole interactions, HF + HG. It turns out that the effect of
these terms on the resultant projected spectra is small, so that
they are neglected for simplicity.

A slightly different deformed mean-field Hamiltonian has
been used in Ref. [20], namely the one derived as the
Hartree approximation to the interaction (11), in the form
ĥdef = ĥ0 − ∑

λμ αλμF̂λμ, which, however, coincides with the
central part of the present deformed WS potential only within
the first order in the deformation parameters {αλμ}. We employ,
in the present work, the general shape parametrization based on

the deformed radius in Eq. (4) with the volume-conservation
condition properly taken into account. Moreover, the cut-off
of the pairing model space is introduced directly in the
operator Ĝ

τ†
λμ in Ref. [20]; then one has to use the spherical

single-particle energy in the cut-off function (8) to keep the
spherical invariance of the Hamiltonian. We found that it
sometimes causes a problem that the results are rather sensitive
to the choice of model space for the relatively small pairing
model space like in the present case, �u = �l = 1.2 h̄ω. In
the present calculation, the cut-off of the pairing model space
is taken into account in the step of deformed HFB calculation
in Eqs. (7) based on the deformed WS single-particle state.
Therefore, the cut-off function is not included explicitly in the
pairing operator Ĝ

τ†
λμ anymore.

C. Choice of parameters

The deformed mean-field single-particle states are calcu-
lated in the present work using the Woods-Saxon potential.
An often used parametrization introduced over 30 years back
is referred to as ‘universal’ (cf. Refs. [24–28]). We employ,
in this work, a new improved “universal compact” set, whose
parameters are listed in Table I, see Ref. [22] for notations.

As for the maximum number of the harmonic oscillator
shells to be used in the calculation, we employ Nmax = 20,
which is a safe margin to accurately calculate the single-
particle wave functions of the bound states in the Woods-Saxon
potential, and at the same time guarantees the convergence of
the result of projection calculations [20].

The ground state deformation is determined for each
nucleus by the axially symmetric WS-Strutinsky calculation
of Ref. [23], where an algorithm allowing for the treatment of
nuclei with weakly bound nucleons has been implemented.
In the present realization we calculate the strength of the
seniority force, G, so as to reproduce the even-odd mass
differences with the calculated deformation. More precisely,
for the calculated equilibrium (ground state) deformations,
α20 and α40, we adjust the G values in such a way that the
calculated pairing gap, 	τ = Gτ 〈P̂ †

τ 〉 (τ = n, p), agrees with
the even-odd mass difference. Once the parameters G are fixed
in this way, the usual BCS or the HFB equations (in the case of
the cranking Hamiltonian) are solved self-consistently at any
given deformation.

As for the spherically symmetric Hamiltonian used for
the projection calculation, the self-consistent value χ for the
F -type interaction in Eq. (13) is used without any modifica-
tions. We include the λ = 2, 3, 4 components for the F -type
interaction in Eq. (11), because the α20 and α40 deformations
are taken into account for the ground state within the Strutinsky
method and the tetrahedral shape is described by the α32

TABLE I. The parameters of the Woods-Saxon potential used in this work. Symbols ν and π refer to neutrons and protons, respectively.

V0c [MeV] κc r0c [fm] ac [fm] λ V0so [MeV] κso r0so [fm] aso [fm]

ν −52.0 0.650 1.26 0.64 28.0 49.6 0 0.870 0.70
π −53.0 0.526 1.27 0.71 23.0 49.6 0 0.888 0.86
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deformation. As for the G-type interaction, the monopole
pairing is known to be essential. It has been recognised that
the quadrupole pairing interaction is also important especially
to describe the rotational motion [1]. Therefore we include the
λ = 0, 2 components for the G-type interactions in Eq. (14).
The strength of the monopole pairing is determined again to
reproduce the pairing gap, i.e., 	τ = gτ

0 〈Ĝτ†
00〉 (τ = n, p),

for the ground state wave function. As for the strength of
the quadrupole pairing we assume gτ

2/gτ
0 = 13.6, which is

determined to approximately reproduce the moment of inertia
of the ground state bands in the previous calculation [20]. Note
that the values of Gτ and gτ

0 are slightly different, because the
monopole pairing operator P̂ †

τ and the associated strength, Gτ ,
are defined with respect to the deformed WS basis, while the
corresponding operator Ĝ

τ†
00 and its strength, gτ

0 , are defined
with respect to the spherical WS basis.

The model space truncation in the projection calculation
is controlled by the small parameter ε defined through the
requirement, that the orbitals which in canonical representa-
tion have occupation probabilities v2

i > ε are included, and,
similarly, the core orbitals with 1 − v2

i < ε. We have chosen
ε = 10−6 in the present calculation, with which it is confirmed
that the resultant projected energies are stable within in 1 keV,
which corresponds to six digits of accuracy for absolute energy
of the present Hamiltonian in Eq. (10). As for the calculation
of the Hill-Wheeler Eq. (1), the states that have smaller norm
eigenvalues than 10−10 are excluded.

III. RESULTS OF THE CALCULATIONS

According to the calculations in Refs. [4,9], the tetrahedral
magic numbers are Nt or Zt = 16, 20, 32, 40, 56–68,
70, 90–94, 112, and 136/142, and are the same for the
neutrons and protons. Calculations which followed, Refs. [29],
figure 3, and [30], using the universal Woods-Saxon mean-field
Hamiltonian, suggested that, in particular, 80

40Zr40 and 96
40Zr56

are tetrahedrally symmetric in their ground states, whereas
tetrahedral minima lie about 1 MeV above the ground state
in 110

40Zr70. Skyrme Hartree-Fock calculations for the latter
nucleus predict the possibility of the tetrahedral minima being
the lowest—depending strongly on the choice of the model
parameters [13]. More recently, we have reported on the
calculations of the tetrahedral spectra in 108,110Zr, in Ref. [31].
The predicted shape coexistence in the zirconium region which
includes tetrahedral symmetry minima may give rise to, among
others, the presence of isomeric states. Quite recently the
experiment have been performed for unstable nucleus 108Zr
and the results are compatible with the existence of an isomeric
state [32] whose nature is being debated.

A. Remarks about symmetry properties and quantum rotors

One of our goals is to determine whether the microscopic
calculations which combine various advanced techniques of
the nuclear quantum mechanics reproduce the excitation
pattern predicted by group-representation theory. Because all
of the twofold and fourfold degenerate single-particle states are

occupied with equal probabilities for the doubly closed shell
tetrahedral configurations, the totally symmetric, so-called
tensor A1 irreducible representation of the tetrahedral point-
group Td (as opposed to the spinor irreducible representations
characterizing the symmetry properties of the single-nucleonic
wave functions within the tetrahedral double-point group T D

d ,
cf. also Table VIII in the Appendix) can be expected as the
resulting symmetry of the full system in its lowest rotational
band. The situation remains the same if the seniority-type
pairing interaction is effective for fully paired even-even
nuclei.

An ideal tetrahedral (Td -symmetric) classical rotor is
often referred to as ‘spherical’, because its moment of inertia
tensor is diagonal with all elements strictly equal. In the
case of a quantum rotor, the notion of the inertia tensor
cannot be strictly speaking defined since the only quantum
observables directly associated with rotational motion of
such an object are the energy and angular momentum. The
specific spectral properties of quantum rotors with point-
group symmetries have been actively studied in relation to
the TetraNuc Collaboration activities in recent years. For
instance, examples of the octupole-symmetric quantum-rotor
spectra have been presented in Ref. [33]; similar examples
for specifically tetrahedrally symmetric quantum rotors can be
found in Ref. [34] whereas the underlying tensor formalism
and the general form of the reduced matrix elements are
presented in Ref. [35]. Observe that in contrast to the ‘usual’
quantum rotor Hamiltonians discussed in the literature, which
are quadratic forms of the angular momentum operators, the
tetrahedral (or other octupole-symmetric) rotor Hamiltonians
are specific third-order forms expressed in terms of the opera-
tors {Îx , Îy, Îz} (equivalently of {Î−1, Î0, Î+1} using spherical
tensor representation). Furthermore, relations between the
energy spectra of the quantum rotors and the associated
properties of classical rotors have been discussed in Ref. [36].

It can be shown that the spectra of tetrahedrally symmetric
structure-less quantum rotor are composed of the (2I + 1)-
degenerate states for each given spin I , cf. Ref. [34]. In this
sense the spherical symmetry of the classical tetrahedral rotor
mentioned above and the symmetry of the tetrahedral quantum
rotor can be seen as analogous. According to group-theory
considerations, each of the (2I + 1)-degenerate states of the
Td -symmetric structure-less rotor of any given I belongs to
a certain specific irreducible representation of the group in
question. Among five of those irreducible representations, the
A1 (scalar) representation contains states with the following
characteristic set of spin-parity combinations [cf. Table VI in
the Appendix (also, e.g., Refs. [38,39])]:

0+, 3−, 4+, 6+, 6−, 7−, 8+, 9+, 9−, 10+, 10−,

11−, 2 × 12+, 12−, . . . . (16)

As it is discussed in more detail below, such characteristic
spectra are indeed realized for the lowest energy band in the
results of our microscopic calculation, cf. also Ref. [31].

It is worthwhile mentioning that there exist certain extra
discrete symmetries for the tetrahedral shape nuclear mean-
field configurations applying within the cranking model. They
are referred to as doublex and triplex (as opposed to the
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‘usual’ simplex-symmetry applying to the cranking model for
the pear-shape symmetric nuclei). The corresponding quantum
numbers are useful to further classify the characteristic spectra
as discussed in Refs. [40,41], but this issue goes beyond the
scope of the present article.

In this work we report on the more extensive and detailed
investigations for three doubly closed tetrahedral-shell config-
urations in nuclei: 160Yb (Z = 70 and N = 90), the already
mentioned 110Zr, as well as the heavier tetrahedrally symmetric
nucleus in the actinide region, 226Th (Z = 90 and N = 136).
The axially symmetric octupole (α30) deformed states of the
latter nucleus have also been studied in Ref. [20].

B. Tetrahedral symmetry in 160Yb:
Phonon-vs.-rotation–like structures

Following the procedure of Sec. II C, we obtain the follow-
ing parameters for the pairing force and residual interaction
given in Table II, where the calculated deformation parameters
for the ground state are also shown.

Let us begin by presenting the results of our projection
calculations for the ground state band in 160Yb; the corre-
sponding results are shown in Fig. 1, where comparison with
the experimental data can also be found. In this calculation, we
use the HFB type wave function with a small Coriolis (|	K| =
1) coupling h̄ωrot = 0.010 MeV parameter, as discussed in
Sec. II A. We choose the cranking axis as the y-axis, which is
perpendicular to the symmetry axis (z-axis). The agreement of
the calculated spectra with the experimental data is acceptable
but discrepancies as compared to the experiment increase with
spin. In particular, the observed moment of inertia increases
as a function of spin, but the calculated moment of inertia
is fairly constant. This trend was already found for other
nuclei in Ref. [20] and may partly reflect the fact that in
contrast to the cranking model, within which the pairing
correlations systematically decrease with cranking frequency
and thus increase the moment of inertia, in the present model
with projection from one mean-field state the mentioned
mechanism does not exist. In the present calculation of the
ground state the axial symmetry is broken only by a small
(|	K| = 1)-mixing term, and the mixing effect of the K
quantum number in the Hill-Wheeler Eq. (2) remains small.
Since this particular aspect is of secondary importance of the
present project we accepted the disagreement in question as
remaining under control but without consequences for the
main conclusions. Doing so we may profit from a technical
advantage: It is sufficient to use relatively small numbers
of points for Gauss quadratures with respect to the Euler
angles when performing the angular-momentum projection
calculation, e.g., Nα = Nγ = 16 and Nβ = 50.

0.0
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1.0
1.5
2.0
2.5
3.0
3.5
4.0

 0  2  4  6  8  10  12

Exp.
Cal.

160Yb

I [h̄]

E
I
−

E
0

[M
eV

]

FIG. 1. Comparison of the experimental and the calculated
rotational spectra in 160Yb.

We proceed to examining the tetrahedral nuclear configura-
tion and related rotational states. The simplest way to construct
the tetrahedral shape in the surface parametrization in Eq. (4)
is to set α32 = α∗

32 = α3−2 as the only nonzero deformation
parameters. In the coordinate system chosen the upper (z > 0)
and lower (z < 0) sides of the tetrahedron are parallel to the
x- and y-axes, respectively, and the z-axis is along the line
that connects the middle points of these two facing sides.
Again, we have chosen the y-axis for cranking with a small
frequency h̄ωrot = 0.01 MeV. Obviously, in this case the axial
symmetry is strongly broken depending on α32 and thus higher
order quadratures in the projection calculations are necessary.
We take Nα = Nγ = Nβ = 64 for α32 = 0.1–0.2, Nα = Nγ =
Nβ = 84 for α32 = 0.25–0.30, and Nα = Nγ = Nβ = 104 for
α32 = 0.35–0.40 for the calculation in this nucleus.

In Fig. 2 we illustrate the result of excitation energies of
the projected eigenstates, cf. Eq. (1), whose norm is not very
small, i.e., not less than 10−5 of that of the ground state. They
compose the lowest-energy sequence, and calculated for the
pure tetrahedrally deformed configuration with deformations
α32 = 0.05, 0.10, and 0.20. As it is seen from the figure, only
the specific spin-parity combinations appear, cf. Eq. (16),
for all deformations. This pattern is characteristic for the
tetrahedral symmetry and is quite different from the one of
the usual quadrupole deformation. Indeed, the spectrum is
composed of states characterized by 0+, 3−, 4+, 6±, . . . ; the
states with I = 1, 2, and 5 are missing in the figure since their
norms are too small and/or they lie much higher in energy as
compared to the discussed lowest-energy sequence.

A very small tetrahedral deformation of α32 = 0.05 corre-
sponds to nearly spherical form. The existence of collective
excitations in spherically symmetric nuclei has long been
recognised in terms of the vibrational modes, which results
in an equidistant spectrum composed of multiplet of states,
within the simplest harmonic representation, in terms of

TABLE II. The calculated ground state deformation parameters (α20, α40), the fourth-order even-odd mass difference (	n, 	p), and the
force strength parameters determined based on them for 160

70Yb90. The value gτ
2 /gτ

0 = 13.6 is taken for the ratio of the quadrupole and monopole
pairing.

α20 α40 	n [MeV] 	p [MeV] Gn [MeV] Gp [MeV] χ [MeV−1] gn
0 [MeV] g

p
0 [MeV]

0.194 0.031 1.265 1.370 0.1512 0.1732 2.643×10−4 0.1468 0.1675

054306-6



MICROSCOPIC STUDY OF TETRAHEDRALLY SYMMETRIC . . . PHYSICAL REVIEW C 87, 054306 (2013)

 0

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10  12

π=+
π=−

(a)

160Yb

I [h̄]

E
I
−

E
0
+
[M

eV
]

α32 = 0.05

 0

 5

 10

 15

 20

 0  2  4  6  8  10  12

π=+
π=−

(b)

I [h̄]

α32 = 0.10

 0

 2

 4

 6

 0  2  4  6  8  10  12

π=+
π=−

(c)

I [h̄]

α32 = 0.20

FIG. 2. Examples of calculated spectra of tetrahedral states belonging to the lowest energy part in the spectrum in 160Yb with α32 = 0.05
(a), α32 = 0.10 (b), and α32 = 0.20 (c), testing the dependence of the excitation energies on the tetrahedral deformation [cf. also Eq. (16)]. The
positive (negative) parity states are denoted by the solid (dotted) lines. Note the difference of ordinate-scales between the left and right panels.

the vibration-quanta: the phonons, see, e.g., Sect. (6.3.2) in
Ref. [37].

The spectrum with smallest deformation α32 = 0.05 in
Fig. 2 is more vibrational-like, while that with α32 = 0.20
is approaching to the rotational-like spectrum; the one with
α32 = 0.10 is in between. In fact, (4+, 6+), (6−, 7−, 9,−),
(8+, 9+, 10+, 12+) . . . states in Fig. 2(a) having the same
parity can be grouped together, and would be interpreted
as slightly perturbed two-phonon, three-phonon, four-phonon,
etc., multiplet structures, respectively, of an elementary mode
of the 3− vibrational excitation. Moreover, the excitation
energies of 3−, 6+, 9−, 12+

1 form a rather linear dependence
as a function of spin; the dependence resembles the pattern
expected for the multiphonon excitation. Note, however, that
only the specific spin states among the multiphonon multiplets
appear, which is a consequence of the tetrahedral symmetry.
In contrast in Fig. 2(c), the states with the same spin value
are nearly degenerate, which is a specific feature of the ideal
rotor, and, at the same time, approximately follow the quadratic
energy-vs.-spin relation, E(I ) ∝ I (I + 1).

Let us emphasize, that both the parity and the angular-
momentum projections were essential for obtaining the

tetrahedral-symmetry pattern predicted by the group theory.
This symmetry pattern seems rather typical for the present
model Hamiltonian: We obtain similar pattern also for other
nuclei, e.g., 110,108Zr [31] and 226Th below. In the present work,
we concentrate on the lowest energy sequence and we do not
enter the discussion of the group theory aspects. Instead let
us only mention that representations other than A1 must be
expected for excited bands; also, one may expect, that the
symmetry in the case of the non-doubly-closed shell nuclei
could be manifested less strongly.

In Fig. 3 we compare the results of tetrahedral spectra
with and without the particle-number projection (NP) related
to pairing formalism. Although the moments of inertia (the
slopes) are slightly different, the characteristic properties of
the spectra are exactly the same in the two calculations. We
conclude that the effect of the particle-number projection is
small and we do not apply it in the rest of the article.

C. Transition to ideal rotor and moments of inertia in 160Yb

The fact that the tensor of inertia of an ideal classical
tetrahedral rotor is diagonal with all components equal
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α32 = 0.15 FIG. 3. Comparison of the spectra of tetra-
hedral states with (a) and without (b) the number
projection (NP), which are shown in the same
way as in Fig. 2 but with α32 = 0.15.
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FIG. 4. Calculated spectra of tetrahedral states in 160Yb with α32 = 0.10, 0.15, 0.20, 0.25, 0.30, and 0.35, respectively, for (a), (b), (c), (d),
(e), and (f). The dotted line in each panel denotes an ideal I (I + 1) sequence going through the first excited 3− state. Note that almost exact
degeneracies for I = (6+, 6−), (9+, 9−), (10+, 10−), (2 × 12+, 12−) states are obtained for α32 � 0.25 demonstrating the nearly perfect rotor
character of the rotational excitation of the system.

(‘spherical rotor’) suggests that the tilting direction of the
cranking axis in Eq. (9) may not affect the tetrahedral spectra,
at least to the extent in which the Coriolis alignment effects
can be neglected, i.e., for not too high spins. In order to test
this conjuncture, we investigated the projected spectra from the
cranked mean-field state with the different tilted cranking axes.
We have varied the cranking axis in our coordinate system,
i.e., the vector n in the term, ĥ|K|=1 ≡ −ωrot n · Ĵ , in Eq. (9) is
changed by

n = (sin θ sin ϕ, cos θ, sin θ cos ϕ),

0 � θ � 90◦, 0 � ϕ � 45◦. (17)

We found that the differences of the resulting spectra for the
lowest energy sequence are negligible within the accuracy
of our calculation; i.e., the nature of ‘spherical rotor’ is
numerically confirmed. More generally, the projected spectra
for the tetrahedral symmetric nuclei do not depend on the
|	K| = 1 coupling term, both the strength ωrot and and
the direction n of the tilted cranking axis, as long as ωrot

is small.
In Fig. 4 we show the calculated excitation energies for

selected values of the tetrahedral deformation. The ideal
rotor spectra with the energies proportional to I (I + 1) and
containing the calculated first excited 3− states are also shown
by the dotted lines. This figure clearly shows that the spectra
exhibit the gradual transition from linear to parabolic spin

dependence with increasing the tetrahedral deformation: The
almost ideal rotor spectrum is realised for α32 � 0.25.

Now we compare the tetrahedrally symmetric spectra with
those of the quadrupole deformation. In Fig. 5 we show the re-
sults of calculated spectra obtained by the angular-momentum
projection from the pure quadruple deformed states, where all
the deformation parameters are set to zero except α20 (no parity
projection is required in this case). The projection calculation
tends to give good rotational spectra, but the result with small
deformation, α20 = 0.10, considerably deviates from the one
for the pure rotor spectra. Thus the gradual transition from the
linear to parabolic energy-vs.-spin dependence is seen also for
the calculation of the quadrupole deformation.

Although the moment of inertia is not any quantum-
mechanical observable, certain quasiclassical analogies often
found in the literature allow to define and estimate the corre-
sponding values. Here we define this parameter, J , through

E(I ) − E(0) = I (I + 1)

2J . (18)

It is well known that the moments of inertia of observed
rotational band near the ground state are about (or even smaller
than) half of the classical rigid-body value. This large reduction
is supposed to be due to the pairing correlations [1,42]. In
fact, the moments of inertia extracted from the high-spin
states, where the pairing correlations are believed to be
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FIG. 5. Calculated spectra of quadrupole deformed states in 160Yb with α20 = 0.10, 0.15, 0.20, 0.25, 0.30, and 0.35, respectively, for (a),
(b), (c), (d), (e), and (f). The dotted lines in each panel denote the ideal I (I + 1) spectra going through the first excited 2+ state.

quenched, are known to be close to the rigid-body value,
although some deviations attributed shell effects exists, see,
e.g., Ref. [43]. Therefore, it is instructive to investigate the
moment of inertia in the case of the tetrahedral rotor. In Fig. 6
the moments of inertia calculated from Eq. (18) are plotted as
functions of the tetrahedral (left) and the quadrupole (right)
deformations, where they are estimated from the calculated
3− and 2+ excitation energies, respectively. The results with

neglecting the pairing correlation and the rigid-body value are
also included. An irregular behavior for the unpaired (	 = 0)
moments of inertia, i.e., at α20 ≈ 0.20–0.25, is due to the fact
that the level crossings near the Fermi surface occur. In order
to illustrate the possible correlation between the moments
of inertia and the intensity of pairing correlations measured
with the help of the pairing gaps, the calculated pairing gaps
at corresponding deformations are shown in Fig. 7.
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FIG. 6. Moment of inertia estimated from the calculated spectra for the pure tetrahedral states (a) and the pure quadrupole states (b) as
functions of the deformation parameters in 160Yb. The energy of the first excited 3− (2+) is used for estimation of the former (latter). The results
with the pairing correlations artificially set to zero are also included. The classical rigid-body moments of inertia in function of the deformation
parameters are shown as solid lines.
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FIG. 7. The self-consistent neutron and proton pairing gaps for the tetrahedral states (a) and the quadrupole states (b) as functions of the
respective deformation parameters in 160Yb.

As it becomes clear from Fig. 6, the moment of inertia
increases rapidly with increasing deformation for both the
tetrahedral and quadrupole shapes, indicating that the picture
of the good rotor emerges for larger deformation. Observe that
the values of the moments of inertia at the two considered shape
configurations are rather similar when the pairing correlations
are included, and are both much smaller than the rigid-body
values even at the largest value of the deformation parameters.
If the pairing correlations are set to zero, the calculated moment
of inertia for the quadrupole shape becomes much larger and
approaches to the rigid-body value as it is observed from the
high-spin limit. However, the effect of pairing correlation
on the inertia for the tetrahedral shape is rather small, even
though the pairing gap takes more or less the same values as in
the case of the quadrupole shape. The reason why the moment
of inertia is small and is affected very weakly by the pairing
correlation may be because the chosen nucleus in this case
is the tetrahedral doubly closed shell nucleus. The shell gap
is ∼1.5–2 MeV and is larger than the pairing gap, which is in
contrast to the case of quadrupole deformation, where the mean
single-particle level spacing is much smaller than the pairing
gap.

D. Tetrahedral spectra in 110Zr

The nuclear potential energy surfaces for the doubly magic
zirconium nuclei have been studied in Ref. [29] and the cor-
responding illustrations obtained using the phenomenological
approach with the Woods-Saxon mean-field Hamiltonian can
be found in figure 3 of the above reference. The symmetry-
oriented discussion of the corresponding shell effects can be
found in Ref. [44]. A discussion of the static-energy properties
in a few nuclei in the vicinity of 110Zr using Hartree-Fock
approach can be found in Ref. [45], whereas the tetrahedral
rotational properties, specifically for the nucleus 110Zr, have

been studied using the cranking-Skyrme-Hartree-Fock method
in Ref. [46] and using the methods similar to that of the present
article in Ref. [31].

In the present work the method of calculation is essentially
the same as in [31], except that the different Woods-Saxon
Hamiltonian parameter set is used. The mean-field parameters
and the force strengths used in the present calculation are
given in Table III. The calculated pairing gaps are used
because the experimental even-odd mass differences are not
available for this unstable nucleus. The numbers of nodes
for the Gaussian quadratures are chosen to be Nα = Nγ =
Nβ = 64 after verifying the stability conditions for the final
result.

In Fig. 8 we show the excitation energies for various
deformations in function of angular momentum, obtained
using the angular-momentum and parity projection techniques.
The cranking axis is chosen to be the y-axis [θ = 0◦ in Eqs. (9)
and (17)]. As it is seen from the figure, the overall pattern of
the excitation scheme resembles the one in 160Yb. However,
compared with the results for 160Yb of Fig. 4, the transition
to the ideal rotor occurs slower, i.e., it occurs at the larger
deformation in the lighter system 110Zr. In particular, the
energy-vs.-spin relation resembles a rigid rotation only for
α32 � 0.30. Compared with the results in Ref. [31], those
in the present work are very similar, indicating that the
choice of the parameter set of the WS potentials very little
affects the rotational properties of a tetrahedrally symmetric
nucleus—provided a realistic choice of parameters is used. We
have checked the dependence of the projected energies on the
tilting angle of the cranking axis also for the nucleus 110Zr (cf.
also figure 1 in Ref. [41]). Again, the result is found to stay
the same, when the tilting angle is changed in the same way
as in 160Yb [cf. Eq. (17)].

In Fig. 9, the moments of inertia for the tetrahedral and
quadrupole deformations are compared for the case of 110Zr;

TABLE III. The calculated ground-state mean-field parameters (α20, α40, 	n, 	p), and the force strength parameters determined based on
them for 110

40 Zr70. The value gτ
2 /gτ

0 = 13.6 is taken for the ratio of the quadrupole and monopole pairing.

α20 α40 	n [MeV] 	p [MeV] Gn [MeV] Gp [MeV] χ [MeV−1] gn
0 [MeV] g

p
0 [MeV]

0.333 −0.026 1.129 1.113 0.1471 0.2698 4.785 × 10−4 0.1407 0.2625
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FIG. 8. Calculated spectra of tetrahedral states in 110Zr with α32 = 0.10, 0.15, 0.20, 0.25, 0.30, and 0.35, respectively, for (a), (b), (c), (d),
(e), and (f). The figure is similar to that in Ref. [31] but only the lowest band is selected and the results for larger deformation are included.
Note that almost exact degeneracies for I = (6+, 6−), (9+, 9−), (10+, 10−), (2 × 12+, 12−) states are obtained for α32 � 0.30.

only the results with pairing correlations are presented. As it
is seen, the values of the moments of inertia for two types
of deformations are slightly different; the ratio J (3−)/Jrigid

for the tetrahedral shape is considerably smaller than the ratio
J (2+)/Jrigid for the quadrupole shape. One of the reasons may
be traced back to the somewhat larger shell gap at Z = 40 for
the tetrahedral shape, so that the ratio J (3−)/Jrigid in 110Zr is
smaller than that in 160Yb. Furthermore, the pairing gaps for
the quadrupole shape with α20 � 0.20 are somewhat reduced

in 110Zr, which increases the quadrupole moment of inertia;
those combined effects for the two types of shapes may make
the difference of their behavior in 110Zr compared to the case
of 160Yb (and of 226Th, see below).

E. Tetrahedral spectra in 226Th

The calculation procedure for 226Th is the same as that for
160Yb and 110Zr. The mean-field single-nucleon energies for
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FIG. 9. Moment of inertia estimated from the calculated spectra for the pure tetrahedral states (a) and the pure quadrupole states (b) in
110Zr. The energy of the first excited 3− (2+) is used for estimation of the former (latter). The rigid-body moment of inertia are shown as solid
lines.
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TABLE IV. The calculated ground state deformation parameters (α20, α40), the fourth-order even-odd mass difference (	n, 	p), and
the force strength parameters determined based on them for 226

90 Th136. The value gτ
2 /gτ

0 = 13.6 is taken for the ratio of the quadrupole and
monopole pairing.

α20 α40 	n [MeV] 	p [MeV] Gn [MeV] Gp [MeV] χ [MeV−1] gn
0 [MeV] g

p
0 [MeV]

0.161 0.093 0.814 0.830 0.09772 0.1289 1.744×10−4 0.09568 0.1267

this particular nucleus in function of tetrahedral deformation
can be found in figure 4 of Ref. [47]. The parameters
determined by the Woods-Saxon-Strutinsky calculation, and
those of the force strengths are tabulated in Table IV. They
are similar to the ones used in Ref. [20], where the α30

deformation was also taken into account. Slightly different
values of the parameters as compared to those in Ref. [20]
are mainly due to the fact that the different parameter set of
the WS potential is employed. The computing time of the
projection calculation increases dramatically with increase
of the nucleon number as well as the numbers of the mesh
points for Gaussian quadratures. We have carefully tuned the
latter numbers for 226Th to obtain the same accuracy as in
the case of 160Yb. Thus, we take Nα = Nγ = 64 and Nβ = 74
for α32 = 0.10–0.15, Nα = Nγ = 104 and Nβ = 84 for α32 =
0.20, Nα = Nγ = 124 and Nβ = 104 for α32 = 0.25–0.30,
and Nα = Nγ = Nβ = 124 for α32 = 0.35–0.40.

The result of our angular momentum and parity projection
calculations for various tetrahedral deformations are shown
in Fig. 10. The characteristic features of the spectra resemble
those of 160Yb and 110Zr. Again, the energy-vs.-spin depen-
dence has approximately linear behavior for smaller deforma-
tions, whereas it approaches a parabolic form at increasing
deformation. Comparing the energy-vs.-spin dependence of
these three nuclei, the transition from a linear to parabolic spin
dependence occurs at smaller deformation in nuclei with larger
mass number. More precisely, the energy-vs.-spin dependence
becomes almost parabolic in the following proportions: at

α32 ≈ 0.15 in 226Th, at α32 ≈ 0.20 in 160Yb, and at α32 ≈ 0.25
in 110Zr. This is intuitively acceptable because the concept
of the symmetry breaking is more and more appropriate for
heavier nuclear systems.

The calculated moments of inertia as functions of
quadrupole and tetrahedral deformation parameter are illus-
trated in Fig. 11, where only the result including the pairing
correlation is shown. Again, the moments of inertia with
the pairing correlation are considerably smaller than the
rigid-body values and they increases with deformation. The
values of moment of inertia are rather similar for the tetrahedral
and quadrupole shapes in 226Th as in the case of 160Yb in
Fig. 6.

IV. SUMMARY

We have studied the rotational nuclear properties for the
pure tetrahedral deformation by the angular-momentum and
parity projection method employing the realistic Woods-Saxon
mean-field potential and the schematic separable two-body
interaction consistent with it. In this work we have chosen
the tetrahedral doubly closed shell nuclei 160Yb (Z = 70 and
N = 90), 110Zr (Z = 40 and N = 70) (see also Ref. [31]
for this nucleus), and 226Th (Z = 90 and N = 136) as
illustrative examples. We have found out that the characteristic
spectra for the totally symmetric representation, i.e., the A1

irreducible representation of the tetrahedral group Td , are
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FIG. 10. Calculated spectra of tetrahedral-symmetry states in 226Th with α32 = 0.10, 0.15, 0.20, and 0.25 respectively, for (a), (b), (c), and
(d). Note that almost exact degeneracies for I = (6+, 6−), (9+, 9−), (10+, 10−), (2 × 12+, 12−) states are obtained for α32 � 0.20.
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FIG. 11. Moments of inertia estimated from the calculated spectra for the pure tetrahedral states (a) and the pure quadrupole states (b) in
226Th. The energy of the first excited 3− (2+) is used for estimation of the former (latter). The classical rigid-body moments of inertia are shown
as solid lines.

obtained with the specific sequence composed of 0+, 3−,
4+, 6+, 6−, 7−, 8+,. . .. These spectra are consistent with
those of the simple tetrahedral rotor, although the spectra are
more vibrational-like for small deformations. However, it is
important to emphasise that only the specific spin-parity com-
binations appear in the projection calculations in this work in
agreement with the group-theory predictions, approaching the
rotational pattern closer and closer with increasing tetrahedral
deformation.

The Coriolis |	K| = 1 mixing is introduced in order to
break the time-reversal invariance and to obtain more reliable
estimate of moment of inertia; only the slope of energy-vs.-spin
relation changes and the qualitative features are not affected
by this mixing. It has been also checked that the results of
projected spectra are independent of the tilting angle of the
cranking axis, which is consistent with the picture that the
tetrahedral rotor possesses a ‘spherically symmetric tensor of
inertia’.

Stable rigid-rotor energy dependence [∝ I (I + 1)] appears
for larger deformations in the range studied in this article, but
an approximately linear dependence is obtained with decreas-
ing deformations. This transition between the vibrational-like
and the rotational pattern occurs at smaller deformation for
nuclei with larger mass number. The moment of inertia for the
tetrahedral shape increases with increasing deformation, but it
is much smaller than the rigid-body value irrespective of the
pairing correlations. The impact of the pairing seems rather
limited for tetrahedral deformed nuclei at least for the doubly
closed shell nuclei, with relatively large single-particle energy
gaps.

In this work, we have concentrated on the lowest-energy
rotational sequences and shown by the calculations that their
properties resemble the ones characteristic for the totally
symmetric, the so-called A1 irreducible representation of the
tetrahedral point-group, Td , believed to be characteristic for
the lowest-energy sequence of states in fully paired even-even
nuclei. From the group theoretical consideration, it is expected
that the other irreducible representations, i.e., A2, E and/or F1,
F2, would appear in the excited rotational bands of even-even
nuclei, see the results of Ref. [31], or in the spectra for odd-odd

nuclei. Moreover, there exist different types of representations
associated with the so-called double tetrahedral group, specific
for the odd nuclei, see the Appendix.

We believe that both the experimental analysis as well as
the theoretical calculations of the discussed spectral properties
will need to include more levels in the future. For this
purpose the remaining irreducible representations of the sym-
metry group may need to be studied compared to the scalar
representations that we focused on in this article. The analysis
of the irreducible representation structure of the solutions
is important for the next step of the analysis, which would
consist in calculating the electromagnetic transitions and
the branching ratios, the observables which change rapidly
with symmetry of the system. This step of the analysis
will be essential for establishing the experimental criteria
of determining the presence of tetrahedral symmetry in the
physics of subatomic systems.
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APPENDIX: SPIN-PARITY RELATIONS IN A
TETRAHEDRALLY SYMMETRIC ROTOR

Although it may be considered a textbook matter, some
spin-parity properties of the rotational energies of the tetra-
hedrally symmetric rotor will be summarized in this ap-
pendix, to facilitate the comparison between the results of
the microscopic calculations with the projection techniques
as obtained in this article and the group-theory expectations
(see, e.g., Ref. [48]). The representation of the rotor states
with definite spin-parity Iπ (π = ±), D(Iπ), which have a
certain symmetry governed by a group G, can be decomposed
into its irreducible representations, Di (i = 1, . . . , M), with
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TABLE V. Character table for the tetrahedral group Td . Taken
from Ref. [48] (note that C2 = S2

4 and F1,2 are sometimes denoted as
T1,2).

Td E C3(8) C2(3) σd (6) S4(6)

A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
F1(T1) 3 0 −1 −1 1
F2(T2) 3 0 −1 1 −1

multiplicity a
(Iπ)
i :

D(Iπ) =
M∑
i=1

a
(Iπ)
i Di. (A1)

The multiplicity can be calculated by the standard formula
[48],

a
(Iπ)
i = 1

NG

∑
R∈G

χIπ (R)χi(R) = 1

NG

M∑
α=1

gαχIπ (Rα)χi(Rα),

(A2)

where the number NG is the order of the group G, χIπ (R)
and χi(R) are the characters of the representations D(Iπ) and
Di , respectively, for the group element R, and the quantity
gα denotes the number of elements in the class α, whose
representative element is Rα . Note that the decomposition (A1)
is performed by a unitary transformation in the (2I + 1)-
dimensional space of the rotor wave functions for given
Iπ ; more precisely, a specific combination of the K-mixing
generates each irreducible representation.

The Td group has five irreducible representations and
classes, whose representative elements are E, C2 (= S2

4 ), C3,
σd , and S4; see Ref. [48] for the notation. The characters
for each irreducible representation are listed in Table V for
completeness, and those for the rotor representation [49] are
as follows:

χIπ (E) = 2I + 1, χIπ (Cn) =
I∑

K=−I

e
2πK

n
i = sin (2I+1)π

n

sin π
n

,

(A3)

TABLE VII. Character table specific for the extended (also
called ‘double’) tetrahedral group T D

d . The second entry in the
corresponding columns denotes the characters of extended elements.
[Taken from Ref. [39] (note that E1/2, E5/2, and G3/2 are sometimes
denoted as E′

1, E′
2, and G′).]

T D
d E C3(8) C2(3) σd (6) S4(6)

E1/2(E′
1) 2 −2 1 −1 0 0

√
2 −√

2
E5/2(E′

2) 2 −2 1 −1 0 0 −√
2

√
2

G3/2(G′) 4 −4 −1 1 0 0 0 0

χIπ (σd ) = π × χIπ (C2), χIπ (S4) = π × χIπ (C4).

(A4)

Combination of the characters in Eqs. (A3) and (A4) and in
Table V with the formula (A2) leads to the multiplicities,
a

(Iπ)
i , which are summarized in Table VI for integer

spins up to I = 16. It is easy to verify that a
(I±)
A1

= a
(I∓)
A2

,

a
(I+)
E = a

(I−)
E , and a

(I±)
F1

= a
(I∓)
F2

. In the table, a
(Iπ)
i = 0

means that such states are not allowed, and a
(Iπ)
i = 2

means that states are doubly degenerate. In this way the
characteristic spin-parity for the A1 representation in Eq. (16)
follows.

As for the excitations of odd nuclei, i.e., for half-odd integer
spins I , the same calculation can be done, but one has to con-
sider the extended rotation group (the double group) GD , see,
e.g., Ref. [39] (or equivalently, the two-valued representations
[48]). In the extended group, the number of elements is doubled
by extending the range of rotational angle about an axis from
2π to 4π , because the 2π rotation is not the identity operation
but changes sign for the rotor states with half-integer spins. The
character table specific for the double tetrahedral group T D

d is
shown in Table VII, and the resultant multiplicities are given in
Table VIII, where a

(I±)
E1/2

= a
(I∓)
E5/2

and a
(I+)
G3/2

= a
(I−)
G3/2

can be easily
confirmed. Table VIII can be also used to see how a spherical
single-particle orbit jπ decomposes into the twofold (E1/2, 5/2)
and fourfold (G3/2) degenerate orbits for finite tetrahedral
deformation.

TABLE VI. The number of states a
(Iπ )
i belonging to the five irreducible representations of Td for integer spins; those for each parity are

separately shown.

I+ 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+

A1 1 0 0 0 1 0 1 0 1 1 1 0 2 1 1 1 2
A2 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 2 1
E 0 0 1 0 1 1 1 1 2 1 2 2 2 2 3 2 3
F1(T1) 0 1 0 1 1 2 1 2 2 3 2 3 3 4 3 4 4
F2(T2) 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4
I− 0− 1− 2− 3− 4− 5− 6− 7− 8− 9− 10− 11− 12− 13− 14− 15− 16−

A1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 2 1
A2 1 0 0 0 1 0 1 0 1 1 1 0 2 1 1 1 2
E 0 0 1 0 1 1 1 1 2 1 2 2 2 2 3 2 3
F1(T1) 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4
F2(T2) 0 1 0 1 1 2 1 2 2 3 2 3 3 4 3 4 4
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TABLE VIII. The number of states a
(Iπ )
i belonging to the three irreducible representations specific for T D

d for half-odd integer spins; those
for each parity are separately shown.

I+ 1
2

+ 3
2

+ 5
2

+ 7
2

+ 9
2

+ 11
2

+ 13
2

+ 15
2

+ 17
2

+ 19
2

+ 21
2

+ 23
2

+ 25
2

+ 27
2

+ 29
2

+ 31
2

+

E1/2(E′
1) 1 0 0 1 1 1 1 1 2 2 1 2 3 2 2 3

E5/2(E′
2) 0 0 1 1 0 1 2 1 1 2 2 2 2 2 3 3

G3/2(G′) 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

I− 1
2

− 3
2

− 5
2

− 7
2

− 9
2

− 11
2

− 13
2

− 15
2

− 17
2

− 19
2

− 21
2

− 23
2

− 25
2

− 27
2

− 29
2

− 31
2

−

E1/2(E′
1) 0 0 1 1 0 1 2 1 1 2 2 2 2 2 3 3

E5/2(E′
2) 1 0 0 1 1 1 1 1 2 2 1 2 3 2 2 3

G3/2(G′) 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
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