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Background: Heavy atomic nuclei are often described using the Hartree-Fock-Bogoliubov (HFB) method. In
principle, this approach takes into account Pauli effects and pairing correlations while other correlation effects
are mimicked through the use of effective density-dependent interactions.
Purpose: Investigate the influence of higher-order correlation effects on nuclear binding energies using Skyrme’s
effective interaction.
Methods: A cutoff in relative momenta is introduced to remove ultraviolet divergencies caused by the zero-range
character of the interaction. Corrections to binding energies are then calculated using the quasiparticle-random-
phase approximation and second-order many-body perturbation theory.
Result: Contributions to the correlation energies are evaluated for several isotopic chains and an attempt is made
to disentangle which parts give rise to fluctuations that may be difficult to incorporate on the HFB level. The
dependence of the results on the cutoff is also investigated.
Conclusions: The improved interaction allows explicit summations of perturbation series, which is useful for
the description of some nuclear observables. However, refits of the interaction parameters are needed to obtain
more quantitative results.
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I. INTRODUCTION

The atomic nucleus is a complicated quantum-mechanical
system where the probability of finding a nucleon in a certain
position is a function of the positions of the other nucleons.
This is generally referred to as the nucleons being correlated
and makes the wave functions of heavy nuclei too complex to
compute directly using ab initio theory. One therefore has to
resort to more tractable methods that take the most important
correlation effects explicitly into account, i.e., the ones that are
important to describe observables, while the remaining effects
are treated in an approximate way.

An often used starting point is to assume that the in-medium
interaction between nucleons can be modeled using effective
density-dependent internucleon potentials. Such potentials are
generally employed in Hartree-Fock-Bogoliubov (HFB) cal-
culations and their parameters are fitted to reproduce a number
of experimentally known data on individual nuclei and to what
is known about nuclear matter. In this way, Pauli effects and
pairing type correlations are taken into account explicitly while
the effects of other of correlations are described in an average
way. This approach has the great advantage of being applicable
to the entire nuclear chart at a reasonable computational cost.
In the quest of more accurate nuclear models an important
task, however, is the systematic investigation of which type of
correlation effects can be modeled with the HFB method and
which need a more explicit treatment.

Several studies have shown that going beyond a HFB
treatment and adding corrections to binding energies resulting
from shape vibrations, especially of quadrupole type, give an
improved description of experiment [1–4]. These corrections
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are often taken into account by either using the generator-
coordinate method [1] or through the use of a collective model,
e.g., a Bohr Hamiltonian [2].

Alternatively, many-body perturbation theory (MBPT)
offers a way to explicitly and pictorially include elementary
processes that one might suspect to be responsible for
correlations in different systems. For instance, within the so
called random-phase approximation (RPA) one allows for an
infinite number of particle-hole pairs to be excited out of the
Hartree-Fock (HF) ground state and for multiple scattering
between excited particles and holes. If the excitations instead
are made out of the HFB ground state the same approximation
is referred to as the quasiparticle-random-phase approximation
(QRPA), designating the RPA for Bogoliubov quasiparticles.
An even simpler step beyond HFB is the second-order many-
body perturbation theory (MBPT2) starting from the HFB
ground state. Clearly, the virtual excitations included in this
approximation form a subset of those included in the QRPA
and in the present work we show results from both levels of
approximation.

Most of the effective nucleon potentials involve contact
terms, i.e, interactions of zero range. This is certainly the
case for interactions of the Skyrme type and such interactions
give rise to divergencies when going beyond the HF level.
This can be seen, e.g., by solving the two-body problem for
2H analytically using contact interactions. Then the resulting
binding energies become infinite [5,6]. The two methods
used in this work for going beyond the HFB level include
infinite summations of intermediate states, which inevitably
leads to the same divergencies in connection with zero-range
forces.

It is a major theme of the present work to eliminate such
divergencies by introducing cutoffs in momenta for our
chosen Skyrme-like interaction potentials [7]. This procedure
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implicitly assumes that structures in binding energies as
functions of nucleon number originate in correlation effects
caused by the low-momentum part of the internucleon
forces. And according to the results of the present work this
assumption does not appear to be that far fetched.

This paper is organized as follows. In Sec. II the regularized
Skyrme interaction is introduced. In Sec. III we discuss the
treatment of correlation effects using the QRPA and the
MBPT2 method. In Secs. IV and V we analyze and discuss
the results of our calculations.

II. LOW-MOMENTUM INTERACTION

A. Two-body interaction in the particle-hole channel

A general two-body interaction that preserves the center-of-
mass coordinate of the interacting particles can be expressed
as

V̂ (r ′
1r ′

2r1r2) = v(r ′, r)δ(R − R′),

where R = 1
2 (r1 + r2) and r = r1 − r2 denote the center-of-

mass and relative coordinates, respectively. The part of the
potential depending on relative coordinates can be transformed
to momentum space and for this part we adopt Skyrme’s
expansion [8] given by

v̄(k′, k) = 1

(2π )3

∫
e−ik′ ·r ′

v(r ′, r)eik·rd r ′d r

� 1

(2π )3

[
t0(1 + x0P

σ ) + 1

2
t1(1 + x1P

σ )(k′2 + k2)

+ t2(1 + x2P
σ )k′ · k + iW0(σ 1 + σ 2) · k′ × k

]
.

In this expression we have omitted the tensor potential included
in Ref. [8] because it is not used in the parametrizations we
employ later. This expression can be viewed as the first terms in
a low-momentum expansion of the effective nuclear potential
going up to second order in relative momenta (compare, e.g.,
Refs. [9–11] for higher-order expansions). Although this form
gives a reasonable description of the low-momentum parts, the
expansion becomes unrealistic for large momentum transfers.
As we demonstrate later, for Hartree-Fock calculations, only
the low-momentum matrix elements are important and the
unphysical contributions generated by the expansion for higher
momenta can be ignored.

For studies beyond the mean-field level, however, the
interaction gives diverging results unless some kind of trun-
cation is enforced, e.g., a truncation in excitation energy.
Nevertheless, in some beyond-mean-field calculations, such
as QRPA calculations, the results for low-lying states [12]
and giant resonances [13] are in reasonable agreement with
experiment, indicating that the interaction may indeed have a
wider applicability beyond purely mean-field calculations.1

1Note that in the calculations of low-energy excitations the
discussed divergencies did not constitute a problem. In fact, it is
mainly the high-energy excitations that are modified by a momentum
cutoff.

To investigate how well higher-order corrections can be
described using the low-momentum part of Skyrme’s interac-
tion we follow Skyrme’s original suggestion [8] and introduce
a cutoff in momenta. We replace his original interaction by

v̄(�)(k′, k) = v̄(k′, k)θ (� − k′)θ (� − k), (1)

which vanishes at momenta above � (fm)−1. In the limit of
a large � one regains the results of the original untruncated
interaction, but for finite values, the cutoff regularizes the
interaction so that beyond-mean-field calculations converge.
The introduction of the cutoff destroys the nice analytical
properties of the zero-range interaction and increases the
computational cost of calculating matrix elements.

B. Two-body interaction in the particle-particle channel

In the pairing channel we use the same finite-range
separable-Gaussian interaction as was used in our previous
studies [12,13]. Because this interaction has a finite range, no
regularization is needed. We adopt an isospin invariant form,
active in the T = 1 channel and use the same range parameter
(a = 0.66 fm) as before. Because we only consider cases
where neutrons are in open shells we tune the pairing strengths
to make the lowest neutron quasiparticle energies to agree with
the experimental gaps determined in Ref. [14]. The resulting
isovector pairing strength becomes 560 MeV(fm)−1 when the
SKX Skyrme parameters [15] are used in the particle-hole
channel and becomes somewhat larger [640 MeV(fm)−1] when
the SLy5 parameters [16] are used.

C. Density-dependent part of the particle-hole interaction

Skyrme’s expansion of the two-body potential is often used
together with a density-dependent zero-range potential that
is intended to describe missing three-body and higher-order
contributions as well as giving a simple representation of
missing many-body effects. The density-dependent terms
cause difficulties when going beyond the mean field and
different recipes to define a residual interaction exist in the
literature [17]. In this work we are mainly motivated by the
success of the Skyrme interaction in connection with RPA type
calculations and hence define the residual interaction as the
so-called RPA residual interaction using the second derivative
of the HF energy [18]:

ṽpmqn = ∂2EHF

∂ρqp∂ρnm

= vpmqn [ρ] +
∑
j l

ρlj

(
∂vmjnl[ρ]

∂ρqp

+ ∂vpjql[ρ]

∂ρnm

)

+ 1

2

∑
ijkl

ρki

∂vijkl[ρ]

∂ρnm∂ρqp

ρlj

∣∣∣∣
ρ=ρ0

.

The use of the RPA residual interaction in configuration
interaction type calculations has been thoroughly discussed
and investigated before using a non-regularized Skyrme
interaction [19].
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The density-dependent two-body interaction is introduced
in the standard form [20]

V̂ρ = v(�)
ρ (r ′, r)[ρ(R)]αδ(R − R′),

with a dependence on the nucleon density ρ to some power α,
which take on different values for different parametrizations.
The part dependent on relative coordinates is expanded to
lowest order in relative momenta,

v̄(�)
ρ (k′, k) = 1

(2π )3

∫
e−ik′·r ′

v(�)
ρ (r ′, r)eik·rd r ′d r

� 1

(2π )3

t3

6
(1 + x3P

σ )θ (� − k′)θ (� − k),

and regularized with the same cutoff procedure (� truncation)
as used for the density-independent parts.

In the practical calculations of matrix elements we start
from a spherical harmonic-oscillator basis and transform the
basis functions to momentum space. The � truncation can
then be implemented using the Moshinsky transformation [21]
to transform the coupled two-particle states to functions of
relative and total momenta. Finally we employ the Pandya
transformation [22] to obtain matrix elements in the particle-
hole channel and use the Wigner-Eckart theorem to obtain
angular-momentum-reduced expressions. The full implemen-
tation of this new regularized potential was done by extending
the program HOSPHE (v1.02) [23].

One of the interactions employed in this work (SLy5) uses
the direct part of the Coulomb interaction together with a
Slater approximation for the Coulomb exchange. The Slater
approximation results in a density-dependent term that mimics
the HF exchange energy. To treat the HF part and the additional
residual interaction consistently we have regularized the Slater
term in the same way as for the other parts of the interaction.

To have a first idea about the influence of the � truncation
we consider isospin-symmetric nuclear matter in the Hartree-
Fock approximation. The corresponding zero-temperature
equation of state (EOS), i.e., the energy per nucleon as a
function of density is shown in Fig. 1. As seen in this figure, a
� value of ≈1.5 fm−1 leaves the EOS unchanged up to about
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FIG. 1. (Color online) The energy per nucleon in symmetric
nuclear matter (equal numbers of neutrons and protons) shown for
the SLy5 [16] interaction and for different � fm−1 values in the HF
approximation. The solid line illustrates the standard result for the
untruncated interaction (� = ∞).

twice the saturation density and a value of ≈1.75 fm−1 leaves
the EOS unchanged up to about three times the saturation
density. Thus, when choosing a value for the regularization we
consider values above 1.5 fm−1, which keeps the relevant part
of the EOS approximately the same.

III. RESULTS FOR THE TOTAL
CORRELATION CONTRIBUTION

An expression for the RPA correlation energy in the
quasiboson approximation (QBA) is derived in Ref. [18] and
using an analogous derivation one obtains a corresponding
expression in the QRPA case [24]:

EQRPA = −
N∑

ν=1

h̄ων

∑
k<k′

∣∣Y ν
kk′

∣∣2
. (2)

To evaluate this expression we start by defining matrices
containing the positive energy QRPA column vectors,

X = [X1, X2, . . . ,XN ], Y = [Y 1, Y 2, . . . ,YN ],

and the corresponding energies,

� =

⎡
⎢⎢⎣

h̄ω1 0 0

0
. . . 0

0 0 h̄ωN

⎤
⎥⎥⎦ .

Then starting from the QRPA equation [22](
A B

B∗ A∗

) (
X

Y

)
=

(
X

−Y

)
�, (3)

one can write the following pair of equations:

YX−1A + YX−1BYX−1 = Y�X−1,

B∗ + A∗YX−1 = −Y�X−1.

Summing these equations together and introducing
C = YX−1, the result is the equation

B∗ + A∗C + CA + CBC = 0, (4)

which is similar to the multiple scattering series derived in
Ref. [25]. In terms of C, the QRPA correlation energy becomes

EQRPA = 1

2

∑
k<k′,l<l′

Bkk′,ll′Ckk′,ll′ . (5)

Furthermore, by splitting the A matrix,

Akk′,ll′ = (Ek + Ek′) δklδk′l′ + Ākk′,ll′ ,

Eq. (4) can be written

Ckk′,ll′ = −1

Ek + Ek′ + El + El′
(B∗

kk′,ll′ + (Ā∗C)kk′,ll′

+ (CĀ)kk′,ll′ + (CBC)kk′,ll′ ). (6)

Finally, assuming that an iteration procedure for C con-
verges, we can evaluate C order by order where the first-order
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contribution

C
(1)
kk′,ll′ = −B∗

kk′,ll′

Ek + Ek′ + El + El′

is obtained by putting C equal to zero on the right-hand
side of Eq. (6). Higher-order C(n) values are thus obtained
by repeatedly inserting the previous expression C(n−1) on the
right-hand side. By using C(n) in the formula for the correlation
energy, Eq. (5), we obtain E

(n)
QRPA. We have also verified

numerically that the iteration converges to results consistent
with Eq. (2).

An alternative approach that is less costly numerically is
to evaluate the correlation contribution from second-order
perturbation theory [26] starting from the HFB ground state
and treating the residual part of the quasiparticle Hamiltonian
as a perturbation. In this case, the only contributions that
arise come from scattering to four quasiparticle states by
the H 40 part [18] of the Hamiltonian. This part of the
Hamiltonian consists of the terms containing four quasiparticle
creation operators and the terms containing four quasiparticle
annihilation operators. The resulting energy contribution can
be expressed in terms of the QRPA B matrix according to

E
(2)
MBPT = −1

6

∑
k<k′,l<l′

|Bll′kk′ |2
Ek + Ek′ + El′ + El′

. (7)

It is interesting to compare the QRPA and MBPT series
order by order. The lowest-order QRPA term is three times
larger than E

(2)
MBPT while the third-order E

(3)
MBPT is exactly

obtained in the QRPA series (see Appendix). In higher orders,
the two series differ as the QRPA expression only includes a
subsequence of the full MBPT series.

In earlier papers by Ellis [27,28], the RPA correlation
energy was investigated by starting from an unpaired ground
state and summing contributions from both normal and pairing
vibrations using diagrammatic techniques. In this way it was
shown that in the QBA, the second-order contribution appears
twice in the summation of the particle-hole ring series and
once in the particle-particle series. A suggested remedy for
this overcounting was to remove the second-order term from
the particle-hole series and only keep it in the particle-particle
series. In this work we have, however, refrained from using this
approach because it is not directly applicable when starting
from a HFB state where normal and pairing vibrations are
generally mixed.

The corresponding correlation energies evaluated with the
two methods described above are shown in Fig. 2(a). In
both results, we have not included the part of the B matrix
obtained in pnQRPA [22], which is associated with excitations
of proton-neutron pairs. Although this contribution is certainly
interesting, a first step in the direction of including these effects
would involve tuning the effective interactions in the T = 0
pairing channel.

As seen in Fig. 2, for both methods the correlation
energy amounts to a rather large part of the total binding
energy. The QRPA formula predicts the largest values as the
QBA overestimates the ground-state correlations [18,27–29].
Although this could possibly be corrected for, in the following
we instead focus on the MBPT2 results.
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FIG. 2. (Color online) Panel (a) shows the binding energy con-
tribution from QRPA and MBPT2 scaled with the HFB energy.
Panel (b) shows the influence of the truncation on the HFB energy.
Calculations were done using the SLy5 [16] parametrization for the
Skyrme interaction using a basis of 14 oscillator shells.

In the case of 16O, the smallest � = 1.4 fm−1 used in
the figure gives a contribution from MBPT2 which is 21%
of the HFB energy. This contribution gradually decreases for
the heavier nuclei and becomes 16% in 132Sn, indicating that
the mean-field approximation becomes better in the heavier
systems, as one may expect.

Figure 2(b) shows the influence the regularization has on the
HFB energy. As seen in this figure, the HFB energy converges
to the untruncated value as the cutoff is increased and even for
rather low cutoffs of � = 1.5 fm−1 the change in total binding
energy stays within a few percent. This tells us that the HFB
energy is not very sensitive to higher-momentum parts of the
interaction potential in the particle-hole channel.

In both the QRPA and the MBPT2, the correlation energy
increases rapidly with increasing �; therefore we consider �
values in the range of 1.6–1.8 fm−1. These values lead to the
smallest correlation energies while causing moderate changes
of the HFB energies.

We solve the HFB equations in an iterative way where
the nuclear densities change during iterations. Because the
interaction depends on the densities, the interaction also
changes in each such HFB iteration step. Recalculating the
regularized density-dependent interaction in each HFB itera-
tion is time-consuming because it involves a transformation
to relative nucleon coordinates. However, because the HFB
energy stays roughly the same providing � is large enough
(see Fig. 2), it is a good approximation to neglect the
regularization for the HFB part of the calculation and only
regularize when generating the residual interaction. This is
quite important for the method to be efficient and a strong mo-
tivation for introducing the regularization in the way done here
rather than using, e.g., a Gaussian interaction. However, in this
work we follow the procedure to recalculate the regularization
in each HFB step to make the least amount of approximations.

Using an angular-momentum coupled notation, the corre-
lation energy can be divided into partial contributions arising
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FIG. 3. (Color online) Partial contributions to the MBPT2 corre-
lation energy for � = 1.8 and 132Sn using SLy5.

from QRPA excitations with different total angular momentum
J and parity π . Because the MBPT2 result can be seen
as an approximation of the full QRPA result, we use the
same division into multipole contributions also in this case.
These partial contributions are shown in Fig. 3 for 132Sn.
As seen in this figure the largest contributions come from
natural parity states with (−1)J = π . Both positive-parity and
negative-parity contributions are equally important and show
maxima for J = 4 and J = 5, respectively.

IV. FLUCTUATING PARTS OF THE
CORRELATION ENERGY

Both Skyrme interactions considered in this work have
been fitted to reproduce binding energies and charge radii
of a few magic nuclei. A difference between them is that the
SKX interaction uses single-particle energies [15] in the fitting
procedure, while the SLy5 interaction [16] uses properties
of nuclear matter. Because these fits were done at the HF
level, they effectively include the average part of the nuclear
correlation energy. Going beyond the HF level by explicitly
including the MBPT2 correlation energy thus requires a refit
of the interaction parameters. As a first step, we refrain from
performing a full refit of the interaction and instead make
a simple compensation for the overbinding obtained when
including this extra energy contribution.

The nuclear ground-state energy can be divided into a
liquid-drop part that captures the average variations as a
function of nucleon numbers and a fluctuating part that mainly
depends on the shell structure. We make the same division for
the correlation energy and fit a liquid-drop expression [18],

ELD = avolA + asurfA
2/3 + asym

(N − Z)2

A
, (8)

to the calculated E
(2)
MBPT energies. The liquid-drop part is then

taken as a measure of the average part of the correlation
energy. Because this part is already included in the HF fits
we only keep the fluctuating part of the correlation energy
E = E

(2)
MBPT − ELD. Although the final goal is to obtain an

effective interaction suitable for calculations beyond HF, this
first approximation allows us to get an idea of the effect of
including the MBPT2 correlation energy and to see whether it
improves the description of nuclear ground-state energies.
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FIG. 4. (Color online) The renormalized part of the MBPT2 cor-
relation energy associated with quadrupole shape vibrations (J = 2+)
shown for � = 1.6 (dashed curve) and � = 1.8 (solid curve).

In this way the renormalized correlation contributions
associated with 2+ and 3− vibrations are extracted and shown
in Figs. 4 and 5. The fluctuations show pronounced shell effects
and tend to give increased binding energy contributions for
the open-shell nuclei compared to the magic ones. The two
different choices of � truncation shown in the figures give
similar results, indicating that the obtained fluctuations are
mainly associated with the properties of the low-momentum
part of the interaction.

In the 2+ channel, the SKX interaction gives fluctuations
larger than those of the SLy5 interaction. Previous results for
quadrupole correlations using the SkI3 interaction and a col-
lective Hamiltonian [30] gave similar results with fluctuations
that are somewhere in between the ones we get for the SKX
and the SLy5 interactions.

Contributions from octupole vibrations are similar in
magnitude to the quadrupole vibrations and show the same
tendency of increasing the energies for magic nuclei as
compared to their neighbors. Notable exceptions are 16O and
40Ca, which have Fermi levels between opposite parity shells
and show the reversed trend. For such nuclei, with Fermi levels
between opposite-parity shells, negative-parity excitations can
be made at a lower energy cost than in the neighboring nuclei.
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FIG. 5. (Color online) Same as Fig. 4 for octupole shape
vibrations (J = 3−).
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relation energy separated into contributions from different multipoles
for � = 1.8. Solid curves are for SLy5 and dashed curves for SKX.
In this figure the renormalization was done by fitting Eq. (8) to Sn
nuclei only.

A low energy cost then typically leads to an increase in
correlation energy. The same explanation works for the magic
nuclei which are generally calculated to have less correlation
energy than their neighbors possibly because there is a gap in
the spectra that makes excitations more expensive.

Figure 6 shows the fluctuating part of the correlation
energies separated into contributions from different multipoles
in the case of the Sn chain. The main fluctuations come from
the Jπ = 2+, 4+, 3−, and 5− channels and show the trend
of making double-magic nuclei less bound relative to the
semi-magic ones. Interesting exceptions are found in the 10+
and 11− contributions, which show the opposite trend around
N = 82. Going even higher in multipoles, the curves tend to
flatten out.

A. Comparison with experiment

When comparing with experimental ground-state energies,
we restrict ourselves to contributions from the well-studied
low-order multipoles Jπ = 0+, 2+, 1−, and 3− where the
effective interactions generally give reasonable results for
low-lying collective states and giant resonances.

The differences between calculated and experimental
ground-state energies using the SLy5 and the SKX [15]
interactions are shown in Figs. 7 and 8. The dotted lines denote
the results of the HFB treatment (� = ∞) using a total of
31 oscillator shells. For both interactions, the HFB results are
within a few MeV of the experimental values. The SKX results
differ somewhat from the ones in Ref. [15], which is due to
a different treatment of the Coulomb interaction. While we
calculate the Coulomb contribution directly from the proton
density, in Ref. [15] some additional corrections are taken into
account.

It is interesting to notice that with both interactions the
HFB errors for magic nuclei with N = 8, 20, and 28 go up
in energy compared to their neighbors, which could possibly
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FIG. 7. (Color online) Difference between experimental [31,32]
and theoretical ground-state energies in the HFB approach (dotted
curves) and when adding surface vibrations corresponding to multi-
polarities J π = 0+, 2+, 1−, and 3− (solid curves). The figure is drawn
using the SLy5 interaction and � = 1.8 fm−1.

be cured by making the corresponding gaps in the neutron
spectra somewhat larger. With SLy5, the situation is reversed
for the gaps at N = 50 and 82, where the errors instead dip
down.

The lowest-order surface vibrations are calculated using
MBPT2 and a total of 14 oscillator shells. The fluctuating part
of the correlation energy is well converged using 14 oscillator
shells and is extracted by fitting the liquid-drop expression
to all the included nuclei. The solid lines in Figs. 7 and 8
show the results of adding these fluctuating parts to the HFB
energies. As discussed previously the main effect of the surface
vibrations is to push the magic nuclei up in energy as compared
to the neighboring nuclei. For SLy5 this gives corrections that
go in the right direction in the region of the N = 50 and 82
gaps, but in the opposite direction for the lighter magic nuclei.
Although both interactions give rise to similar fluctuations, the
larger magnitude fluctuations in combination with different
HFB results obtained using the SKX parametrization compare
less favorably with experiment. If a Skyrme interaction tuned
at the MBPT2 level is used at the HFB level, one would
expect it to predict the magic nuclei to be more bound than
their neighbors to leave room for the additional correlation
part.

Some of the nuclei included in the plot have the same
number of neutrons and protons, which gives rise to an
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FIG. 8. (Color online) Same as 7 but for the SKX interaction.
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additional contribution to the binding energy. This contribution
is often modeled by adding so-called Wigner corrections (see,
e.g., Ref. [33]), which give an additional binding energy
contribution of roughly 2 MeV for the N = Z nuclei. Such a
contribution would reduce some of the remaining fluctuations
but would, for example, not improve the results around 48Ca.
Furthermore, such a phenomenological treatment is clearly
unsatisfactory and a more thorough investigation of these
interesting effects is clearly called for.

In the case of � = 1.8 (fm)−1 the parameters obtained
from the liquid-drop fit to the SLy5 correlation energies
resulting from J = 0+, 2+, 1−, and 3− vibrations become
{avol, asurf, asym} = {0.99,−8.24, 0.77} MeV, while for SKX
the average contribution is roughly twice as large. A possible
reason that the SKX interaction gives more correlation energy
is that SKX has larger effective mass (m ∗ /m = 0.99) [15]
than SLy5 (m ∗ /m = 0.69) [16] and thus a denser spectrum,
giving smaller denominators in Eq. (7).

Typical liquid-drop parameters obtained when fitting to
experimental ground-state energies are {avol, asurf, asym} =
{−15.68, 18.56, 28.1} MeV [18]. Thus, the main change in the
average energy obtained by adding the correlations resulting
from low-lying surface vibrations is to modify the surface
energy. The reduction of the surface energy and the increased
energy for the volume part will likely move nucleons from the
bulk to the surface, leading to a more diffuse surface region.
Thus, refitting the Skyrme parameters to absorb the average
part of the correlations and have a model on the MBPT2 level
would likely involve tuning not only the density-dependent
terms but also the gradient terms, which are more sensitive
to the surface region. When refitting, it is important to have
as small correlation corrections as possible, so that the HFB
ground state is a reasonable first approximation. In this respect
the smaller average contribution obtained in the SLy5 case
makes it a better starting point. Nuclear matter properties
can also be used to refit, but then the nuclear matter EOS
has to be calculated at the corresponding level of many-body
theory (see, e.g., Ref. [34] for a description of nuclear matter
at MBPT2 order).

V. SUMMARY AND CONCLUSIONS

The problem we set out to investigate was whether effective
nuclear interactions can provide improved descriptions of
nuclear binding energies when correlation effects beyond the
HFB level are taken into account. To this end, it was essential to
introduce a momentum cutoff in Skyrme’s potential to obtain
convergent results. The calculations show that even with a
low cutoff, the average part of the correlation corrections
are quite substantial (about 25% of the total binding energy
with MBPT2 and � = 1.8 fm−1). We then considered a
schematic renormalization by removing the average parts of
the correlation energies. The remaining fluctuations are similar
for both interactions studied and not very sensitive to the
exact choice of the momentum truncation. When the SLy5
Skyrme parametrization is used, the fluctuations associated
with low-lying surface vibrations do lead to a reduction of the
errors compared to experiment. To obtain a model that can be

used with more confidence, a refit of the interaction parameters
should be performed. The ideal would be to compare results of
an interaction fitted on the HFB level to those of an interaction
fitted on the MBPT2 level using the same set of experimental
data.

Some interesting features can be learned from the obtained
fluctuations. One result is that octupole vibrations are predicted
to give fluctuations of magnitude similar to that of the
quadrupole corrections and to contribute in a similar way.
It is also interesting to see that higher multipoles such as
4+ and 5− gave rise to large fluctuations in the case of Sn
isotopes.

Although the fluctuating parts were extracted using
MBPT2, the QRPA formula is also promising because it allows
for an infinite summation of diagrams. However, for it to be a
practical tool, the QBA approximation must be improved and a
careful study of the corrections in the quasiparticle case would
be needed. Once such a formalism is in place, the correlation
energy could be calculated using iterative approaches [35]
similar in spirit to the ones we recently employed for the
calculation of low-lying excitations [12].

In summary, we have regularized Skyrme’s potential and
used it to study higher-order corrections to binding energies
beyond the HFB approach. Compared to other approaches,
the method used here has the advantage of not relying on
energy truncations to converge and that correlations resulting
from many degrees of freedom (e.g., vibrational modes) can be
simultaneously included. Apart from nuclear binding energies
studied in this work, there are other quantities that could
possibly be modeled better in a formalism that goes beyond the
HFB approximation. An example is the calculation of α-decay
preformation amplitudes, which show a dramatic increase as
correlations between nucleons are introduced [36].
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APPENDIX: HIGHER-ORDER CORRECTIONS

Starting from the HFB ground state, denoted |0〉, and
applying perturbation theory to third order gives the expression

E
(3)
MBPT =

∑
kk′

〈0|Hres|k〉〈k|Hres|k′〉〈k′|Hres|0〉
(E0 − Ek)(E0 − Ek′)

,

where the sum runs over all excited quasiparticle states and in-
volves their excitation energies, Ek . The residual Hamiltonian
can be divided into unique parts [18]

Hres = H 40 + H 31 + H 22.
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The indexes on the H 31 term denote that it is composed of
terms that are products of either a three-quasiparticle creation
operator and a one-quasiparticle annihilation operator or vice
verse. The other terms are defined analogously. Only certain
parts of the residual quasiparticle Hamiltonian give rise to
nonzero elements, which allows us to write

E
(3)
MBPT =

∑
kk′

〈0|H 40|k〉〈k|H 22|k′〉〈k′|H 40|0〉
(E0 − Ek)(E0 − Ek′)

,

where one notices that the |k〉 and |k′〉 states have to be four-
quasiparticle states. Rewriting the sum in terms of the QRPA
matrices

Baa′,bb′ = 〈bb′aa′|H 40|0〉
and

Aaa′,bb′′ = [(Eb + Eb′ )δabδa′b′ + Āaa′,bb′ ],

where

Āaa′,bb′ = 〈aa′|H 22|bb′〉

and the quasiparticle labels are ordered as a < a′ and b < b′
gives

E
(3)
MBPT =

∑
a<a′,b<b′,c<c′

B∗
aa′,cc′Ācc′,bb′Bbb′,aa′

Eaa′cc′Ebb′aa′
,

where we have introduced the shorthand notation Eabcd =
Ea + Eb + Ec + Ed .

A term that is third order in the residual interaction can
also be found from the QRPA expression by evaluating
Eq. (5) to higher orders. The third-order term obtained in this
way takes exactly the same form as the perturbation theory
expression. Starting at fourth order, the QRPA series contains
less terms than perturbation theory, for example, the H 31 part
of the quasiparticle Hamiltonian never enters in the QRPA
expressions. It would be interesting to make a comparison of
the QRPA energy with, for example, shell-model calculations
using the same interaction to get a better idea of the accuracy of
the QRPA expression and the importance of these higher-order
terms in the series. A more careful treatment of particle-
number fluctuations is also possible by, for example, using
projected-quasiparticle perturbation theory [37].
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[21] G. Kamuntavičius, R. Kalinauskas, B. Barret, S. Mickevičius,
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