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Isospin nonconservation in sd-shell nuclei
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The question of isospin-symmetry breaking in nuclei of the sd shell is addressed. We propose a new
global parametrization of the isospin-nonconserving shell-model Hamiltonian which accurately describes
experimentally known isobaric mass splittings. The isospin-symmetry violating part of the Hamiltonian consists
of the Coulomb interaction and effective charge-dependent forces of nuclear origin. Particular attention has been
paid to the effect of the short-range correlations. The behavior of b and c coefficients of the isobaric-mass-multiplet
equation (IMME) is explored in detail. In particular, a high-precision numerical description of the staggering
effect is proposed and contribution of the charge-dependent forces to the nuclear pairing is discussed. The
Hamiltonian is applied to the study of the IMME beyond a quadratic form in the A = 32 quintet, as well as to
calculation of nuclear structure corrections to superallowed 0+ → 0+ Fermi β decay and to amplitudes of Fermi
transitions to nonanalog states in sd-shell nuclei.
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I. INTRODUCTION

The isospin symmetry is one of the pivotal concepts in
nuclear structure which simplifies largely many-body calcula-
tions, for example, within the nuclear shell model, and repre-
sents a useful guideline in nuclear theory. The concept is based
on the charge independence of the nucleon-nucleon (NN )
interaction (invariance under any rotation in isospin space),
which reflects the fact that strong proton-proton (vN

pp), neutron-
neutron (vN

nn), and proton-neutron (vN
pn,T =1) interactions are

to a large extent identical. Within the isospin symmetry,
a many-body nuclear Hamiltonian (without electromagnetic
interactions) commutes with the isospin operator, [H, T ] = 0,
and its eigenstates can be characterized by an isospin quantum
number T forming multiplets of (2T + 1) states in a few
neighboring nuclei with Tz = −T , . . . , T (isobaric analog
states, IAS).

The charge independence implies also a charge symmetry
of the NN interaction (invariance under rotation by 180◦ in
isospace around the Ty axis), which means the equality of vN

pp

and vN
nn only, and the isospin conservation of N = Z nuclei.

This symmetry manifests itself in close similarity of the spectra
of mirror nuclei (up to an overall shift).

Nevertheless, the isospin symmetry is only an approx-
imate symmetry in nuclear physics mainly attributable to
the Coulomb interaction acting between protons, but also
owing to the presence of charge-dependent forces of nuclear
origin. The latter are understood at present to have their
origin in the difference between the u and the d quark
masses and electromagnetic interactions between them [1].
Indeed, the NN scattering data show unambiguous evidence
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on the breaking of the two symmetries of the NN interaction
mentioned above. First, there is a small difference between
vN

pp and vN
nn (e.g., different scattering lengths in the 1S0

channel: aN
pp − aN

nn = 1.65 ± 0.60 fm [1]), which means the
charge-symmetry breaking (or charge asymmetry) of the
NN interaction. Second, there is an even more substantial
difference between vN

pp and vN
nn on one side and vN

pn on
the other side [e.g., different singlet scattering lengths:
(aN

pp + aN
nn)/2 − aN

np = 5.6 ± 0.6 fm] which corroborates the
charge-independence breaking of the NN interaction. There
exist also charge-dependent forces which mix the isospin of an
NN system; however, we do not discuss them here. Detailed
consideration and theoretical studies of these effects can be
found in Refs. [1–4].

A many-body Hamiltonian containing charge-dependent
forces does not commute with the isospin operator; therefore,
the isospin is not conserved anymore. The eigenstates of
such a Hamiltonian represent a mixture of different isospin
eigenstates. This is the case of explicit isospin-symmetry
breaking and of isospin-mixing in nuclear states.

The degree of isospin nonconservation caused by the
Coulomb interaction and charge-dependent nuclear forces is
small compared to nuclear effects; however, precise descrip-
tion of the isospin-symmetry breaking in nuclear states is
crucial, when a nucleus is considered as a laboratory to test
the fundamental symmetries underlying the standard model of
the electroweak interaction. One of the important applications
is the calculation of the corrections to nuclear β decay, which
arise due to the isospin-mixing in nuclear states and thus should
be evaluated within a nuclear many-body model.

In particular, high-precision theoretical values of nuclear
structure corrections to superallowed 0+ → 0+ β-decay rates
are of major interest. Combined with various radiative correc-
tions, they serve to extract from f t values of these purely
Fermi transitions an absolute F t value of the nuclear β
decay. The constancy of F t for various emitters confirms
the conserved vector current (CVC) hypothesis and allows
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one to deduce the nuclear weak-interaction coupling constant,
GF . The ratio of the latter with the weak-interaction coupling
constant extracted from the muon decay gives the absolute
value of Vud , the upper-left matrix element of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. The upper row of the
CKM matrix is the one that provides a stringent test for
the unitarity, while Vud being the major contributor (around
∼94%). The breakdown of the unitarity signifies a possibility
of new physics beyond the standard model; see Ref. [5] for a
recent review.

Nowadays, f t values for thirteen 0+ → 0+ β+ transitions
among T = 1 analog states are known with a precision better
than 0.1%. The largest uncertainty on the extracted F t value
(which is of about 0.4%) is attributable to an ambiguous
calculation of the nuclear structure correction [6]. Therefore,
accurate theoretical description of isospin mixing in nuclear
states is of primary importance.

Similarly, theoretical calculations of nuclear-structure cor-
rections to Fermi β decay are necessary to extract the
absolute F t value and Vud matrix element from mixed
Fermi/Gamow-Teller transitions in mirror T = 1/2 nuclei
[7]. Nuclear structure corrections to Gamow-Teller β-decay
matrix elements are required in studies of asymmetry of
Gamow-Teller β-decay rates of mirror transitions with the
aim to constrain the value of the induced tensor term in the
axial-vector weak current [8,9].

Apart from the nuclear structure corrections for studies
of fundamental interactions, precise modelization of the
Coulomb and charge-dependent nuclear forces is required to
describe observed mirror energy differences [10] and splittings
of the isobaric multiplets, amplitudes of experimentally mea-
sured isospin-forbidden processes, such as β-delayed nucleon
emission [11], Fermi β decay to nonanalog states [12], E1 tran-
sitions in self-conjugate nuclei [13] or isoscalar E1 component
extracted from E1 transitions between analog states [14], and
so on. The charge-dependent effective interaction is indispens-
able for understanding the structure of proton-rich nuclei with
important consequences for astrophysical applications.

At the same time, accurate theoretical description of the
isospin-symmetry violation within a microscopic model is a
great challenge. Various approaches have been developed to
deal with the problem.

The first shell-model estimations of isospin mixing are
dated to the 1960s (e.g., Refs. [15–17]), including their
applications to the nuclear β decay studies (see Ref. [8,18,19],
and references therein). Among the most recent work within
the modern shell model, let us refer first to the study of Ormand
and Brown [20,21], who constructed realistic INC effective
Hamiltonians constrained by the experimental data (mass
splittings of isobaric multiplets). Another approach based on
the analysis of mirror energy differences in pf -shell nuclei was
proposed by Zuker and collaborators [22] and gave a profound
picture of the Coulomb effects.

It should be remembered that within the shell model, one
cannot completely deduce a degree of isospin mixing in the
wave function. The reason is that the Shrödinger equation
is solved in the harmonic-oscillator basis within one or two
oscillator shells (valence space) for valence nucleons only. An
INC Hamiltonian allows to introduce the isospin-symmetry

breaking in the mixing of the many-body harmonic oscillator
configurations which represent Hamiltonian eigenstates. This
is sufficient to get the energy shifts of isobaric multiplets owing
to the charge-dependent interaction. However, to get matrix
elements of isospin-forbidden transitions, one has to account
for the isospin-symmetry breaking beyond the model space.
With this aim, one has to substitute the harmonic oscillator
radial wave functions by realistic ones, because the correct
asymptotics is essential. In this way, the shell model makes
it possible to predict the rates of isospin-forbidden processes
that can be compared to experimental data.

Recent applications of the shell model to superallowed
β decay can be found in Refs. [5,6,23,24], and references
therein, while corrections to Gamow-Teller β decay in mirror
systems have been evaluated in Refs. [8,9]). Numerous
applications to the isospin-forbidden proton emission and
to the structure of proton-rich nuclei can be found in the
literature (e.g. Refs. [25–30]).

The problem of the isospin-symmetry breaking was inten-
sively undertaken in the framework of self-consistent mean-
field theories within the Hartree-Fock + Tamm-Dankoff or
random-phase approximation (RPA) in the 1990s [31–34].
Recently, more advanced studies have been performed within
the relativistic RPA approach [35], as well as within the
angular-momentum-projected and isospin-projected Hartree-
Fock model [36,37].

Some other many-body techniques have recently been
applied to deal with isospin nonconservation. In particular,
evaluation of the isospin mixing in nuclei around N ≈ Z ≈ 40
has been performed by variation-after-projection techniques
on the Hartree-Fock-Bogoliubov basis with a realistic two-
body force in Ref. [38]. Isospin-symmetry violation in light
nuclei, applied to the case of superallowed decay of the 10C
has been calculated within the ab initio no-core shell model
[39], while effects of the coupling to the continuum on the
isospin mixing in weakly bound light systems were studied
in the Gamow shell-model approach [40]. Relation between
the isospin impurities and the isovector giant monopole
resonance was explored by Auerbach [41], with a subsequent
application to the calculation of nuclear structure corrections
to superallowed β decay [42].

Up to now, the approaches mentioned above do not agree
on the magnitude of isospin impurities in nuclear states and
predict largely different values for the corrections to nuclear
β decay. Given the importance of the problematics we have
revised the existing INC shell-model Hamiltonians. First,
since the latest work of Ref. [21] there have been accumulated
more experimental data and data of higher precision on the
properties of isobaric multiplets (mass excess data and level
schemes), on isospin-forbidden particle emission, on nuclear
radii, and so on. Development of the computer power and
shell-model techniques allows us to access larger model spaces
[43]. In addition, more precise new nuclear Hamiltonians
have been designed (e.g., Refs. [44–46]), as well as new
approaches to accounting for short-range correlations have
been advocated [47,48]. The purpose of this article is to present
an updated set of globally parametrized INC Hamiltonians
for sd-shell nuclei, and to show their quantitative implication
to calculations of isospin-forbidden processes in nuclei.
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In Sec. II, we describe the formalism used for a fit of the
INC interaction. Section III contains the results obtained in
the sd shell. In Sec. IV we discuss the general behavior and
numerical agreement of theoretical and experimental b and c
coefficients, as well as reveal and study a so-called staggering
phenomenon. In Sec. V we explore the extension of the IMME
beyond the quadratic form in the lowest A = 32 quintet. In
Sec. VI, we present a new set of nuclear structure corrections
for superallowed 0+ → 0+ Fermi β decay, as well as a few
cases of Fermi transitions to nonanalog states (configuration-
mixing part). The paper is summarized in the last section.

II. FRAMEWORK

A. Shell-model formalism and fitting procedure

Within the nuclear shell model, the eigenproblem is solved
by diagonalization of the one- plus two-body effective nuclear
Hamiltonian on the basis of many-body Slater determinants
constructed from the single-particle harmonic-oscillator wave
functions. Since the basis dimension grows rapidly with the
number of nucleons, the eigenproblem is stated only for
valence nucleons in a model space containing a few (valence)
orbitals above a closed-shell core. The Hamiltonian matrix
thus consists of single-particle energies, εi , typically taken
from experiment, and the two-body matrix elements (TBMEs)
Vijkl;J . Here indices i, j, k, l denote full sets of quantum
numbers (nlj ) necessary to characterize a given single-particle
orbital, while J denotes the total angular momentum of a
coupled two-body state.

We suppose that proton-proton, neutron-neutron, and
proton-neutron matrix elements may all be different. Similarly,
proton and neutron single-particle energies are not the same.

The goal is to find an interaction which describes well
both nuclear structure and the splitting of isobaric multiplets
of states. In principle, an effective shell-model interaction
may be derived microscopically from the bare NN force
by applying a renormalization technique [49,50]. However,
such interactions, obtained from a two-body potential only,
should still be adjusted, in particular, to get correct monopole
properties [43,51]. This is done by a least-squares fit of the
monopole part of the Hamiltonian or of the whole set of
TBMEs to experimental data.

Since the number of the matrix elements is huge, it is not
feasible for the moment to get a realistic charge-dependent
effective interaction in this way.

An alternative approach to the problem is first to get a reli-
able effective shell-model interaction in the isospin-symmetric
formalism adjusted to describe experimental ground and
excited-states energies. Then to add a small charge-dependent
part within perturbation theory and to constrain its parame-
ters to experimental data. Diagonalization of the total INC
Hamiltonian in the harmonic oscillator basis will lead to
isospin mixing.

In the sd shell-model space (consisting of the 0d5/2,
1s1/2, and 0d3/2 orbitals) the most precise isospin-conserving
Hamiltonians, denoted below as H , are the USD interaction
[52], as well as its two more recent versions USDA and
USDB [44].

First, we obtain its eigenvalues and eigenvectors:

H |α, T , Tz〉 ≡ (H0 + V0)|α, T , Tz〉 = E(α, T )|α, T , Tz〉.
Here, α = (A, Jπ ,Nexc, . . .) denotes all other quantum num-
bers (except for T and Tz), which are required to label a
quantum state of an isobaric multiplet. E(α, T ) is independent
from Tz. H0 is the independent-particle harmonic oscillator
Hamiltonian which involves the (isoscalar) single-particle
energies ε

(0)
i = (εp

i + εn
i )/2, while V0 stands for a two-body

residual interaction in the sd shell.
Then we construct a realistic isospin-symmetry violating

term to get a total INC Hamiltonian. In general, we consider
a charge-dependent interaction, which includes the Coulomb
interaction acting between (valence) protons, and also
charge-dependent forces of nuclear origin. The Coulomb
interaction reads

Vcoul(r) = e2

r
, (1)

while the charge-dependent nuclear forces are represented in
this work either by a set of scaled T = 1 matrix elements of
the isospin-conserving interaction V0 (denoted as V T =1

0 ) or
by a linear combination of Yukawa-type potentials:

Vπ (r) = exp (μπr)

μπr
, Vρ(r) = exp (μρr)

μρr
, (2)

where μπ = 0.7 fm−1 and μρ = 3.9 fm−1, corresponding to
the exchange of pion or ρ meson, respectively, and r being
the relative distance between two interacting nucleons. The
Coulomb interaction contributes only to the proton-proton
matrix elements, while the charge-dependent nuclear forces
may contribute to all nucleon-nucleon channels. Thus, we
can express the charge-dependent part of the two-body
interaction as

V = V pp + V nn + V np = λcoulVcoul(r)

+
∑

q=pp,nn,pn(T =1)

(
λq

πV q
π (r) + λq

ρV
q
ρ (r) + λ

q
0V

q
0

)
, (3)

where V
q

0 is the same as V T =1
0 , while λcoul, λ

q
π , λ

q
ρ , λ

q
0

are strength parameters characterizing the contribution of
charge-dependent forces. These parameters can be established
by a fit to experimental data.

The two-body charge-dependent interaction V in Eq. (3)
can alternatively be decomposed in terms of ranks 0, 1, and 2
tensors in the isospin space as

V = V (0) + V (1) + V (2).

The corresponding two-body matrix elements can be related
to those in proton-neutron formalism, i.e.,

V
(0)
ijkl;J = 1

3

(
V

pp
ijkl;J + V nn

ijkl + V
pn(T =1)
ijkl;J

)
,

V
(1)
ijkl;J = V

pp
ijkl;J − V nn

ijkl;J , (4)

V
(2)
ijkl;J = V

pp
ijkl;J + V nn

ijkl;J − 2V
pn(T =1)
ijkl;J .

In addition, the charge-dependent part of the Hamiltonian
may contain a one-body term, H 1b

CD of a pure isovector
character, which involves the isovector single-particle energies
(ISPEs), ε

(1)
i = ε

p
i − εn

i . This term accounts for the Coulomb
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effects in the core nucleus. Thus, the most general charge-
dependent part of the effective Hamiltonian reads

HCD = H 1b
CD + V.

The charge-dependent part of the effective interaction is
well known to be small and to be mainly of two-body type. The
shift of isobaric multiplets owing to the presence of charge-
dependent Hamiltonian, HCD, in lowest order of perturbation
theory is given by its expectation value in the states having
good isospin: 〈α, T , Tz| HCD|α, T , Tz〉. Application of the
Wigner-Eckart theorem leads to the expression

〈α, T , Tz|HCD|α, T , Tz〉 = E(0)(α, T ) + E(1)(α, T )Tz

+E(2)(α, T )
[
3T 2

z − T (T + 1)
]
,

(5)

where the isoscalar part V (0) contributes only to the overall
shifts of the multiplet, the isovector part V (1) and ISPEs (ε(1))
results in E(1)(α, T ), while the isotensor part V (2) is the only
contributor to E(2)(α, T ). The latter two terms lead to the
splitting of the isobaric multiplet and to the isospin mixing
in the states.

Based on this assumption, Wigner showed [53] that a
quadratic isobaric-mass-multiplet equation (IMME),

M(α, T , Tz) = a(α, T ) + b(α, T )Tz + c(α, T )T 2
z , (6)

is sufficient to approximate the splitting of isobaric mass
multiplets for a given α and T . The a, b, and c are coefficients.

Since only the isovector and isotensor part of HCD could
lead to isospin-symmetry violation (to splitting of the isobaric
multiplets and to isospin mixing), we are interested in these
two terms only. Furthermore, in the fit of the nuclear TBMEs
in the isospin-symmetric formalism, part of the isoscalar
Coulomb term has been taken into account by an empirical
correction to the experimental binding energies (see Ref. [44],
and references therein). Therefore, we add to the isospin-
conserving Hamiltonian a charge-dependent Hamiltonian,
containing isovector (iv) and isotensor (it) terms only, namely,

Hiv+it
CD =

∑
q=1,2

(
λ

(q)
coulV

(q)
coul(r) + λ(q)

π V (q)
π (r)

+λ(q)
ρ V (q)

ρ (r) + λ
(q)
0 V

(q)
0

) + H 1b
CD

=
∑
q=1,2

∑
ν

λ(q)
ν V (q)

ν , (7)

where q now denotes the isotensor rank of the operators and
labels the corresponding strength parameter, while the label ν
is used to list all separate terms. The second line of Eq. (7)
includes the one-body term, with ε

(1)
i being the corresponding

strength parameters.
The isovector E(1)(α, T ) and isotensor E(2)(α, T ) contri-

butions to the expectation value of Hiv+it
CD (or HCD), can

be either extracted from the energy shift owing to the
isovector V (1) (or H 1b

CD) and isotensor V (2) parts of the charge-
dependent Hamiltonian, respectively, or from calculations
of the energy shifts of all multiplet members. Following
the latter method, we represent the TBMEs of Vν in terms
of the proton-proton matrix elements only and then we
calculate its expectation value in each state of the multiplet

Eν(α, T , Tz) = 〈α, T , Tz| Vν |α, T , Tz〉. Then, the isovector and
isotensor contributions to a given multiplet of states are
respectively expressed as

E(1)
ν (α, T ) = 3

T (T + 1)(2T + 1)

T∑
Tz=−T

(−Tz)Eν(α, T , Tz),

E(2)
ν (α, T ) = 5

T (T + 1)(2T − 1)(2T + 1)(2T + 3)

×
T∑

Tz=−T

[
3T 2

z − T (T + 1)
]
Eν(α, T , Tz). (8)

The same method holds also for the ISPEs. Summing over
all contributions to HCD, we get theoretical IMME b and c
coefficients as

bth(α, T ) =
∑

ν

λ(1)
ν E(1)

ν (α, T ),

(9)
cth(α, T ) = 3

∑
ν

λ(2)
ν E(2)

ν (α, T ).

ISPEs are only included into the expression for bth values.
To find the best strengths λ

(q)
ν , we have performed a least-

squares fit of theoretical bth and cth coefficients to experimental
IMME b and c coefficients: b

exp
i ± σi (i = 1, . . . ,Nb) and

c
exp
j ± σj (j = 1, . . . ,Nc). Implying that they have a Gaussian

distribution, we have minimized the χ2 deviation (e.g., for b
coefficients),

χ2 =
Nb∑
i=1

(
b

exp
i − bth

i

)2

σ 2
i

, (10)

with respect to the parameters λ(1)
ν , i.e.,

∂χ2

∂λ
(1)
ν

= ∂

∂λ
(1)
ν

Nb∑
i=1

(
b

exp
i − bth

i

)2

σ 2
i

= 0 , (11)

which has led us to a system of linear equations for λ(1)
ν :

Nb∑
i=1

[
E

(1)
μi b

exp
i

σ 2
i

−
∑

ν

λ(1)
ν E

(1)
νi E

(1)
μi

σ 2
i

]
= 0. (12)

In matrix form this system looks like

�W = Q or
∑

�νWνμ = Qμ, (13)

with

�ν = λ(1)
ν , Wνμ =

Nb∑
i=1

E
(1)
νi E(1)

μi

σ 2
i

, Qμ =
Nb∑
i=1

E
(1)
μi b

exp
i

σ 2
i

.

(14)

Since theoretical b and c coefficients are linear functions of
the unknown parameters λ

(q)
ν of Eq. (9), the fitting procedure

is reduced to solving linear equations. The solution of these
equations with respect to � results in a set of the most optimal
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strength parameters λ(1)
ν :

� = QW−1. (15)

To get uncertainties of the strength parameters found, we
evaluate the root-mean-square (rms) deviation from the error
matrix W−1 as

λ(1)
ν =

√〈(
λ

(1)
ν − λ

(1)
ν

)2〉 =
√

(W−1)νν . (16)

A similar procedure holds for the adjustment of c coefficients.
After adjusting the interaction, we solve the eigenproblem

for a thus constructed INC Hamiltonian in the proton-neutron
formalism: [HINC, T ] 	= 0:

HINC|αp, αn〉 ≡ (
H + Hiv+it

CD

)|αp, αn〉 = E|αp, αn〉.
As a result, the Hamiltonian eigenstates do not possess good
isospin quantum number anymore and thus are mixtures of
different T values.

The shell-model diagonalization has been performed using
a modern version of the ANTOINE shell-model code [58].

B. TBMEs of the Coulomb and Yukawa-type potentials

1. Harmonic oscillator parameter

The TBMEs of the Coulomb and Yukawa-type potentials
Eqs. (1) and (2), used to calculate the energy shifts, were
evaluated using the harmonic-oscillator wave functions for
mass A = 39 and the subsequent scaling

S(A) =
(

h̄ω(A)

h̄ω(A0 = 39)

)1/2

. (17)

In Ref. [21], h̄ω was taken in its most commonly
used parametrization expressed by the Blomqvist-Molinari
formula [54]:

h̄ω(A) = 45A−1/3 − 25A−2/3. (18)

For the sd shell, an additional scaling factor was imposed (see
Eq. (3.7) in Ref. [21]) to improve the agreement with the data
at the beginning and at the end of the sd shell.

However, recent empirical values of h̄ω, derived from
updated experimental nuclear charge radii in Ref. [56], differ
significantly from the values predicted by Ormand and Brown
in Ref. [21], especially in the middle of the sd shell, not
considered in the latter work. The comparison is shown in
Fig. 1. Some improvement is reached by a recent global
parametrization of the Blomqvist-Molinari formula for the
whole nuclear chart (A = 2, . . . ,248) performed by Kirson
[55] (see Fig. 1).

We have performed a fit with both parametrizations of
h̄ω; however, none of them resulted in a sufficiently low rms
deviation values in our fit for b and c coefficients. The plausible
reason is that the existing parametrizations for h̄ω values in the
sd shell are not close to the values extracted from experimental
nuclear charge radii. To overcome this difficulty, in the present
work we have scaled the TBMEs as given by Eq. (17), directly
using experimentally based values for h̄ω values in the sd
shell, mentioned above and shown in Fig. 1. The ISPEs were
also evaluated for A = 39 and then scaled as given by Eq. (17).
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0 4 8  12  16  20  24  28  32  36  40  44  48  52  56  60

− h
ω

(M
eV

)

Nuclear Mass Number, A

FIG. 1. (Color online) Harmonic oscillator energy spacing, h̄ω.
(i) Blomqvist-Molinari formula [54] (solid black line), (ii) Blomqvist-
Molinari formula with an additional scaling factor given by Eq. (3.7)
of Ref. [21] (double-dot-dashed blue line); (iii) Blomqvist-Molinari
formula refitted by Kirson [55] (dashed red line); (iv) h̄ω deduced
from the experimental nuclear charge radii [56] following the
procedure indicated in Ref. [55] with h̄2/m = 41.458 MeV fm2

(black dots). Only A = 2, . . . ,60 is indicated.

We remark that because of the empirical character of the
sd-shell isospin-conserving interactions, one could calculate
the TBMEs of the Coulomb and Yukawa-type potentials using
a more realistic basis, such as single-particle wave functions
obtained from a spherical Woods-Saxon potential. This may
lead to an improvement in the fit. We are currently exploring
this possibility and the results will be published elsewhere.

2. Short-range correlations

Since the TBMEs of Coulomb or meson-exchange po-
tentials are calculated by using harmonic-oscillator wave
functions, it is important to account for the presence of
short-range correlations (SRCs). We have carefully studied
this issue by two different methods. First, the Jastrow-type
correlation function, which modifies the relative part of the
harmonic-oscillator basis, φnl(r), to

φ′
nl(r) = [1 + f (r)] φnl(r),

with f (r) being parametrized as

f (r) = −γ e−αr2
(1 − βr2). (19)

Then the radial part of the TBME’s of the Coulomb and
Yukawa type potentials between the modified harmonic-
oscillator wave functions φ′

nl(r) and φ′
n′l(r) becomes∫ ∞

0
φ′

nl(r)v(r)φ′
n′l(r)dr

=
∫ ∞

0
φnl(r)v(r) [1 + f (r)]2 φn′l(r)dr. (20)

We used three different sets of parameters α, β, and γ in
Eq. (19): Those given by Miller and Spencer [57] and two
alternative sets recently proposed on the basis of coupled-
cluster studies with Argonne (AV18) and CD-Bonn potentials
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TABLE I. Parameters for the SRC function.

α β γ

Miller-Spencer 1.10 0.68 1.00
CD-Bonn 1.52 1.88 0.46
Argonne-V18 1.59 1.45 0.92

[48] (see Table I). For brevity, we refer to the two latter sets as
CD-Bonn and AV18.

Besides, we have also used another renormalization scheme
following the unitary correlation operator method (UCOM)
[59]. Since we need to correct only central operators, the
UCOM reduces to the application of central correlators only;
i.e., the radial matrix elements are of the form∫ ∞

0
φn′l(r)v (R+(r)) φnl(r)dr, (21)

where two different R+(r) functions have been used in S = 0,
T = 1 and S = 1, T = 1 channels, namely,

RI
+(r) = r + α

(
r

β

)η

exp

[
− exp

(
r

β

)]
, (22)

with α = 1.3793 fm, β = 0.8853 fm, η = 0.3724 in the S = 0,
T = 1 channel and

RII
+(r) = r + α

[
1 − exp

(
− r

γ

)]
exp

[
− exp

(
r

β

)]
, (23)

with α= 0.5665 fm, β = 1.3888 fm, γ = 0.1786 in the S = 1,
T = 1 channel [59].

The modifications of Vcoul brought about by different
approaches to the SRC issue are shown in Fig. 2. Similar
trends hold for Vρ and Vπ .

Although the UCOM renormalization scheme differs from
the Jastrow-type correlation functions, we can easily notice
that neither of the R+(r) functions strongly affects
the original potentials. Somewhat stronger modifications are
brought about by the CD-Bonn-based parametrization. The
Miller-Spencer parametrization of the correlation function
induces the highest suppression of the potentials at short
distances and leads to a vanishing value at r = 0. Similar
conclusions are reported in Ref. [60] in the context of ββ decay
studies. Strong modifications are clearly seen for AV18 as
well.

To illustrate the effect from different approaches to the
SRCs on the results to be discussed in the following, we present
in Table II the ratios of the Coulomb expectation values in the
ground and several low-lying excited states of a few selected
nuclei from the bottom, from the top, and from the middle of
the sd shell-model space, i.e., 18Ne (2 valence protons), 38K
(2 proton holes), and 30S and 26Mg, respectively. The second
column of Table II contains absolute expectation values of the
bare Coulomb interaction, while the other columns show the
ratios to it from Coulomb interaction expectation values which
include SRCs.

It is seen that the Miller-Spencer approach to SRCs
quenches the Coulomb matrix element (as well as that of

0.0

2.0

4.0

6.0

8.0

10.0

0 1 2 3 4 5

V
co

ul
 (

r) 
(M

eV
)

r (fm)

0.0

1.0

2.0

3.0

4.0

0  0.5 1  1.5 2

FIG. 2. (Color online) Vcoul(r) without SRCs (dotted black line), Vcoul(r) with proposed parameters for Jastrow-type SRC function on the
basis of coupled-cluster calculation with CD-Bonn (double-dashed red line) or with Argonne V18 [48] (solid blue line), Vcoul(r) with Miller-
Spencer parametrized Jastrow-type SRC function [57] (dashed purple line); Vcoul(RI

+(r)) from UCOM (dot-dashed green line), Vcoul(RII
+ (r))

from UCOM (double-dot-dashed brow line). The inset enlarges the left-hand part of this figure.
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TABLE II. Ratios of Coulomb expectation values of 18Ne, 38K, 30S, 26Mg, produced from various SRC approaches to evaluation without
(w/o) SRC.

〈ψ |Vcoul w/o SRC|ψ〉 〈ψ |Vcoul with SRC|ψ〉/〈ψ |Vcoul w/o SRC|ψ〉
(MeV) Miller-Spencer CD-Bonn Argonne V18 UCOM

Mass 18, 18Ne
0+ g.s. 0.531 0.900 1.008 0.978 0.958
2+ 0.449 0.961 1.010 0.997 0.981
4+ 0.389 0.984 1.007 1.001 0.991
0+ 0.412 0.952 1.005 0.990 0.979
2+ 0.380 0.993 1.006 1.003 0.994
0+ 0.425 0.980 1.011 1.004 0.987

Mass 38, 38K
0+ g.s. 16.402 0.986 1.007 1.003 0.991
2+ 16.316 0.986 1.007 1.003 0.992

Mass 30, 30S
0+ g.s. 10.721 0.984 1.007 1.002 0.990
2+ 10.696 0.985 1.007 1.002 0.991
2+ 10.704 0.985 1.007 1.002 0.991
1+ 10.632 0.987 1.007 1.003 0.992

Mass 26, 26Mg
0+ g.s. 2.518 0.967 1.008 0.998 0.984
2+ 2.480 0.974 1.008 1.000 0.986
2+ 2.491 0.972 1.008 0.999 0.986
0+ 2.491 0.972 1.008 0.999 0.986

the Yukawa ρ-meson exchange potential) and thus reduces
Coulomb expectation values more compared to other SRC
schemes. Interestingly, the CD-Bonn parametrization and in
some cases the AV-18 parametrization show even a small
increase of the Coulomb expectation value. Bearing this in
mind, in the next section we, however, perform a fit of the INC
parameters for all cited approaches to the SRCs.

III. RESULTS AND DISCUSSION

A. Fitting procedure

We have followed the fitting strategy proposed in Ref. [21].
First, we construct theoretical b and c coefficients Eq. (9) as
described in the previous section (using experimentally based
h̄ω and accounting for the SRCs by one of the above-mentioned
methods). Then, we separately fit them to experimental b and
c coefficients to get the most optimal values of λ(1)

ν and λ(2)
ν ,

respectively. We assume here that the isovector and isotensor
Coulomb strengths are equal. To this end, the isovector and
isotensor Coulomb strengths obtained in both fits are averaged
[λcoul = (λ(1)

coul + λ
(2)
coul)/2] and are kept constant. Then the rest

of the strength parameters are refitted with this fixed Coulomb
strength.

To verify our method, we performed a direct comparison
with the results of Ref. [21]. We have followed their setting
exactly by adopting the experimental values from Table V [61]
of Ref. [21], the parametrization of the h̄ω, and the scaling
factors (see Eqs. (3.5)–(3.7) of Ref. [21]) for TBMEs of V
and ISPEs, as well as the Miller and Spencer Jastrow-type
function [57] to account for the SRC effects [62]. We have

also imposed certain truncations on calculations for A = 22
and A = 34, as was done in that work [21].

In this way, we have successfully reproduced the strength
parameters given in Table II of Ref. [21].

For curiosity, besides the USD interaction, we have also
tested USDA and USDB [44], keeping the number of data
points as selected by Ormand and Brown, but using updated
experimental values from Ref. [63]. No truncations were used
in the calculations for A = 22 and A = 34. The corresponding
strength parameters are given in Table III. The uncertainties
on the strength parameters have been deduced from Eq. (16).
They are significantly smaller than the values published in
Ref. [21] where the authors used some folding with the rms

TABLE III. Strength parameters obtained in a fit to the number
of data points selected as in Ref. [21].

USD USDA USDB

rms (keV):

b coefficients 23.3 28.7 26.8

c coefficients 6.9 8.4 8.8

λcoul 1.0077 (1) 1.0157 (2) 1.0168 (2)

−λ
(1)
0 × 100 1.3430 (53) 1.2284 (64) 1.4669 (64)

−λ
(2)
0 × 100 4.0473 (122) 5.1755 (146) 4.9180 (139)

ε
(1)
0d5/2(MeV) 3.4076 (2) 3.4062 (2) 3.4009 (2)

ε
(1)
0d3/2(MeV) 3.3269 (6) 3.2966 (6) 3.2898 (6)

ε
(1)
0s1/2(MeV) 3.2739 (4) 3.2853 (5) 3.2756 (5)
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deviation [64]. It is remarkable that there is not much difference
between various nuclear interactions for the small data set and
all parameter strengths are in agreement with the range of
values found by Ormand and Brown (uncertainties included).

B. Experimental data base of b and c coefficients

In the present study we use for the fit an extended and
updated experimental data base where all latest relevant
experimental mass measurements and excited states have
been taken into account. Indeed, in Ref. [21], the selected
experimental data consisted of the bottom (A = 18–22)
and the top (A = 34–39) of the sd shell-model space and
included 42 experimental b coefficients and 26 experimental c
coefficients.

To get a realistic INC Hamiltonian, we take into account
in the present fit all available and well-described by the
sd-shell-model isobaric doublets (T = 1/2), triplets (T = 1),
quartets (T = 3/2), and quintets (T = 2) for nuclei between
A = 18 and A = 39. The experimentally deduced values of the
IMME a, b, c (and d, e) coefficients are taken from Ref. [63],
which represent an up-to-date version of the previous
evaluation performed by Britz et al. [65]. In particular, the
revised experimental database incorporates results of all
recent mass measurements from the evaluation [66] (or given
in specific references) and modern experimental level schemes
[67].

In this work we have used three different ranges of data in
a full sd-shell-model space.

(i) Range I. It includes all ground states (g.s.) and a few
low-lying excited states throughout the sd shell (note
that the middle of sd shell was not considered in
Ref. [21]). This range consists of 81 b coefficients and
51 c coefficients. For excited states, the discrepancy
between the energy calculated by the isospin-symmetry
invariant Hamiltonians and experimental excitation
energy is less than ∼200 keV.

(ii) Range II. It represents an extension of Range I, which
includes more excited states. It contains 26 more
T = 1/2 doublets, an additional triplet, and an addi-
tional quartet of state resulting in 107 b coefficients
and 53 c coefficients.

(iii) Range III. The widest range, which tops up Range II
with 32 more excited states from 25 doublets, 6 triplets,
and an additional quartet, resulting altogether in 139 b
coefficients and 60 c coefficients.

These three ranges of selected experimental data points
are the same for each fit with either the USD, USDA, or
USDB interactions. They are presented and discussed in
Sec. IV.

C. Results of the fit

All calculations have been performed in an untruncated sd
shell. The TBMEs of the schematic interactions (Coulomb and
meson exchange potentials) have been evaluated for A = 39
and scaled using experimentally obtained h̄ω. The fit procedure
is stated in Sec. III A.

1. INC Hamiltonian and Coulomb strength

We have tested five different combinations of the effective
charge-dependent forces: (i) Vcoul, (ii) Vcoul and Vπ , (iii) Vcoul

and Vρ , (iv) Vcoul and V0, (v) Vcoul, Vρ , and Vπ . The main
criterion for the choice of the best Hamiltonian structure
was the value of the rms and the value of the Coulomb
strength which was kept as a free parameter. It turned out
that almost all combinations gave similar rms values (within
2 keV). However, on the basis of the Coulomb strength
parameter we could make a selection. We suppose here
that the Coulomb strength should be close to unity. Indeed,
higher-order Coulomb effects which are not taken into account
here may be responsible for some deviations of the Coulomb
strength from unity. However, we suppose that this may be
within 1–2% and any stronger renormalization (5% or more)
should be avoided.

The Coulomb strengths from various combinations of the
INC Hamiltonians are summarized in Fig. 3. The calculations
correspond to the USD interaction and a fit to the data from
Range I, while all approaches to the SRCs were taken into
account. Other choices of the isospin-conserving interaction
and other ranges of data selections produce similar trends and
results.

First, using the Coulomb interaction as the only source of
the isospin-symmetry breaking produces a reasonable value of
the isovector strength (around 1.00), but the isotensor strength
largely deviates from unity (up to 1.19), with the corresponding
rms deviations of around 36 keV for b coefficients and of
around 18 keV for c coefficients. The average Coulomb
strength, λcoul is therefore larger than unity (around 1.10)
and results in an increased rms deviation for b coeffi-
cients. The resulting parameter strengths are summarized in

5
4
3
2
1
5
4
3
2
1
5
4
3
2
1
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1
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R
an
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 I

Averaged Coulomb Strength Parameters, 
−λcoul

Vcoul

Vcoul + Vπ

Vcoul + Vρ

Vcoul + V0

FIG. 3. (Color online) Average Coulomb strength parameter,
λcoul, as obtained from the fit with the USD interaction to the
Range I data selection (see Sec. III A for details). Down (blue)
triangles correspond to the fit with Coulomb force alone. The λcoul

obtained from Vcoul and Vπ are depicted by (purple) dots, and up
(black) triangles are λcoul obtained from Vcoul and Vρ combination,
whereas (red) squares represent λcoul from a fit with the Vcoul and
V0 combination of the two-body charge-dependent forces. y-axis tic
labels: 1, “without SRC”; 2, Miller-Spencer; 3, CD-Bonn; 4, AV-18;
5, UCOM.
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TABLE IV. Fitted strength parametersa for Coulomb as an only source of the isospin-symmetry breaking force.

USD

w/o SRC Miller-Spencer CD-Bonn Argonne V18 UCOM

rms (keV), b coefficientsb 60.4 79.9 60.3 65.8 67.6
rms (keV), c coefficients 20.1 26.5 20.0 21.8 22.5

λcoul 1.074 1.110 1.067 1.078 1.091

ε
(1)
0d5/2(MeV) 3.234 3.216 3.234 3.229 3.228

ε
(1)
0d3/2(MeV) 3.060 2.963 3.057 3.030 3.025

ε
(1)
1s1/2(MeV) 3.261 3.265 3.262 3.263 3.263

aAll strength parameters are presented in four significant figures.
bBefore averaging λ

(1)
coul and λ

(1)
coul, the rms deviations for b coefficients are ∼32.8 keV.

Table IV. This is the manifestation of the so-called Nolen-
Schiffer anomaly first evidenced in T = 1/2 mirror energy
shifts [68] and later also found in T = 1 displacement energies
(e.g., see Refs. [69,70], and references therein). We find that
the Coulomb potential alone satisfactorily describes the mirror
energy differences (low rms deviations for b coefficients),
possibly owing to the fact that the Coulomb effects of the core
are taken into account through empirical ISPEs (established
by the fit as well). However, the Coulomb force alone does not
reproduce experimental isotensor shifts (larger values of the
Coulomb isotensor strength). Since the sd-shell-model wave
functions include configuration mixing fully within the 0h̄ω
model space, this may be an evidence for the necessity of
charge-dependent forces of nuclear origin.

Next, it turns out that the Coulomb interaction com-
bined with the pion-exchange potential Vπ also requires a
strong renormalization of the Coulomb strength. This was
noticed already by Ormand and Brown in Ref. [21]. The
Coulomb strength reduces to about 0.8 for the Miller-Spencer
parametrization of the Jastrow function, while this factor is
around 0.9–0.95 for other SRC approaches. For these reasons,
we do not use pion exchange to model charge-dependent
nuclear forces in this work.

A better description is provided by the exchange of a
more massive meson, e.g., the ρ meson. Following theoretical
studies [71–73], we use in the present work an 85% reduction
in the mass of ρ meson. A better agreement with the exchange
of a meson heavier than the pion may signify a shorter range
of a charge-dependent force of nuclear origin.

We confirm also the conclusion of Ref. [21] that a
combination of the pion and ρ meson exchange potential to
model nuclear charge-dependent forces does not allow one to
improve the value of the rms deviation. This is why we present
here strength parameters only for two combinations of the
charge-dependent forces from the list above, namely, (iii) Vcoul

and Vρ and (iv) Vcoul and V0. The resulting rms deviation of
these fits and the corresponding Coulomb strengths are indeed
rather close, in agreement with the conclusion of Ref. [21].
We discuss both cases in the next section.

2. rms deviation values and strength parameters

Table V gives an overview of strength parameters for two
types of the INC Hamiltonian: (iii) Vcoul and Vρ (columns

3, 5, and 7) and (iv) Vcoul and V0 (columns 2, 4, and 6).
Calculations have been performed with the USD, USDA,
and USDB nuclear Hamiltonians and for each of the three
data ranges. All four approaches to SRC (Jastrow-type
function with three different parametrizations or UCOM)
from Sec. II B2 have been tested and the intervals of parameter
variations are indicated in the table.

As seen from Table V, the rms deviation changes little for
various approaches to the SRCs (within 1 keV) and for both
types of the charge-dependent Hamiltonian.

The rms deviation turns out to depend mainly on the
number of data points used in a fit. It is remarkable that
although Range I contains almost twice the number of data
points of Ref. [21], the rms deviation increases only by
∼5 keV. Overall, the rms deviation of Range II is ∼30%
higher compared to Range I, while the rms deviation value for
Range III is about twice as large as that of Range I. It should
also be remembered that low-lying states calculated with the
isospin-conserving USD/USDA/USDB interactions are, in
general, in better agreement with experiment than high-lying
states.

We notice that the USD interaction always produces slightly
lower rms deviations than USDB and USDA. This happens
even in the fits to Range III data, although the USD was
adjusted to a smaller set of excited levels as compared to
the later versions USDA and USDB.

Variations in the values of the parameters indicated in
each entry of the table are attributable to the different SRC
approaches. In general, more quenched expectation value of
an operator results in a higher value of the corresponding
parameter strength. The most crucial role is played by the
Coulomb potential, because it is the major contribution to
isobaric mass splittings. Deviations can be slightly greater or
less than unity for different combinations of charge-dependent
forces.

To reduce the discrepancy, the strengths of the charge-
dependent forces of nuclear origin, λ

(q)
ν 	=coul, are adjusted

in the fit in a way to match experimental isobaric mass
splittings. We keep the isovector and isotensor strengths
of the nuclear charge-dependent forces as two independent
parameters.

a. Vcoul and V0 combination. These combinations almost
always produce the lowest rms deviations for b and c
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TABLE V. Various combinations of INC potential and their strength parameters.

Data Range USD USDA USDB

Vcoul + V0 Vcoul + Vρ Vcoul + V0 Vcoul + Vρ Vcoul + V0 Vcoul + Vρ

Range I

rms (keV):

b coefficients ∼32.2 ∼32.7 ∼35.2 ∼34.5 ∼34.3 ∼33.9

c coefficients ∼9.1 ∼10.5 ∼10.3 ∼10.9 ∼9.7 ∼10.6

λcoul 1.006–1.015 1.002–0.9839 1.007–1.016 0.9993–0.9852 1.008–1.018 0.9987–0.9845

−λ
(1)
0 × 100 0.8162–1.637 – 0.7845–1.715 – 0.9211–1.815 –

−λ
(2)
0 × 100 2.629–3.861 – 2.915–4.227 – 2.851–4.122 –

−λ(1)
ρ (MeV) – 4.465–100.0 – 0.8517–82.69 – 2.228–89.52

λ(2)
ρ (MeV) – 33.52–209.8 – 35.27–217.1 – 35.40–216.9

ε
(1)
0d5/2(MeV) 3.278–3.279 3.294–3.295 3.269–3.276 3.295–3.298 3.267–3.272 3.293–3.295

ε
(1)
0d3/2(MeV) 3.277–3.299 3.294–3.302 3.273–3.298 3.301–3.312 3.265–3.286 3.297–3.306

ε
(1)
0s1/2(MeV) 3.319–3.336 3.344–3.346 3.327–3.346 3.360–3.367 3.323–3.341 3.358–3.362

Range II

rms (keV):

b coefficients ∼44.1 ∼44.1 ∼46.4 ∼47.0 ∼45.5 ∼46.6

c coefficients ∼9.3 ∼10.6 ∼10.4 ∼10.9 ∼9.8 ∼10.7

λcoul 1.008–1.017 0.9808–1.005 1.008–1.017 0.9826–1.006 1.009–1.019 0.9814–1.005

−λ
(1)
0 × 100 1.202–2.019 – 1.149–2.079 – 1.324–2.215 –

−λ
(2)
0 × 100 2.611–3.843 – 2.901–4.213 – 2.836–4.106 –

−λ(1)
ρ (MeV) – 10.44–120.3 – 6.601–103.3 – 8.366–110.8

λ(2)
ρ (MeV) – 33.87–212.2 – 35.54–219.1 – 35.76–219.3

ε
(1)
0d5/2(MeV) 3.271–3.273 3.289–3.291 3.267–3.271 3.292–3.295 3.257–3.261 3.261–3.265

ε
(1)
0d3/2(MeV) 3.273–3.295 3.283–3.290 3.271–3.296 3.289–3.299 3.266–3.288 3.262–3.282

ε
(1)
0s1/2(MeV) 3.283–3.301 3.300–3.304 3.290–3.310 3.313–3.322 3.320–3.342 3.286–3.305

Range III

rms (keV):

b coefficients ∼65.0 ∼65.2 ∼67.4 ∼67.4 ∼65.7 ∼66.0

c coefficients ∼10.2 ∼10.5 ∼11.3 ∼10.8 ∼10.6 ∼10.5

λcoul 1.015–1.025 0.9743–1.004 1.017–1.027 0.9780–1.007 1.018–1.028 0.9752–1.005

−λ
(1)
0 × 100 2.331–3.189 – 2.453–3.423 – 2.591–3.515 –

−λ
(2)
0 × 100 2.408–3.648 – 2.690–4.012 – 2.634–3.915 –

−λ(1)
ρ (MeV) – 37.85–228.6 – 3.300–210.6 – 36.02–220.4

λ(2)
ρ (MeV) – 33.61–215.0 – 35.04–221.1 – 35.54–222.5

ε
(1)
0d5/2(MeV) 3.245–3.247 3.256–3.258 3.237–3.241 3.261–3.262 3.233–3.237 3.260–3.261

ε
(1)
0d3/2(MeV) 3.228–3.251 3.169–3.186 3.226–3.251 3.179–3.191 3.219–3.240 3.174–3.187

ε
(1)
0s1/2(MeV) 3.152–3.168 3.125–3.127 3.147–3.165 3.125–3.127 3.153–3.170 3.127–3.131

coefficients. Fitted to the smallest range of data, the isovector
and isotensor strengths of the nuclear isospin-violating contri-
bution represent about 0.7–1.7% and 2.9–4.2%, respectively,
of the original isospin-conserving sd interaction. We notice
that in a fit to the Range III data, the charge-asymmetric part
of the interaction increases up to 2.3–3.2% of the nuclear
interaction.

The Miller-Spencer parametrization and UCOM SRC
schemes quench the Coulomb expectation values more than

the AV-18 and CD-Bonn parametrizations (see Table II as an
example). This is why the highest values of λcoul in columns 2,
4, and 6 belong to UCOM SRC and λcoul of the Miller-Spencer
parametrization SRC are very close to them. At the same time,
those parametrizations result in the most negative values of
λ

(q)
0 in columns 2, 4, and 6 to compensate for the Coulomb

effect.
b. Vcoul and Vρ combination. For the combination of

the Coulomb and Yukawa ρ-exchange-type potentials as the
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isospin-symmetry breaking forces it should be noted that
typical expectation values of Vρ are about 3 to 4 orders
of magnitude smaller than the expectation values of Vcoul.
Therefore, small variations in the Coulomb strength (of the
order of 1–2%) require a factor of up to 20 variation in the
corresponding strength λ

(q)
ρ (e.g., the magnitudes of isovector

ρ-exchange strengths range from 4.4 to 100 for the USD
interaction in the Range I data selection). So, the ρ-exchange
potential strength is very sensitive to the SRC procedure. It
is not surprising that the lowest absolute λ

(q)
ρ in columns

3, 5, and 7, corresponds to evaluations without taking SRC
into account; however, with the presence of SRC, the lowest
absolute λ

(q)
ρ are from the CD-Bonn parametrization. The

lowest λcoul and, therefore, the highest absolute λ
(q)
ρ in columns

3, 5, and 7 belong to the Miller-Spencer parametrization SRC.
The λcoul values being closest to unity are from the CD-
Bonn and UCOM SRC schemes for the three ranges of data
(see also Fig. 3).

Again we notice an increase of the isovector parameter λ(1)
ρ

in a fit to the Range III data. As was mentioned in Ref. [21], at
that time it was not possible to conclude in that work whether
the small asymmetry of the effective interaction is attributable
to the original asymmetry of a bare NN force, or whether
it was a radial wave function effect [70]. Our present results
show that including more and more excited states leads to a
bigger asymmetry value. Most probably, it is a manifestation
of the radial wave functions effect, because asymmetry in the
proton and neutron wave functions becomes larger in higher
excited states.

Regarding the ISPEs, their values stay consistent within
certain intervals. Amazingly, the value of ε

(1)
0d5/2 stays almost

constant, without showing any dependence on the particular
SRC approach, most probably because it is the orbital which
is most constrained by the data. At the same time, the value of
ε

(1)
0d3/2 depends somewhat on the SRC procedure. The highest

value of ε
(1)
0d3/2 in column 2 always corresponds to the Miller-

Spencer parametrization SRC. The values of ε
(1)
0d3/2 and ε

(1)
1s1/2

change much less for the Vcoul and Vρ combination than for
the Vcoul and V0 combination (with the exception of the USDB
interaction in the Range II data fit). As a general trend we
notice a reduction of the values of ISPEs when we increase the
number of data points in a fit.

The values of parameters given in Table V lie outside the
intervals obtained by Ormand and Brown who considered the
Vcoul and V0 combination. In particular, we get systematically
lower values of the isotensor strength parameter λ

(2)
0 , as

well as lower values of ε
(1)
0d5/2, even for the Range I of

data.
The inclusion of nuclei from the middle of the sd shell,

combined with the latest experimental data and with the
newly developed approaches to SRC allowed us to construct
a set of high-precision isospin-violating Hamiltonians in
the full sd-shell-model space. They reproduce the experi-
mental b and c coefficients with very low rms deviations;
cf. Table V. The ratios of the rms deviations of various
SRCs, with USD, USDA, and USDB to the average |b|
coefficients in sd-shell space are less than ∼0.01. A few

applications of these Hamiltonians are considered in the next
sections.

IV. THEORETICALLY FITTED b AND c COEFFICIENTS

Theoretical b and c coefficients discussed in this section
are obtained in a fit of the parameters of the charge-dependent
Hamiltonian, consisting of the Coulomb interaction (with
UCOM type of the SRC) and V0, on top of the USD interaction,
to the experimental data from Range I. The obtained numerical
values, as well as corresponding experimental data, are given
in Tables XII–XV for doublets, triplets, quartets, and quintets,
respectively.

Before we begin the discussion, let us consider predictions
for b and c coefficients given by the uniformly charged sphere
model [74]. In this approach, the total Coulomb energy of a
nucleus is considered as a uniformly charged sphere of radius
R = r0A

1/3,

Ecoul = 3e2

5R
Z(Z − 1)

= 3e2

5r0A
1
3

[
A

4
(A − 2) + (1 − A)Tz + T 2

z

]
, (24)

giving rise to the following expressions for b and c coefficients
of the IMME [10,75]:

b = −3e2

5r0

(A − 1)

A
1
3

, c = 3e2

5r0

1

A
1
3

, (25)

where e2 = 1.44 MeV fm and we use here the value of
r0 = 1.27 fm.

Assuming Z(Z − 1) ≈ Z2 in Eq. (24), one can get an even
simpler form of b coefficients, namely,

b = −3e2

5r0
A2/3. (26)

A much more precise estimation of b coefficients can
be obtained from the Coulomb energy containing in the
macroscopic part of Möller and Nix model [76], namely,

Ecoul(A,Z) = c1
Z2

A1/3
B3 − c4

Z4/3

A1/3

+ f (kf rp)
Z2

A1/3
− ca(N − Z), (27)

where c1 = 3e2/(5r0) and c4 = 5/4[3/(2π )]2/3c1 are param-
eters entering in the direct and exchange Coulomb energy
terms, respectively, the proton form-factor correction (the
third term) estimated for the nuclei in the middle of sd shell
(Z = 14, A = 28) and the proton radius rp = 0.8 fm involves
f = −0.2138 MeV, while the charge-asymmetry term (the last
term) enters with ca = 0.145 MeV. The parameter B3 defining
in general the relative Coulomb energy for an arbitrary shape
nucleus has in the leading order (for a spherical nucleus) the
following expression:

B3 = 1 − 5

y2
0

+ 75

8y3
0

− 105

8y5
0

, (28)

with y0 = αA1/3, and α = r0/aden ≈ 1.657.
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From Eq. (27), one can get the expressions

b = c1A
2/3 + 75c1

8α3
A−1/3 − 105c1

8α5
A−1

− 5c1

α2
− 4c4

3(2)1/3
+ f (kf rp) + 2ca, (29)

c = c1A
−1/3 −

(
5c1

α2
+ 4c4

9(2)1/3

)
A−1

+ f (kf rp)A−1 + 75c1

8α3
A−4/3 − 105c1

8α5
A−2, (30)

for the IMME b and c coefficients, which lead to the following
numerical expressions:

b = 0.7448A2/3 − 1.8819 + 1.535A−1/3

− 0.7826A−1 [MeV], (31)

c = 0.7448A−1/3 − 1.771A−1 + 1.535A−4/3

− 0.7826A−2 [MeV]. (32)

We use these estimations in our analysis of the values
obtained by a shell-model fit.

A. Fitted b coefficients

Theoretical b coefficients are shown in Figs. 4 and 5 in
comparison with experimentally deduced values [63]. Overall,
the deviations of b coefficients obtained in a shell-model fit
from the experimental ones are less at the top and the bottom of
sd-shell space than the deviations in the middle shell. The only
exception is the 1

2
+

doublet of A = 39, for which the difference
between theoretical and experimental b coefficients comes out

to be 107.6 keV. However, if we refit the Hamiltonian param-
eters according to the smaller data range selected in Ref. [21]
(the bottom and the top of the sd shell), this deviation for the
1
2

+
doublet of A = 39 reduces to 49.8 keV. Thus, the reason

for a noticeable discrepancy for that point in a full sd shell
Range I fit may be attributable to the inclusion of data from
the middle shell. On the other hand, if we refit the parameters
using extended data sets, Range II and Range III, this deviation
reduces to 82 and 0.7 keV, respectively. It is because the
addition of more data points renormalizes the discrepancies
of the fit. Although the inclusion of the b coefficient of the 1

2
+

doublet of A = 39 reduces the quality of the fit, we retain it in
the data set to adjust the ISPEs ε

(1)
i in Eq. (7).

Let us remark that the quality of the fit is already somewhat
predetermined by the quality of the original isospin-conserving
two-body interaction. For example, a very accurate description
of low-lying states in A = 35 nuclei by the USD interaction
leads to the values of theoretical b coefficients of the A = 35
doublets that are close to the experimental ones (see Table XII).
Another factor, the major factor, that influences the values of
the obtained deviations is a characteristic property of the error-
weighted least-squares fit. Experimental b coefficients with
very low error bars are favored in the shell-model fit and the
corresponding theoretical b coefficients have typically rather
low deviations. This is the reason why most of the lowest-
lying multiplets’ b coefficients are very close to experimental
values. For example, the deviation between theoretical and
experimental b coefficients of the mass A = 32 quintet, the
best known quintet in the sd shell, is the lowest among the
five quintets. Therefore, advances in mass measurements and
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FIG. 4. (Color online) Experimental and theoretical |b| coefficients in sd-shell nuclei plotted as a function of A. Minor x-axis tics are J

states, which are arranged in an increment of 0.05 for every 1
2 step.
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FIG. 5. (Color online) Experimental and theoretical |b| coefficients in sd-shell nuclei plotted as a function of A2/3. Dot-dashed line is
|b| = 3e2(A−1)

5r0A1/3 , double-dot-dashed line is |b| = 3e2

5r0
A2/3, the dashed line represent b values from Möller and Nix model Eq. (29).

nuclear excitation energies providing data points with low
error bars may influence the data, which are dominant in
adjusting the strengths of charge-dependent forces in the INC
Hamiltonian, in particular, data from the top and from the
bottom of sd-shell space, which are used to calibrate the
ISPEs. Similar magnitudes of deviations are obtained for other
combinations of charge-dependent forces. For the USDA and
USDB interactions (with either Vcoul + V0 or Vcoul + Vρ , and
with different SRC schemes), the deviations are a few keV
higher than those obtained in the calculations with the USD
interaction.

As suggested by Eq. (26), we plot experimental and
theoretical b coefficients (obtained from a shell-model fit)
as a function of A2/3 in Fig. 5. It is evident that theoretical
values are in remarkable agreement with the experimental
data. For comparison, we show b coefficients obtained from
the uniformly charged sphere model and from the Möller and
Nix model as well. Predictions of the former reproduce well
the trend of the b coefficients; however, they are about 500 keV
off the experimental values when given by Eq. (25) and there
is even a larger discrepancy (about 800 keV) for a simplified
form given by Eq. (26). Clearly, the ratio 1/Z for sd-shell
space nuclei is not negligible with respect to Z. The Möller
and Nix model produces a much better agreement with the
experimental data, slightly underestimating the experimental
values on average.

Although it is not seen in the scale of Fig. 5, in fact, the b
coefficients in the sd-shell-model space exhibit some regular
oscillations around a straight line, representing the best fit
of a linear function of A2/3 to the data points. This effect is
discussed in Sec. IV C.

B. Fitted c coefficients

The c coefficients obtained in the shell-model fit (see
Tables XIII–XV) are plotted in Figs. 6 and 7. The discrepancy
between theoretical and experimental values for nuclei from
the top and from the bottom of sd-shell-model space are
larger than for nuclei from the middle of the shell. Possible
reasons for this have been mentioned above; namely, it
can be attributable to the larger experimental error bars
and/or lower accuracy of the corresponding isospin-conserving
Hamiltonian to describe the energy levels. In Fig. 7, we plot the
c coefficients as a function of A−1/3, as suggested by Eq. (25).
Let us mention a few interesting features.

(i) One easily notices a well-pronounced oscillatory trend
in the lowest-lying triplets’ c coefficients connected by
the solid line in Fig. 7. These values are always the
highest or the lowest c coefficients, except for A = 20,
24, 28, and 32. This trend is also inherent to the
corresponding experimental c coefficients [63].

(ii) The first higher-lying triplets’ c coefficients also exhibit
regular oscillations, but of a smaller amplitude than
those described above. The corresponding shell-model
data points are connected by a double-dot-dashed line.

(iii) The other higher-lying triplets’ and quartets’ c coef-
ficients lie somewhere in the middle part of the plot
between maxima and minima of low-lying triplets’
c coefficients without any particular behavior. The
quartets’ c coefficients do not display any staggering
effect. The quintets’ c coefficients connected by the dot-
dashed line follow well the prediction of the uniformly
charged sphere, c = 3e2

5r0
A−1/3 (dashed line).

054304-13



YI HUA LAM, NADEZDA A. SMIRNOVA, AND ETIENNE CAURIER PHYSICAL REVIEW C 87, 054304 (2013)

 0.1

 0.2

 0.3

 17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40

c 
co

ef
fi

ci
en

ts
 (

M
eV

)

Nuclear Mass Number: (major tics A mass), (minor tics J states)

Experiment

Shell-model fit

FIG. 6. (Color online) Experimental and theoretical c coefficients plotted as a function of A. Minor x-axis tics are J states, which are
arranged in an increment of 0.05 for every 1

2 step.

The shell-model c coefficients are seen to be in very good
agreement with the experimental data. The uniformly charged
sphere model describes well the overall trend of c coefficients,

following about the average values, but it cannot predict the
oscillatory behavior of the c coefficients. Similarly, the c
coefficients from the Möller and Nix model exhibit quite a
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FIG. 7. (Color online) Experimental and theoretical c coefficients in sd-shell nuclei plotted as a function of A−1/3. The black dashed line
represents c coefficients from a charged sphere model, while the double-dot-dashed line shows the prediction according to Möller and Nix
model [Eq. (30)].
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FIG. 8. (Color online) Staggering effect of the b coefficients of the ground-state doublets and of the lowest-lying quartets in sd-shell nuclei.
Plot (a): |b| values of the ground-state doublets (left y axis) and the lowest-lying quartets (right y axis). For T = 1/2, the solid (blue) line b =
0.7447A2/3 − 1.2551 (MeV), the dashed (black) line 0.7442A2/3 − 1.1987, and the dot-dashed (black) line b = 0.7463A2/3 − 1.3329 (MeV),
represent best fits to experimental values for all the A, A = 4n + 3 and A = 4n + 1 isobars, respectively. For T = 3/2, the double-dot-dashed
line b = 0.7441A2/3 − 1.2547 (MeV) is obtained by a fit to all experimental b coefficients. Plots (b)–(d): deviations of b coefficients from the
respective fitted to all data points lines. The experimental b values are represented by (blue) triangles and b obtained in a shell-model fit are
shown by (red) squares.

smooth trend, reproducing well the experimental values for
A = 4n multiplets.

C. Staggering behavior of b and c coefficients

The oscillatory effects in IMME b and c coefficients were
noticed by Jänecke in the 1960s, cf. Refs. [16,77], although
at that moment the available experimental data were limited
to T � 1 multiplets. Since then, a few analytical models have
been proposed to explain the oscillatory effect. One of the
approaches, proposed by Hecht [78], was based on Wigner’s
supermultiplet scheme. Another explanation was given by
Jänecke [16,77] in the framework of a schematic approach
to Coulomb pairing effects.

In this section we revisit the staggering effect of the b and c
coefficients of sd-shell nuclei based on a much more extended
set of experimental data, which fully covers the lowest-lying
doublets, triplets, quartets, and quintets, and we explore it
theoretically using the constructed empirical INC shell-model
Hamiltonian. For the first time, we identify contributions of
various isospin-symmetry breaking terms to the b coefficient
(isovector energy) and the c coefficient (isotensor energy).

1. Perspective of empirical INC Hamiltonians

To evidence a staggering phenomenon, we plot the b
coefficients obtained from experiment and from a shell-model
fit for the lowest-lying doublets and quartets in sd-shell nuclei
in Fig. 8(a). The oscillatory behavior of the b coefficients of

doublets and quartets is clearly seen now. The data points form
two families for A = 4n + 1 and A = 4n + 3 multiplets lying
slightly above and under the middle straight line, respectively.
There is no staggering effect in the b coefficients of T = 1
triplets; cf. Fig. 8(d). This general behavior of the b coefficients
of doublets, quartets, and triplets agree with what had been
noticed by Jänecke [77] and by Hecht [78]. The quintets’ b
coefficients are known only for the lowest A = 4n multiplets
and therefore we cannot discuss them on the same footing
because of missing data.

To magnify the effect of oscillations, we show deviations of
the experimental and theoretical values from fitted middle lines
(solid line for T = 1/2 multiplets and double-dot-dashed line
for T = 3/2 multiplets) in Figs. 8(b) and 8(c). Interestingly, the
oscillations of doublet b coefficients are of a higher amplitude
compared to those of quartet b coefficients and they are in
the opposite direction. This tendency is naturally manifested
in Wigner’s supermultiplet theory [16,79,80]. As seen from
these figures, the b coefficients obtained in a shell-model fit for
doublets and quartets follow the experimental trend extremely
accurately, reproducing very precisely the general trend and
the staggering amplitude.

Since the charge-dependent term in the INC Hamiltonian is
given by a combination of three components, λcoulVcoul, λ0V0,
and ISPEs,

∑
i εi , we can explore what contribution from each

component to the total b value is. The results are shown in
Figs. 9 and 10 for the doublets’ and the quartets’ b coefficients,
respectively.

054304-15



YI HUA LAM, NADEZDA A. SMIRNOVA, AND ETIENNE CAURIER PHYSICAL REVIEW C 87, 054304 (2013)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7 8 9  10  11  12

0

1

2

3

4

5

6

7
|b

| c
oe

ff
ic

ie
nt

s
 (

M
eV

)

co
nt

ri
bu

ti
on

 o
f c

ha
rg

e-
de

pe
nd

en
t f

or
ce

 (
M

eV
)

A2/3

Exp. b coef.
Shell-model b coef.

Contributions:
Vcoul

(1)

V0
(1)× 20

Σiεi
(1)

7.0
19 21 23 25 27 29 31 33 35 37 39 07b b

A

FIG. 9. (Color online) Contributions of the various charge-
dependent forces to doublet (T = 1/2) b coefficients. The |b| values
are plotted as a function of A2/3. The total |b| values refer to the left y
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multiplied by 20.

Qualitative analysis leads to rather similar conclusions
for both doublets’ and quartets’ b coefficients. The isovec-
tor Coulomb component is the main contribution to the
staggering effects of the b coefficients of doublets and
quartets (Figs. 9 and 10, respectively). It is interesting to
note that the isovector charge-dependent term of nuclear
origin, λ0V

(1)
0 , produces the same oscillatory trend as that

from the Coulomb force, but of a much smaller amplitude.
The one-body contribution, however, does not produce any
oscillations. This could be expected, because the staggering
effect is a manifestation of the Coulomb contribution to the
pairing.

In general, the values of higher-lying multiplets’ b coeffi-
cients follow more and more smooth trends and the staggering
gradually disappears.

The general features of staggering have already been
discussed in Sec. IV B. In Fig. 11 we plot separately the c
coefficients of the lowest-lying triplets (the upper part of the
figure) and the lowest-lying quartets and quintets (the lower
part of the figure) in sd-shell nuclei. The c coefficients obtained
in the shell-model fit reproduce the experimental values very
precisely (with the largest deviation of about 15 keV; see also
Tables XIII–XV).

The experimental and shell-model fitted c coefficients of
triplets clearly form two distinct families of multiplets for
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FIG. 10. (Color online) Contributions of the various charge-
dependent forces to the lowest-lying quartet (T = 3/2) b coefficients.
Refer to Fig. 9 for further description.

A = 4n and A = 4n + 2 nuclei, respectively. However, no
oscillations can be noticed for T = 3/2 multiplets. The c
coefficients of quintets are known only for A = 4n multiplets
which follow a quite smooth trend with mass number.

Contributions of different terms of the charge-dependent
Hamiltonian to the lowest-lying triplets’ c coefficients are
shown in Fig. 12. One can see that the isotensor Coulomb
force V

(2)
coul plays the major role. Furthermore, the plot also

indicates that V
(2)

coul alone does not reproduce the magnitude
of the experimental c coefficients. For the A = 4n + 2 family,
the deviation is about ∼40 keV, while for the A = 4n family, it
is around ∼5 keV. This indicates that the Coulomb interaction
should be supplemented by another two-body interaction of
nuclear origin, which we model as V

(2)
0 (or V (2)

ρ ) in this paper
and which perfectly fulfills its task. The contribution of the
empirical isotensor nuclear interaction results in the same
oscillatory trend as that of the isotensor Coulomb component,
with the values being of about ∼40 keV for A = 4n multiplets
and ∼5 keV for A = 4n + 2 multiplets (with a negative value
for the lowest A = 36 triplet). Thus, the experimental values
of c coefficients are perfectly reproduced.

A similar decomposition of the theoretical c coefficients for
quintets is given in Fig. 13. As has been already mentioned,
the data on A = 4n + 2 multiplets is required to establish the
existence of the staggering effect. It is seen, however, that the
contribution from the isotensor nuclear force to quintets’ c
coefficients shows some noticeable oscillatory effect between
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FIG. 11. (Color online) Staggering effects of c coefficients of the
lowest-lying triplets [plot (a)], and quartets and quintets [plot (b)]. See
text for discussion. In the bottom panel, the dot-dashed (black) line,
c = 651.6A−1/3 + 2.6 (keV), is an unweighted fit to the experimental
c coefficients. The solid (blue) line, c = 520.7A−1/3 + 44.1 (keV), is
an unweighted fit to the c coefficients obtained in a shell-model fit.

A = 8n and A = 8n + 4 multiplets. It may possibly change to
the staggering characteristics for triplets’ c coefficients when
data on A = 4n + 2 becomes available.

The c coefficients of high-lying multiplets are systemat-
ically known only for triplets. As mentioned in the previous
section, the first high-lying triplets’ c coefficients oscillate with
a smaller amplitude, while c coefficients of other high-lying
multiplets follow a more or less smooth trend. This is probably
related to the destroying of the pairing effects with increasing
excitation energy in nuclear systems.

Very similar trends and exactly the same conclusions can be
inferred if other sd-shell-model interactions are used instead
of USD, or other charge-dependent Hamiltonians (with other
SRC schemes). This proves the robustness of the effects
described above.

2. Jänecke’s schematic model

Jänecke’s model [16,77] is based on an approximate
formula for the Coulomb energy of valence proton(s) outside
a closed shell, which was proposed by Carlson and Talmi [81].

To match the trend of the total Coulomb energy of a nucleus
as represented by the IMME, Jänecke replaced the Coulomb
pairing term [81] with a quadratic term in Tz [77].
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FIG. 12. (Color online) Contributions of the various charge-
dependent forces to the lowest-lying triplet c coefficients. All c values
refer to the left y axis, while the contributions from V
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As a result, one can deduce the following expressions for
isovector, E

(1)
coul, and isotensor, E

(2)
coul, contributions,

E
(1)
coul = 1

2E1A + E2 + μE3, (33)

and

E
(2)
coul = 1

6 (E1 + 2νE3) , (34)

where the energies Ei are related to one and two-body
electromagnetic interactions, while μ and ν are some pa-
rameters. In Ref. [77], assuming an independent-particle
model with fourfold degenerate orbitals, Jänecke could es-
timate a probability for the number of proton pairs to
occupy the same orbital and, thus, he could deduce a
contribution to the Coulomb energy for a given A and
T . He obtained the following parametrization for μ and ν
values:

μ =
{

1
2 , A-even,

1
2

(
1 − (−1)A/2−T

2T

)
, A-odd,

(35)
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FIG. 13. (Color online) Contributions of the various charge-
dependent forces to the lowest-lying quintet c coefficients. All c

values and the contribution from V
(2)
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the contribution from V

(2)
0 refers to the right y axis.

and

ν =
{

1
4T

(
1 + (−1)A/2−T

2T −1

)
, A-even,

1
4T

, A-odd, T > 1
2 .

(36)

As was remarked in Ref. [77], the coefficients Ei with i = 1,
2, and 3, are related to the expectation value of 1/r , because
the average distance between protons should increase with the
nuclear volume. Therefore, if we assume that Ei = Êi/A

1/3,
with Êi being constant values, different from one shell to
another shell, the isovector Coulomb energy will become a
linear function of A2/3 and the isotensor energy will be a
linear function of A−1/3 [because E1 is the leading term in
expressions (33) and (34)].

a. Isovector Coulomb energies. Using Eq. (33) and the
respective μ values, we may derive the isovector Coulomb
energies for doublets, triplets, quartets, and quintets as

E
(1)
coul (T =1/2) = 1

2
E1A + E2 + 1

2
E3 + (−1)(A+1)/2 E3

2
, (37)

E
(1)
coul (T =1) = 1

2
E1A + E2 + 1

2
E3, (38)

E
(1)
coul (T =3/2) = 1

2
E1A + E2 + 1

2
E3 + (−1)(A−1)/2 E3

6
, (39)

E
(1)
coul (T =2) = 1

2
E1A + E2 + 1

2
E3, (40)

respectively. From the last terms of Eqs. (37) and (39), deter-
mining the amplitude of the oscillations of the b coefficients
of doublets and quartets, we see that the amplitude of quartets’
c coefficients is predicted to be three times smaller than
that for doublets. Equations (38) and (40) indicate that no
oscillatory behavior is expected for triplets’ and quintets’
isovector Coulomb energies (or b coefficients).

b. Isotensor Coulomb energies. From Eqs. (34) and (36),
we can obtain the isotensor Coulomb energies for triplets,
quartets, and quintets as

E
(2)
coul (T =1) = 1

6

(
E1 + 1

2

[
1 − (−1)A/2E3

])
, (41)

E
(2)
coul (T =3/2) = 1

6

(
E1 + 1

3E3
)
, (42)

E
(2)
coul (T =2) = 1

6

(
E1 + 1

4

[
1 − 1

3 (−1)(A−2)/2E3
])

, (43)

respectively. The last term of Eqs. (41) and (43) shows that
triplets’ and quintets’ c coefficients exhibit regular oscillations
as a function of A, with the amplitude for triplets being six
times larger than that for quintets [c = 3E

(2)
coul; see Eq. (9)].

Equation (42) shows that the quartets’ isotensor Coulomb
energy E

(2)
coul (T =3/2) is predicted to be a constant which may

vary from one shell to another. Hence, an oscillatory behavior
is not predicted for quartets’ c coefficients.

Performing a linear fit to the experimental b coefficients
for the lowest-lying doublets, we have determined the values
of E1 = 487 keV, E2 = 1199 keV, and E3 = 134 keV for
sd-shell nuclei. The value of E3 deduced from the fit to
b coefficients predicts the 1

2E3 = 68 keV amplitude for c
coefficients in T = 1, which is in very good agreement with
the experimental value. Analysis of staggering in other model
spaces and the values of Ei coefficients will be published
elsewhere [80].

V. MASSES AND EXTENSION OF THE IMME
BEYOND THE QUADRATIC FORM: EXAMPLE

OF THE A = 32 QUINTET

The fit and the analysis in Sec. IV C are based on the
assumption of a quadratic form of the IMME, which is a
very good approximation, valid at present for the majority of
experimentally measured isobaric multiplets. However, some
experimental cases evidence the breaking of the quadratic
IMME (e.g., see Refs. [63,65], and references therein, as well
as Refs. [82–85]). We consider here an extended IMME up to
a quartic form,

M(α, T , Tz) = a(α, T ) + b(α, T )Tz + c(α, T )T 2
z

+ d(α, T )T 3
z + e(α, T )T 4

z , (44)

with possible nonzero d and/or e coefficients. These higher-
order terms in Tz can appear due to the presence of isospin-
symmetry breaking three-body (or four-body) interactions
among the nucleons [86], and/or may arise from the isospin
mixing in excited states of isobaric multiplets with nearby
state(s) of the same Jπ , but different T value. In addition,
a special attention should be paid to multiplets of states,
involving loosely bound low-l orbitals. Those orbitals in
proton-rich members are pushed out of the potential well,

054304-18



ISOSPIN NONCONSERVATION IN sd-SHELL NUCLEI PHYSICAL REVIEW C 87, 054304 (2013)

which results in smaller values of the Coulomb matrix
elements and thus in a smaller Coulomb shifts with respect
to their mirrors. This effect, known as the Thomas-Ehrman
shift [87,88], may also lead to the breaking of the quadratic
form of the IMME [75].

Early theoretical estimations for quartets predicted typical
d coefficients to be of the order of ≈1 keV [89–91] (see also
discussion in Ref. [75]). To probe such low values, recent
experimental advances become crucial in providing precise
mass measurements of quartets and quintets. At present,
relative mass uncertainties as low as 10−8–10−9 are reached;
see, e.g., Refs. [82,84,85,92].

In the shell model the direct evaluation of absolute binding
energies is possible with the isospin-conserving Hamiltonian,
provided that a certain algorithm is followed in the subtraction
of empirical Coulomb energies from experimental binding
energies used in the fit. Then the subtracted Coulomb energy
should simply be added to the shell-model binding energy to
get the full theoretical binding energy of a nucleus. In fitting
the USD interaction, the subtraction of the Coulomb energy
has been done in a kind of average way [93,94]. In particular,
an unknown amount of residual isoscalar Coulomb energy
may remain in the charge-independent nuclear Hamiltonian
[93,94]. Adding an INC term in the Hamiltonian requires the
precise knowledge of the isoscalar Coulomb contribution and
this prohibits the evaluation of absolute binding energies [28].
In spite of this fact, we can still well describe theoretical
mass differences of isobaric multiplets, which is sufficient
to study the b, c, d, and e coefficients of the IMME. The a
coefficient, however, remains undetermined. To theoretically
explore the validity of the quadratic, cubic, or quartic forms of
the IMME in a given quintet, we use the results of the exact
diagonalization of the INC Hamiltonian, HINC, constructed
in the present work. In this way we obtain theoretical mass
differences for a given isobaric multiplet and then we fit them
with a quadratic, cubic, or quartic form of the IMME to find
the best b, c, d, and/or e coefficients.

As an example, here we consider in detail the lowest 0+
quintet in A = 32.

Various experimental determinations of the lowest T = 2
masses in A = 32 [82,84,85] point towards the presence of a
nonzero d coefficient in the IMME (see Table VIII later in this
section).

Using Eq. (44), we can express the IMME a, b, c, d, and
e coefficients in terms of the mass excesses of a given T = 2
quintet,

a = M0, (45a)

b = 1
12 [(M−2 − M2) + 8(M1 − M−1)] , (45b)

c = 1
24 [16(M1 + M−1) − (M2 + M−2) − 30M0] , (45c)

d = 1
12 [(M2 − M−2) + 2(M1 − M−1)] , (45d)

e = 1
24 [−4(M1 + M−1) + (M2 + M−2) + 6M0] . (45e)

Here, we have shortened the notation for a, b, c, d, and e
coefficients and the notation for mass excess of each member
(MTz=i ≡ Mi , i = −2,−1, 0, 1, 2). Equations (45b) and (45d)
show that b and d coefficients are related to the differences
(M−2 − M2) and (M1 − M−1).

Note that b and d are not linked to a. Meanwhile, c and e
are defined by the a-subtracted sums of M2 and M−2 and the
sum of M1 and M−1. These coefficients are also independent
of a [then a enters in each mass member and cancels in the
expressions (45c) and (45e)]. This set of relations is kept for
four-parameter least-squares fits to the cubic IMME [Eq. (44)
with e = 0], or to the quartic IMME [Eq. (44) with d = 0], or
is solved exactly in the case of the full quartic IMME (both d
and e are nonzero). In our theoretical analysis, we assume that
every input mass excess has the same uncertainty, e.g., ±1 keV.

Table VI summarizes mass differences (or sums) of ±Tz

multiplet members as obtained from the experimental or
theoretical mass excesses. We have performed calculations
using all the USD, USDA, and USDB interactions and the
combination of Vcoul (with UCOM) and V0 as an INC term
with the parameters found by the fit (cf. Secs. II and III C).
The obtained results (the lower part of Table VI) are compared
with the recent analysis of Signoracci and Brown [95], who
performed a similar study, but using the INC Hamiltonian

TABLE VI. Mass differences and mass summations of M−2 and M2; and M1, M−1, and M0.

M−2 − M2 M1 − M−1 M1 + M−1 − 2M0 M2 + M−2 − 2M0

(keV) (keV) (keV) (keV)

Experimental values −21 877.48 −10 944.24 414.22 1657.26
quoted in Ref. [95]

Theoretical values
from Ref. [95]:
USD −21 669.83 −10 837.25 418.11 1673.09
USDA −21 669.62 −10 836.63 404.98 1653.43
USDB −21 672.80 −10 838.10 417.25 1667.39

Deduced from Table XV −21 877.29 −10 943.63 413.91 1657.05

Present worka

USD −21 857.96 −10 927.87 414.87 1660.55
USDA −21 858.35 −10 927.30 404.55 1649.76
USDB −21 858.34 −10 927.93 416.24 1664.32

aPresent calculations use Vcoul (UCOM) and V0 combination.
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TABLE VII. Comparison of b, c, d, and e coefficients of the A = 32, J π = 0+, T = 2 quintet.

b, c b, c, d b, c, e b, c, d, e

(keV) (keV) (keV) (keV)

Experimental values b −5471.9 (3) −5473.1 (3) −5471.1 (3) −5473.0 (5)
quoted in Ref. [95] c 208.6 (2) 207.2 (3) 205.5 (5) 207.1 (6)

d – 0.93 (12) – 0.92 (19)
e – – 0.61 (10) 0.02 (16)

χ 2/n 32.14 0.010 15 22.63

Theoretical values
in Ref. [95]:
USD b −5417.7 −5419.0 −5417.7 −5419.0

c 209.1 209.1 209.0 209.0
d – 0.39 – 0.39
e – – 0.03 0.03

χ 2/n 1.089 0.005 491 2.172 –
USDA b −5417.6 −5418.6 −5417.7 −5418.6

c 207.3 207.3 201.1 201.1
d – 0.30 – 0.30
e – – 1.40 1.40

χ 2/n 8.680 16.04 1.318 –
USDB b −5418.4 −5419.3 −5418.4 −5419.3

c 208.4 208.4 208.7 208.7
d – 0.28 – 0.28
e – – −0.07 −0.07

χ 2/n 1.186 0.018 52 0.2298 –

Present worka:
Exp. values b −5471.85 (27) −5472.83 (29) −5470.45 (29) −5472.64 (68)
taken from Table XV c 208.55 (14) 207.12 (23) 204.92 (23) 206.89 (75)

d – 0.89 (11) – 0.83 (22)
e – – 0.69 (11) 0.06 (19)

χ 2/n 32.15 0.1035 13.80
USD b −5464.38 −5463.75 −5464.38 −5463.75

c 207.59 207.59 207.39 207.39
d – −0.19 – −0.19
e – – 0.045 0.045

χ 2/n 0.2563 0.016 85 0.4958 –
USDA b −5464.40 −5463.34 −5464.34 −5463.34

c 206.78 206.78 200.96 200.96
d – −0.31 – −0.31
e – – 1.31 1.31

χ 2/n 7.805 14.21 1.400 –
USDB b −5464.13 −5463.90 −5464.13 −5463.90

c 208.03 208.03 208.15 208.15
d – −0.07 – −0.07
e – – −0.03 −0.03

χ 2/n 0.035 38 0.006 007 0.064 75 –

aPresent calculations use Vcoul (UCOM) and V0 combination. All χ 2/n are given in 4 significant figures.

parametrization from Ref. [21] (the upper part of the same
table). It is seen that the mass differences (M−2 − M2) and
(M1 − M−1) obtained in the present work are systematically
closer to the experimental values than those of Ref. [95]. These
are exactly the key figures that determine b and d coefficients.

Table VII shows theoretical IMME b, c, d, and e
coefficients obtained for each set of mass differences by a
least-squares fitting procedure assuming all uncertainties of the

theoretical mass excesses of A = 32 to be 1 keV. The present
results (the lower part of the table) are compared with the re-
sults of Signoracci and Brown (the upper part of the table). Two
slightly different sets of experimental mass excesses are taken
from Ref. [95] (the first entries in the upper and lower parts of
Table VII).

As seen from Eqs. (45b) and (45d), the presence of the
d coefficient adjusts the respective b coefficient in the fit.
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Theoretical b coefficients in the third and the fifth column are
the same, because the d coefficient is not considered in the cor-
responding fits. Similarly, b coefficients in the fourth column
and the last column are the same, because the d coefficient is
included in those fits. A similar situation holds for the c and
e coefficients, which are determined by the a-removed sum of
the mass excesses of Tz = ±1 and Tz = ±2 isobaric members
of the multiplet as follows from Eqs. (45c) and (45e).

Before we discuss any evidence for nonzero d or e coeffi-
cients, let us compare the values of the corresponding b and c
coefficients. As seen from Table VII, b coefficients obtained
in the present work reproduce much better the experimental
values compared to the results of Ref. [95]. In particular, we
get all deviations smaller than 10 keV, while the calculations
of Ref. [95] result in much larger deviations of ∼50 keV.
This is due to the fact that the corresponding mass differences
(M−2 − M2) deviate from the experimental value by about
207 keV, while the mass differences (M1 − M−1) are different
from the experimental value by about 107 keV (see Table VI).
The present INC Hamiltonian produces mass differences that
deviate at most by 20 keV from the experimental values and
thus results in very close b values. This discrepancy should be
kept in mind when comparing the values of the predicted d
coefficient with the experimental value.

Let us remark that the theoretical b coefficients calculated
via an exact diagonalization almost coincide with the b
coefficients listed in Table XV, which were obtained in a
fit (within perturbation theory). That means, the perturbation
theory used in Sec. II provides a very good approximation to
the b coefficients.

Overall, the c coefficients predicted by both models are
close to experimental values, with a maximum ∼2 keV for the
present results and ∼4 keV for the values of Ref. [95].

Each set of IMME coefficients in Table VII is ended by the
χ2/n value characterizing the quality of the fit. It is seen that
all calculations agree well with the experimental conclusion
that the cubic form of the IMME describes best the nuclear
mass trend of the lowest 0+ quintet in A = 32, because it
produces the lowest χ2/n value (with the exception of the
USDA interaction, see explanation below). The quartic IMME
with d = 0 is worse than the cubic one (again, except for the
prediction of the USDA interaction).

To illustrate this effect, we plot in Figs. 14 and 15
deviations of nuclear mass excesses from the best IMME fit
values, assuming a quadratic and a cubic form of the IMME,
respectively. These figures include different experimental data
sets and two different theoretical calculations of mass excesses
(Ref. [95] and present work). It is obvious that the best fit is
produced by a cubic form of the IMME (Fig. 15).

The values of the corresponding d coefficient are, however,
different in experimental and theoretical analysis. The experi-
mental value ranges from 0.51 to 1.00 keV for various sets of
experimental data (see Table VIII). Taking the adopted values
of experimental mass excesses, we get dexp = 0.89(11) keV
(from our recent compilation [63]). At the same time,
theoretical values obtained from the USD interaction are
dth = 0.39 keV [95] and dth = −0.19 keV (present result). The
USDB interaction results in much smaller χ2/n values for all
fits, with the minimum again for a cubic form of the IMME.
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FIG. 14. (Color online) Deviations of experimental or theoretical
masses of the A = 32 quintet from the corresponding quadratic
IMME fit. (Purple) squares are quoted from Ref. [82]. (Purple) solid
squares are quoted from Ref. [84]. (Green) circles are quoted from
Ref. [85], Table VIII, set A; (green) solid circles are from set B; up
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down (black) triangles are from set E; down (black) solid triangles are
from set F. The recent theoretical work of Signoracci and Brown [95]
is presented as (red) pentagons, whereas (red) solid pentagons are the
present calculation.

The corresponding d coefficients are dth = 0.28 keV [95] and
dth = −0.07 keV (present result).

Let us remark that although the d-values of Ref. [95]
are closer to the experimental one, there is an essential
discrepancy in their theoretical b coefficients, especially for
the USDB interaction. At the same time, although being in
better agreement for b coefficients, our calculations point
towards a negative value of the d coefficient. We think that
this is attributable to a peculiarity of the fit, because the sign of
the d coefficient is determined by a ratio of mass differences
(M−2 − M2)/(M1 − M−1) [see Eq. (45d)]. To get a zero value
for the d coefficient, this ratio should be equal to 2. The ratio we
get with the USD interaction is 2.000 19, resulting in a negative
d value, while the USD calculation of Ref. [95] produces a
ratio of 1.999 57, which is closer to the experimental ratio of
1.999 02 and both producing a positive d value.
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FIG. 15. (Color online) Deviations of experimental or theoretical
masses of the A = 32 quintet from the corresponding cubic IMME
fit. Refer to Fig. 14 for description.
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TABLE VIII. Comparison of theoretical d coefficients with experimental values for the A = 32 quintet.

Experimental and theoretical works d (keV) χ2/nquadr. χ 2/ncubic

S. Triambak et al. [82] 0.54 (16) 6.5 0.77
A. A. Kwiatkowski et al. [84] 1.00 (9) 30.6 0.48
Set A from A. Kankainen et al. [85] 0.52 (12) 9.9 0.86
Set B, ibid. 0.60 (13) 12.3 0.31
Set C, ibid. 0.90 (12) 28.3 0.002
Set D, ibid. 1.00 (13) 30.8 0.09
Set E, ibid. 0.51 (15) 6.5 0.74
Set F, ibid. 0.62 (16) 8.3 0.28
Signoracci and Brown [95] (USD)a 0.39 1.09 0.005
Present worka −0.19 0.26 0.02

aχ 2/nquadr. and χ 2/ncubic of Refs. [82,84,95] are calculated in present work; moreover, χ 2/nquadr. and χ 2/ncubic of theoretical works are calculated
by assuming an uncertainty of ±1 keV for every mass excess.

As was shown by Signoracci and Brown [95], the shell-
model value of the d coefficient relates to the degree of the
isospin-mixing in the initial and final nuclear states. For this
reason, the calculation with the USDA interaction should be
taken with caution, because accidentally there is a very closely
lying state 0+, T = 0 in the vicinity of the IAS 0+, T = 2 state
in 32S [95] and thus an unrealistic value for the e coefficient. We
arrive at a similar conclusion while adding our parametrization
of the INC Hamiltonian to the USDA interaction.

Apparently, the effects discussed in this section require a
very high precision of relevant experimental data and theo-
retical accuracy. In particular, the experimental determination
of the position of 0+ states in the vicinity of the IAS in 32Cl
and 32P could certainly help to refine the prediction of the
d coefficient. Furthermore, the essential uncertainty of 32Ar
mass may affect both experimental conclusions and theoretical
description. Hence, a direct remeasurement of the 32Ar mass
would shed light on this issue.

VI. ISOSPIN-SYMMETRY BREAKING
AND FERMI β DECAY

A. Superallowed Fermi β decay

The absolute F t value of a superallowed 0+ → 0+ β decay
can be deduced from the experimental f t value applying
various corrections (see Ref. [5], and references therein), i.e.,

F t = f t(1 + δ′
R)(1 + δNS − δC)

= K

G2
V |MF0|2

(
1 + V

R

) , (46)

where V
R , δ′

R, and δNS are transition-independent, transition-
dependent, and structure-dependent parts of the radiative
correction, respectively, while δC is the nuclear structure
correction arising from the isospin-symmetry breaking in the
parent and daughter nuclear states. Other constants in this
expression are

K = 2π3h̄ ln2/(mec
2)5

= (8120.278 ± 0.0004) × 10−10 GeV−4s.

GV is the vector coupling constant for a semileptonic weak
process, while

|MF0|2 = |〈ψf |T+|ψi〉|2 = T (T + 1) − TziTzf

is the value of the Fermi matrix element squared in the
isospin-symmetry limit, which in the case of T = 1 emitters
is |MF0|2 = 2.

Provided the absolute F t value of superallowed 0+ → 0+
β transitions is constant as stated by the CVC hypothesis, the
GV value can be deduced from Eq. (46) and then the Vud CKM
matrix element can be obtained from comparison of GV with
the vector coupling constant extracted from the muon decay.

The isospin-symmetry breaking correction is defined as a
deviation of the realistic Fermi matrix element from its model-
independent value:

|MF |2 = |MF0|2(1 − δC). (47)

Within the shell model, the initial and final nuclear
states represent a mixing of many-body spherical harmonic-
oscillator configurations. In practice, the isospin-symmetry
breaking correction to |MF0|2 is usually separated in two terms:
δC = δIM + δRO (we adopt here the notations of Ormand and
Brown [20,23]; in the work of Towner and Hardy [5,24,96,97],
these terms are referred to as δC1 and δC2, respectively).
The first term, δIM, is a correction to the Fermi matrix
element MF0 from the isospin-symmetry breaking in the
configuration mixing of the spherical harmonic-oscillator basis
functions (isospin-mixing correction). This is obtained via the
diagonalization of an effective INC Hamiltonian within the
valence space. The second term, δRO, arises in the calculation
of transition matrix elements because of the nonunity of
the radial overlap of proton and neutron wave functions
(radial-overlap correction). To get it, one has to replace the
harmonic-oscillator single-particle wave functions by more
realistic spherically symmetric wave functions obtained from
a better suited finite-well plus Coulomb potential (to account
for the isospin nonconservation outside the model space).

In the present paper, we present calculations of the isospin-
mixing corrections δIM to the experimental f t values for 0+ →
0+ β transitions in sd-shell nuclei. Although this correction is
known to be quite small (from ∼0.01% to ∼0.1%), we can still
see noticeable changes to the absolute F t values compared to
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TABLE IX. Comparison of δIM values.

Nuclear Parent Present worka Previous work

Hamiltonian nucleus Jastrow-type SRC function Ormand and Towner and

w/o SRC UCOM Argonne V18 CD-Bonn Miller- Brown Hardyb

Spencer

USD
22Mg 0.021 0.022 0.021 0.021 0.023 0.017c 0.010 (10)
26Alm 0.011 0.012 0.012 0.011 0.013 0.01d 0.025 (10)

26Si 0.046 0.046 0.046 0.046 0.046 0.028c 0.022 (10)
30S 0.026 0.028 0.027 0.025 0.030 0.056c 0.137 (20)

34Cl 0.037 0.037 0.036 0.036 0.036 0.06d 0.091 (10)
34Ar 0.005 0.006 0.006 0.006 0.007 0.008c 0.023 (10)

USDA
22Mg 0.021 0.022 0.021 0.020 0.024
26Alm 0.012 0.013 0.013 0.012 0.015

26Si 0.041 0.042 0.042 0.041 0.043
30S 0.020 0.022 0.021 0.020 0.024

34Cl 0.031 0.032 0.031 0.031 0.032
34Ar 0.006 0.007 0.007 0.006 0.008

USDB
22Mg 0.021 0.022 0.021 0.021 0.023
26Alm 0.012 0.013 0.013 0.013 0.015

26Si 0.044 0.045 0.044 0.044 0.046
30S 0.025 0.026 0.025 0.024 0.028

34Cl 0.036 0.036 0.035 0.035 0.035
34Ar 0.005 0.005 0.005 0.005 0.006

aPresent calculations use strength parameters from Table V corresponding to the Vcoul plus V0 combination.
bUnscaled δC1 from Table III of Ref. [24].
cThe δIM obtained in the present work using the INC Hamiltonian of Ref. [21] and without truncation.
dThe δIM from Table I of Ref. [23].

the existing evaluation, based on the calculations of Towner
and Hardy [5].

The values of δIM obtained from the USD, USDA, and
USDB interactions with Vcoul + V0 INC Hamiltonian with all
possible approaches to the SRC in Coulomb TBME’s are
summarized in Table IX. In the last two columns, we give
for comparison the values from the previous work by Ormand
and Brown [23] and the most recent results of Towner and
Hardy [24].

As seen from the table, in spite of different interactions
used, our calculations lead to very consistent values for various
isotopes. Only for 26Si and 30S, the USDA interaction results in
somewhat smaller values of corrections than those predicted
by the USD or USDB. The dependence on one or another
approach to the SRC is also marginal. For most isotopes, the
Miller and Spencer parametrization produces slightly larger
values of corrections.

If we compare our results with those obtained by Ormand
and Brown, we see that for 22Mg, 26Alm, and 34Ar there is a
good agreement. However, clear differences can be noticed for
26Si, 30S, and 34Cl. We get a larger value for the former and
almost twice smaller values for the two latter cases. Regarding
the calculation of Towner and Hardy (last column), only for the
two lightest emitters (22Mg and 26Alm) our values are close to
their range (uncertainties included). For the rest of the nuclei,
there is an essential discrepancy; we get a larger value for 26Si

and much smaller values for the heavier emitters. The main
difference in the approaches is that the authors of Ref. [24]
adjusted INC Hamiltonian strength parameters separately
for each considered multiplet (case by case) to reproduce
the isobaric mass splitting, while in our work and that of
Ref. [23] a global parametrization for sd-shell nuclei has been
exploited.

In Table X we apply the calculated values of δIM to deduce
a new set of F t values for four best known sd-shell emitters.
The present estimation is based on the USD calculation with
Vcoul plus V0 INC Hamiltonian, taking the average of the results
obtained for various approaches to SRCs. The experimental f t
values and the other corrections (δRO, δ′

R and δNS) are taken
from Ref. [5].

It is seen that for 34Cl and 34Ar, the deduced values are
somewhat different from those adopted currently by Towner
and Hardy. The implementation of our sd-shell results on δIM

is illustrated in Fig. 16, where corrected values of the 13 best-
known emitters from Ref. [5] are shown. Further analysis and
calculation of the radial-overlap corrections is under way.

B. Fermi β decay to nonanalog states

If the isospin-symmetry is broken, the Fermi β decay
between nonanalog 0+ states may take place. These transitions
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TABLE X. Comparison of F t values.

Parent Experimental f t (s) Corrections (%) F t (s)

nucleus δIM δRO δ′
R δNS Present Towner and

work Hardya

22Mg 3052(7) 0.0216 (9) 0.370 (20) 1.466 (17) −0.225 (20) 3077.6 (72) 3077.6 (74)
26Alm 3036.9 (9) 0.0120 (8) 0.280 (15) 1.478 (20) 0.005 (20) 3072.9 (13) 3072.4 (14)
34Cl 3049.4 (12) 0.0363 (5) 0.550 (45) 1.443 (32) −0.085 (15) 3072.6 (21) 3070.6 (21)
34Ar 3053(8) 0.0060 (4) 0.635 (55) 1.412 (35) −0.180 (15) 3070.7 (84) 3069.6 (85)

aValues quoted from Table IV in Ref. [5].

are of great interest because their rate is directly related to
the degree of the isospin mixing and it can help to test the
model predictions [12]. Unfortunately, no experimental data
are known for the sd-shell nuclei. However, we can explore the
sensitivity of the matrix element of the nonanalog transitions
(its isospin-mixing part) to the details of the shell-model
Hamiltonian. In this context, we have performed calculations
for two cases of 34Cl and 34Ar, considered before by Ormand
and Brown in Ref. [20]. The results are shown in Table XI,
where we present calculations of δIM for Fermi β-transitions
from the lowest 0+ state in 34Cl or in 34Ar to the first excited
0+ state in the respective daughter nuclei. Present calculations
are based on the Vcoul plus V0 INC Hamiltonian with strength
parameters from Table V (Range I).

It is interesting to see that the values predicted for 34Cl
by various interactions, including the early work of Ormand
and Brown, are quite consistent, being roughly −2.7 × 10−2

to −3.1 × 10−2. However, the magnitudes of corrections
predicted for a decay of 34Ar are much smaller and probably
because of the sensitivity to the details of the calculations.
Our result spread in a wide range between −8.8 × 10−5 and
−48.2 × 10−5 for USD interaction and between −0.7 × 10−3

and −1.4 × 10−3 for USDA/USDB interactions. The value
given in Ref. [20] is the smallest among the values, −3.5 ×
10−5, while the parameters from Ref. [21] result contrary in the
largest number, −3.6 × 10−3. It would be very interesting and
useful to have experimental data to make a critical selection
between different predictions.

VII. SUMMARY AND CONCLUSIONS

In conclusion, we have presented a set of new empirical INC
Hamiltonians in the sd shell-model space which accurately
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FIG. 16. (Color online) Comparison of F t values in sd-shell space. Plot (a) depicts experimental f t values. The f t value of 38Km is not
shown; it is 3051.9 (10) s. Plot (b) shows F t values. The horizontal (gray) strip is 1 standard deviation according to Ref. [5].
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TABLE XI. Values of δIM for Fermi β transitions between nonanalog states (from the lowest 0+, T = 1 state of 34Ar or 34Cl to the first
excited 0+, T = 1 state of the corresponding daughter nuclei).

Nuclear Present worka Previous work

Hamiltonian w/o SRC UCOM Jastrow type SRC function Ormand and

Argonne V18 CD-Bonn Miller- Strengths from Brown [20]
Spencer Ref. [21]

δIM × 105:
34Ar

USD −37.97 −8.843 −29.69 −48.19 −27.44 −361.2 −3.5
USDA −127.8 −101.2 −118.9 −140.2 −71.25 – –
USDB −134.1 −120.8 −134.5 −142.9 −106.1 – –

δIM × 102:
34Cl

USD −3.103 −3.098 −3.061 −3.071 −3.061 −3.960 −2.7
USDA −2.734 −2.730 −2.697 −2.712 −2.695 – –
USDB −3.120 −3.115 −3.076 −3.088 −3.071 – –

aThe δIM values of present work are given in four significant figures.

reproduces the isobaric mass splittings. The fitting procedure
used in our work is close to that used earlier by Ormand
and Brown; however, an advanced study of the harmonic
oscillator parameters, modern approaches to SRCs, as well
as, an updated and largely extended experimental database
and full sd-shell space calculations have been performed.
In our model, besides a one-body term, an effective T = 1
component of the isospin-conserving interaction or the Wigner
term of the pion and ρ-meson exchange potentials have
been exploited to model effective charge-dependent forces of
nuclear origin. More sophisticated forms of those forces could
be explored as well. The parameters of the INC part of the
Hamiltonian were adjusted in a fit, designed to reproduce the
known b and c coefficients of the IMME. Different types of
the isospin-conserving interaction and various procedures to
account for the SRCs lead to rather similar magnitudes of the
rms deviations, with the best values around ∼32 keV for rms of
b coefficients and ∼9 keV for rms of c coefficients. The quality
of the fit and the Coulomb strength parameters unambiguously
suggest that to reproduce the experimental IMME coefficients,
the electromagnetic interaction should be supplemented by
nuclear charge-dependent forces.

We believe that the constructed INC Hamiltonians can
provide a high accuracy in the description of the isospin-
symmetry forbidden processes. A few applications have been
considered here with the purpose to demonstrate new features.
First, we have been able to propose a quantitative description
of a staggering effect of the IMME b and c coefficients as a
function of the mass number. This allowed us to conclude on
the contribution of the Coulomb and nuclear charge-dependent
forces to pairing.

Second, we studied the validity of the IMME equation
beyond the quadratic form in the lowest A = 32 quintet.
Our calculations point towards the existence of a nonzero d
coefficient in agreement with experimental data. The predicted
values turn out to be very sensitive to the shell-model
Hamiltonian used and thus more precise and more extensive

data which may help to constrain theoretical parameters will
be of great importance.

Third, we present a new set of isospin-mixing corrections
to sd-shell 0+ → 0+ β decay rates. All Hamiltonians provide
surprisingly similar results, however, different from the values
of Towner and Hardy. A more advanced study of these
corrections should be performed.

Finally, preliminary calculations of the isospin-mixing
corrections to the Fermi β decay between nonanalog states
suggest that these rates might be sensitive to the details of an
INC Hamiltonian and thus could serve as a perfect test to a
theoretical description.

As a general conclusion, we hope that the Hamiltonian will
be of large use and we intend to perform numerous applications
to understand better predictions and differences between var-
ious INC parametrizations. Similar study has been performed
for psd, sdpf , and pf model spaces; the results and various
applications will be presented elsewhere [98]. More extended
and more precise experimental data on isobaric masses, as well
as measurements of the isospin-forbidden decay rates would
be very helpful to test further and to refine our model.
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APPENDIX: FITTED b AND c COEFFICIENTS

TABLE XII. Comparison between fitted b coefficients with experimental values of T = 1/2 doublets in sd-shell nuclei.

Mass (A) J π b(experimental) b(fitted)a References
(keV) (keV)

19 1
2

+
4021.85 (16) 4032.88 [66,99]

5
2

+
4062.97 (19) 4024.27

3
2

+
4003.8 (4) 3978.8

21 3
2

+
4329.49 (28) 4311.36 [66,100]

5
2

+
4310.66 (30) 4303.46

7
2

+
4299.7 (4) 4310.7

23 3
2

+
4838.94 (69) 4850.43 [66,101]

5
2

+
4849.66 (70) 4855.31

7
2

+
4815.1 (11) 4829.6

25 5
2

+
5058.94 (48) 5067.73 [66,102]

27 5
2

+
5594.71 (18) 5563.80 [66,103]

1
2

+
5531.8 (3) 5551.4

3
2

+
5537.5 (3) 5570.8

29 1
2

+
5724.8 (6) 5752.7 [66,103]

3
2

+
5835.0 (6) 5760.3

31 1
2

+
6179.87 (98) 6118.13 [66,103]

3
2

+
6162.6 (10) 6103.9

33 3
2

+
6364.93 (44) 6324.10 [66,103]

1
2

+
6334.50 (47) 6340.58

35 3
2

+
6748.48 (75) 6723.59 [66,103]

1
2

+
6713.22 (80) 6709.4

5
2

+
6736.1 (8) 6710.3

3
2

+
6692.7 (8) 6705.4

5
2

+
6728.97 (77) 6656.38

1
2

+
6665 (10) 6648

37 3
2

+
6929.82 (23) 6897.54 [66,103]

1
2

+
6890.85 (25) 6899.81

5
2

+
6884.0 (4) 6947.5

39 3
2

+
7306.84 (60) 7321.70 [66,104]

1
2

+
7252.8 (11) 7360.4

a(V T =1
0 )ijkl of nuclear Hamiltonian USD had been used as the isospin-symmetry breaking term and UCOM SRC scheme was applied

on Vcoul.
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TABLE XIII. Comparison between fitted b and c coefficients with experimental values of T = 1 triplets in sd-shell nuclei.

Mass (A) J π b(experimental) b(fitted)a c(experimental) c(fitted)a References
(keV) (keV) (keV) (keV)

18 0+ 3832.57 (18) 3842.20 352.74 (50) 339.31 [66,99]

2+ 3785.2 (2) 3795.9 267.1 (5) 268.4

20 2+ 4216.2 (5) 4184.2 185.1 (20) 193.7 [66,105]

3+ 4186 (4) 4184 200 (5) 212

4+ 4206 (4) 4169 181 (5) 186

22 0+ 4594.74 (16) 4583.96 312.03 (26) 297.64 [66,106]

2+ 4580.96 (16) 4577.16 277.86 (28) 266.02

4+ 4570.0 (2) 4579.4 230.6 (4) 230.0

2+ 4567.8 (3) 4581.0 224.1 (20) 235.8

24 4+ 4966.88 (50) 4956.56 183.86 (50) 196.91 [66,101]

1+ 4943.7 (5) 4960.9 182.0 (5) 191.6

2+ 4941 (2) 4969 179 (2) 164

26 0+ 5319.13 (6) 5315.50 304.05 (9) 308.03 [66,103]

2+ 5312.7 (12) 5337.5 265.2 (1) 273.7

28 3+ 5633.06 (55) 5654.87 177.11 (56) 192.05 [66,103]

2+ 5670.57 (55) 5655.02 179.61 (56) 186.36

30 0+ 5967.64 (150) 5961.08 275.93 (153) 272.91 [66,107]

2+ 5955.3 (15) 5944.0 238.4 (16) 239.9

2+ 5919.7 (15) 5941.3 220.7 (16) 229.8

32 1+ 6267.2 (5) 6235.6 194.1 (6) 199.8 [66,103]

2+ 6273.1 (5) 6232.9 164.2 (11) 169.7

0+ 6243.9 (5) 6233.9 149.2 (11) 153.2

34 0+ 6559.48 (17) 6559.55 285.50 (18) 271.69 [66,103]

2+ 6541.2 (2) 6542.3 236.8 (3) 234.8

2+ 6551.1 (3) 6565.3 198.1 (4) 204.3

0+ 6537 (1) 6574 239 (1) 230

36 2+ 6834.7 (2) 6859.3 150.9 (3) 148.0 [66,103]

3+ 6845 (1) 6861 224 (1) 220

1+ 6808.4 (3) 6854.1 190.2 (6) 196.0

1+ 6843.5 (3) 6845.1 239.9 (7) 235.8

38 0+ 7110.5 (2) 7153.9 283.7 (4) 268.6 [66,108]

2+ 7133.22 (18) 7102.99 203.39 (35) 195.29

a(V T =1
0 )ijkl of nuclear Hamiltonian USD had been used as the isospin-symmetry breaking term and UCOM SRC scheme was applied

on Vcoul.

054304-27



YI HUA LAM, NADEZDA A. SMIRNOVA, AND ETIENNE CAURIER PHYSICAL REVIEW C 87, 054304 (2013)

TABLE XIV. Comparison between fitted b and c coefficients with experimental values of T = 3/2 quartets in sd-shell nuclei.

Mass (A) J π b(experimental) b(fitted)a c(experimental) c(fitted)a References
(keV) (keV) (keV) (keV)

19 5
2

+
3982.7 (40) 3930.6 240.7 (22) 233.6 [66,99]

3
2

+
3987.3 (50) 3930.4 230.8 (27) 231.4

21 5
2

+
4444.5 (22) 4384.5 243.1 (18) 230.6 [66,100]

1
2

+
4399.6 (23) 4380.5 216.8 (19) 225.9

23 5
2

+
4749.72 (12) 4757.64 225.99 (10) 223.86 [66,101]

25 5
2

+
5174.1 (18) 5171.6 219.9 (11) 225.0 [66,102]

27 1
2

+
5406.8 (29) 5477.2 210.4 (16) 226.7 [66,103]

29 5
2

+
5812.5 (55) 5820.8 209.4 (50) 214.1 [66,103]

31 3
2

+
6069.7 (87) 6042.6 199.1 (45) 207.1 [66,103]

1
2

+
6046.8 (127) 6049.1 183.9 (65) 210.6

33 1
2

+
6433.41 (33) 6397.39 209.82 (33) 209.98 [66,103]

35 3
2

+
6673.14 (17) 6652.29 202.08 (14) 199.06 [66,103]

37 3
2

+
6990.94 (26) 6981.57 203.03 (48) 198.41 [66,103]

1
2

+
6953.6 (55) 6971.9 214.2 (56) 212.0

a(V T =1
0 )ijkl of nuclear Hamiltonian USD had been used as the isospin-symmetry breaking term and UCOM SRC scheme was applied on Vcoul.

TABLE XV. Comparison between fitted b and c coefficients with experimental values of T = 2 quintets in sd-shell nuclei.

Mass (A) J π b(experimental) b(fitted)a c(experimental) c(fitted)a References
(keV) (keV) (keV) (keV)

20 0+ 4220.5 (37) 4180.1 245.0 (18) 234.0 [66,105]

24 0+ 4961.2 (9) 4963.4 225.9 (4) 225.3 [66,101,109]

28 0+ 5589.8 (19) 5646.7 215.5 (12) 219.1 [66,103,109]

32 0+ 6254.19 (27) 6235.70 208.55 (14) 208.27 [66,103]

36 0+ 6828.0 (19) 6864.9 201.3 (6) 199.4 [66,103]

a(V T =1
0 )ijkl of nuclear Hamiltonian USD had been used as the isospin-symmetry breaking term and UCOM SRC scheme was applied on Vcoul.
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