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Chiral three-nucleon force at N*LO. II. Intermediate-range contributions

H. Krebs,""" A. Gasparyan,">! and E. Epelbaum'+*

Unstitut fiir Theoretische Physik II, Ruhr-Universitdt Bochum, D-44780 Bochum, Germany
2FSBI SSC RF ITEP, Bolshaya Cheremushkinskaya 25, 117218 Moscow, Russia
(Received 22 February 2013; published 29 May 2013)

We derive the subleading contributions to the two-pion—one-pion exchange and ring three-nucleon force
topologies emerging at next-to-next-to-next-to-next-to-leading order in chiral effective field theory. The resulting
expressions do not involve any unknown parameters. To study convergence of the chiral expansion we work out the
most general operator structure of a local isospin-invariant three-nucleon force. Using the resulting operator basis
with 22 independent structures, we compare the strength of the corresponding potentials in configuration space
for individual topologies at various orders in the chiral expansion. As expected, the subleading contributions from
the two-pion—one-pion exchange and ring diagrams are large, which can be understood in terms of intermediate

excitation of the A(1232) isobar.
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I. INTRODUCTION

Three-nucleon forces (3NFs) are presently subject to
intense research (see Refs. [1-10] for a selection of recent few-
and many-body calculations along these lines and Refs. [11,12]
for review articles). On the one hand, rapidly increasing
computational resources coupled with sophisticated few- and
many-body methods allow nowadays for reliable and accurate
nuclear structure calculations for light and even medium-mass
nuclei. One can, therefore, relate the properties of the nuclear
Hamiltonian to observables in a reliable way and without
invoking any uncontrollable approximations. On the other
hand, considerable progress has also been reached toward
quantitative description of nuclear forces using the framework
of chiral effective field theory (EFT) (see the recent review
articles [12—15] and references therein). In particular, nucleon-
nucleon (NN) potentials at next-to-next-to-next-to-leading
order (N*LO) in the chiral expansion were developed [16,17];
these allow for an accurate description of NN scattering data
up to laboratory energies of the order of Ej,, ~ 200 MeV.
For heavier systems, the accuracy of theoretical predictions
is currently limited by the 3NFs for which only the dominant
contributions at next-to-next-to-leading order (N>LO) in the
chiral expansion of the nuclear Hamiltonian have so far been
employed in few- and many-body calculations.

The chiral expansion of the 3NF at the one-loop level, i.e.,
up to next-to-next-to-next-to-next-to-leading order (N*LO),
can be described in terms of six topologies depicted in Fig. 1.
The first nonvanishing contributions to the 3NF emerge at
N2LO from tree-level diagrams corresponding to the 27 ex-
change, one-pion-exchange-contact, and purely contact graphs
(a), (d), and (f), respectively [18,19]. The shorter-range terms
emerging from diagrams (d) and (f) depend on one unknown
low-energy constant (LEC), each of which can be determined
from suitable few-nucleon observables (see, e.g., [4,5,19,20]).
The long-range contribution (a) is, on the other hand, param-
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eter free since the LECs ¢, c3, and ¢4 accompanying the sub-
leading wr NN vertices can be extracted from pion-nucleon
scattering; see [21-24] for heavy-baryon results, Refs. [25,26]
for some more recent calculations using manifestly covariant
formulations of chiral perturbation theory as well as Refs.
[27,28] for attempts to determine these LECs from proton-
proton and neutron-proton partial wave analyses, and Ref. [29]
for some critical comments. The resulting 3NF at N’LO has
been intensively explored in three- and four-nucleon scattering
calculations (see [11] and references therein). One finds a
good description of low-energy nucleon-deuteron scattering
observables except for the well-known, long-standing puzzles
such as the vector analyzing power in elastic nucleon-deuteron
scattering (the so-called A, puzzle) and the cross section
in the space-star breakup configuration (see Ref. [11] for
more details). Promising results for low-energy four-nucleon
scattering observables based on the chiral 3NF, especially in
connection with the A, puzzle, are reported in Ref. [3]. While
nucleon-deuteron scattering data at higher energies are also
well described, the theoretical uncertainty increases rapidly,
reflecting a similar pattern in the two-nucleon sector at this
order in the chiral expansion. Promising results based on
chiral nuclear forces were also obtained in nuclear structure
calculations showing, in particular, sensitivity to the individual
terms of the N>LO 3NF (see [11] and references therein). All
these findings clearly underline the need to include corrections
to the 3NF beyond the leading terms at N°LO.

The first corrections to the 3NF emerge at N°LO from all
possible one-loop diagrams of types (a)—(e) involving solely
the lowest-order vertices from the effective chiral Lagrangian.
The resulting parameter-free expressions for the long-range
and intermediate-range contributions of type (a) and of types
(b) and (c), respectively, can be found in Ref. [30] (see also [31]
where the leading one-loop corrections to the longest-range
two-pion exchange terms of type (a) are calculated within
the infrared-regularized version of chiral perturbation theory).
NLO contributions to shorter-range diagrams of types (d) and
(e) as well as the leading relativistic corrections are given in
Ref. [32] (see also [33] for a related work). Notice that these
shorter-range terms are driven by the leading four-nucleon
contact operators which also contribute to nucleon-nucleon

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevC.87.054007

H. KREBS, A. GASPARYAN, AND E. EPELBAUM

(@) (b) ©

PHYSICAL REVIEW C 87, 054007 (2013)

(d (© ®

FIG. 1. (Color online) Various topologies contributing to the 3NF up to and including N*LO: two-pion (27 ) exchange (a), two-pion—one-pion
(2m-1m) exchange (b), ring (c), one-pion-exchange-contact (d), two-pion-exchange-contact (e), and purely contact (f) diagrams. Solid and
dashed lines represent nucleons and pions, respectively. Shaded blobs represent the corresponding amplitudes.

S-wave scattering. Thus, they do not involve any unknown
LECs. Finally, there are no corrections to the purely short-
range topology of type (f) at this order. An interesting feature
of the N®LO 3NF corrections is their rather rich isospin-
spin-momentum structure emerging primarily from the ring
topology (c) in Fig. 1. This is in contrast with the quite
restricted operator structure of the N?LO 3NF. The impact
of these novel 3NF terms on nucleon-deuteron scattering and
nuclear structure observables is unknown, which makes the
complete N*LO calculations even more urgent, especially
in connection with the already mentioned unsolved puzzles.
Numerical implementation of the new terms in the 3NF at
N3LO requires their partial-wave decomposition, which is
a nontrivial task. In Ref. [34], a novel method to perform
partial-wave decomposition of any type of 3NF by carrying
out five-dimensional angular integrations numerically was
introduced. This approach is quite general in the sense that
it can be applied to any type of 3NF but requires substantial
computational resources. The partial-wave decomposition of
the N®LO 3NF using this new technique is in progress; see
Ref. [35] for some first (but still incomplete) results.
Meanwhile, one may ask whether the derived expressions
for the 3NF at subleading order in the chiral expansion are
already converged or, at least, provide a reasonable approxi-
mation to the converged result. This applies especially to new
operator structures emerging from the genuine loop topologies
(b) and (c), whose chiral expansion starts at NLO rather than
N2LO. At this order, the resulting contributions still miss
physics associated with intermediate A(1232) excitations.
In the standard chiral EFT formulation based on pions and
nucleons as the only explicit degrees of freedom, all effects of
the A (and heavier resonances as well as heavy mesons) are
hidden in the (renormalized) values of certain LECs starting
from the subleading effective Lagrangian. The major part of
the A contributions to the nuclear forces is known to be well
represented in terms of resonance saturation of the LECs ¢ 3 4
accompanying the subleading w7 NN vertices [21,36-38]
(see, however, the last two references for examples of the A
contributions that go beyond the saturation of ¢, 3 4 and [39]
and [50] for the discussion on the role of the A for the 27
exchange 3NF). The values of these LECs are known to be
largely driven by the A and appear to be large in magnitude.
As aconsequence, one observes a rather unnatural convergence
pattern in the chiral expansion of the two-pion exchange
nucleon-nucleon potential VAz,f\, with by far the strongest
contribution emerging from the formally subleading triangle
diagram proportional to c3 [40]. The (formally) leading
contribution to V2%, does not provide a good approximation

to the potential so that one needs to go to higher orders in
the chiral expansion and/or include the A isobar as an explicit
degree of freedom. One expects similar convergence pattern
for the chiral expansion of the two-pion—one-pion (277-17)
exchange and ring 3NF topologies (see also the discussion
in Ref. [41]). For the ring topology, this expectation is in line
with the phenomenological study of Ref. [42]. All this suggests
that one should not truncate the chiral expansion of the 3NF at
N®LO but rather go to (at least) N*LO in the standard A-less
EFT approach and/or include the A isobar as an explicit degree
of freedom. In the latter case, the first contributions of the A
to the 27-17 exchange and ring 3NF topologies would appear
already at N3LO. It should be understood that the strategies
outlined above are, to some extent, complementary to each
other. This is because N*LO 3NF corrections in the A-less
theory take into account only (some) effects due to single A
excitation but not due to double and triple A excitations, which
appear first at N°LO and N®LO, respectively. While these
effects are included at N3LO in the A-full approach, N*LO
contributions not related to A excitations are certainly not. We
further emphasize that in both cases a number of unknown
LECs will appear. It remains to be seen which strategy will
turn out to be most efficient in practical terms.

In our recent work [43] we already made a first step in this
direction and worked out N*LO corrections to the longest-
range 27 exchange topology in the A-less approach. Apart
from relativistic corrections (which in our power-counting
scheme appear at N3LO but turn out to vanish at N*LO), the
general form of the 27 exchange 3NF can be parametrized
in terms of two scalar functions A(q;) and B(g,) which
depend on the momentum transfer g, = |g»| of, say, the second
nucleon. In spite of this simple structure, this topology turns
out to be most challenging to calculate. The pion-nucleon
scattering amplitude enters here at the subleading one-loop
order so that the N*LO correction depends not only on the
pion decay constant F,; and the pion-nucleon coupling g, yn
but also on 13 independent (linear combinations of the) LECs

from higher-order effective Lagrangians: ¢ ;34 from Ef,)\,,

d\ + d», d5, ds, and dy4 — dys from Ef}v, and €14,15,16,17,18
from Lff])v. The explicit form of the heavy-baryon pion-nucleon
effective Lagrangians Lﬁg’}\, of chiral dimension n needed
in the derivation can be found in [43] while the complete
pion-nucleon Lagrangian Eff,)v is constructed in Ref. [44]. In
order to determine these LECs we reanalyzed pion-nucleon
scattering at subleading one-loop order, employing exactly
the same power-counting scheme as in the derivation of the
nuclear forces. We used the available partial wave analyses
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of the pion-nucleon scattering data to determine all relevant
LECs. With all LECs being fixed from pion-nucleon scattering
as discussed above, we found a good (reasonable) convergence
of the chiral expansion for the functions A(g;) [B(g2)]. This is
to be expected given that effects of the A isobar are, to a large
extent, accounted for already in the leading contribution to
A(g>) and B(q,) at N2LO through resonance saturation of the
LECs c3 4. As pointed out above, this situation is different for
the 27 -1 exchange and ring 3NF topologies, whose leading
contributions at N*LO completely miss effects of the A isobar,
which lets one expect large N*LO corrections.

In the present work we calculate the intermediate-range
contributions to the 3NF at N*LO, namely, the ones corre-
sponding to diagrams (b) and (c) in Fig. 1, and analyze in
detail convergence of the chiral expansion for the long-range
tail of the 3NF by comparing the coordinate-space potentials
associated with individual isospin-spin-position structures.
In order to carry out such a comparison in a meaningful
way, we worked out the most general structure of a local
isospin-invariant 3NF both in momentum and configuration
spaces and defined the minimal sets of linearly independent
operators. Our paper is organized as follows. In Sec. IT we
carry out Fourier transformation of the momentum-space
expressions for the 27r exchange 3NF of Ref. [43]. Sections I1I
and IV are devoted to the calculation of the N*LO corrections
to the 2w-1m exchange and ring topologies, respectively.
For 2m-1m exchange contributions we provide results both
in momentum and coordinate spaces. For the ring topology
we give compact expressions in coordinate space while the
rather lengthy expressions in momentum space are relegated
to the Appendix. The most general operator structure of a
local 3NF is worked out in Sec. V, where we also define
the basis of 22 isospin-spin-momentum operators. We use
the corresponding coordinate-space version of this basis when
discussing numerical results for various potentials in Sec. VI
in connection with convergence of the chiral expansion. The
findings of our work are briefly summarized in Sec. VII.

II. TWO-PION EXCHANGE 3NF IN CONFIGURATION
SPACE

The 27 exchange topology (a) generates the longest-range
contribution to the 3NF. In the isospin and static limits, i.e.,
the limit of infinitely heavy nucleons, its general structure in
momentum space has the following form (modulo terms of a
shorter range corresponding to other topologies):

614103 q3
qi + M2][45 + M2]
+T1 X T3-12G1 X G302 B(g2)), (2.1)

Var (g1, G3) = [ (t1 - 13 A(q2)

where M., stands for the pion mass, o; denote the Pauli spin
matrices for the nucleon i, and g; = p; ' — p;, with p; " and p;
being the final and initial momenta of the nucleon i. Here and
in what follows, we use the notation ¢; = |g;|. Notice that the
momentum transfers are not independent and are thus related to
each other via the condition ¢; + ¢» + g3 = 0. The quantities
A(g>) and B(q,) in Eq. (2.1) are scalar functions of the
momentum transfer ¢, of the second nucleon, whose explicit
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form is determined by means of the chiral expansion, i.e., the
expansion in powers of the soft scale O ~ M. Unless stated
otherwise, the expressions for the 3NF results are always given
for a particular choice of the nucleon labels. The complete
result can then be found by taking into account all possible
permutations of the nucleons:

Viwl = Van + 5 permutations. (2.2)

The explicit expressions for the functions A(g,) and B(g>)
at the first three nonvanishing orders in the chiral expansion,
i.e., N°LO [Q%], N°LO [Q%], and N*LO [Q°],! are given
in Ref. [43]. The functions A(gy) and B(gy) resulting at
different orders in the chiral expansion are plotted versus
the values of g, in Fig. 5 of that work. While in the case
of the 2w exchange topology it is possible to address the
convergence of the chiral expansion in momentum space
thanks to the particularly simple parametrization in Eq. (2.1),
this is generally not possible for the more complicated cases of
the 27-17 exchange and ring diagrams. This is because there
is, in general, no easy way to separate the truly long-range
components, which are unambiguously predicted in terms of
the chiral expansion, from scheme-dependent short-range con-
tributions. Such a separation is naturally achieved by looking
at the corresponding coordinate-space potentials at sufficiently
large distances. It is, therefore, advantageous and, in fact, also
quite natural to switch to coordinate space in order to study
the convergence of the chiral expansion for nuclear forces.

We define the coordinate-space representation of a static
3NF by means of the Fourier transform

g d’qs
(2m)3 2n)?

TR f BT (G, ).
2.3)

For the two-pion exchange contribution, we obtain from
Eq. (2.1)

Van(Fia, F32) =

Vor(Fia, F32) = =81 - Via 83 - Vao(z1 - T3 A(Fia, F)
—T1 X T3 Ty Via X Va3 - G5 B(F12, '32)),
2.4)
where 7; = o ; denotes the distance between the nucleons
i and j. The differential operators V;; are defined in terms of
dimensionless variables X; = 7 M ; the functions Aand B
are given by
d*q1 d’q3
m)} 2n)3
1
X =3 22 2
qi + Mrr q3 + Mrr
= d3CI1 d3q3 R o o
B 7 ’7 — M4 el Hlq3 T
(r12, r32) | Gny @ny
1 1
X
qr + M2 g3 + M2

iqi-r2 ,ig3 T3

A(F12, T32) = Mﬁ/

A(q),

B(q2). (2.5)

Notice that the overall “chiral dimension” is a matter of convention.
In the context of nuclear chiral EFT, one usually uses the convention
in which the leading-order (LO) one-pion exchange nucleon-nucleon
potential is assigned the chiral dimension Q°.
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The N?LO expressions for A and B corresponding to A®(¢)
and B®(g,) from Eq. (3.5) of Ref. [43] are given by

8AM

. . 5 s
A (2, r2) = 2872 27;:4 (2c3 —4cr — c3(Viz + V)7)
x Ui (x12)U(x32),
2
~ M
B (ria, r32) = —128 2 s V1012 Ui (), (2.6)

where g4 denotes the nucleon axial vector coupling and the
Yukawa function U is defined as
4 d3q £ld%/Mx e~

Ui(x) = — = —

M, ] @n)gq +M2 @D

Here and in what follows, the superscripts of A, B, A, and B
as well as other functions parametrizing 3NF matrix elements
refer to the chiral dimension, i.e., to the associated power of
the soft scale Q.

The first corrections to A and B emerge from Fourier
transforming the expressions A®(g») and B#(q,) given in
Eq. (3.4) of Ref. [43]. We obtain

Q) giMx 2
Fia, i) = —oAZT _1T(4g2 41
A (r12, F32) 409673 F6 {[( ga+1)
—2(g3 + 1)(%12 + %32)2]U1(x12)U1(x32)
1 - - - -
+ E(Z —5(Vi2 + V32)? + 2(Vi2 + Va)')
x/d%c U1(|?cu+?c|)Wl(x)U1(|232+2|)},

4 d*q

Vitx) = i | Gy

o8/ M /oo /M _4M2 = - /
2M, M +61 :u
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gaM]
409673 F8

1 > o .
+ 4=V + V32)?) / d’x Uy(|X12 + %)

BY G2, ) = — {(ng, + 1) U1(x12)U1(x32)

x Wi(x) Ui (%3 +f|)}- (2.8)

The profile function W; is given in terms of the Fourier
transform of the loop function A(q) appearing in A®(g,) and
B (g»):

47 d’q e
l X/ My :
Wi(x) = /(2 )3 a A(g) = oo with
A(q) = - arctan -2 (2.9)
—arC an . .
V=74 oM,

To give the coordinate-space expressions for N*LO contri-
butions we need to Fourier transform another loop function,
namely,

Vgt +4M2

2 4M?2

L(g) = M

,  (2.10)

which enters the expressions for A®(g,) and B(q,) in
Eq. (3.14) of Ref. [43]. This can be most easily achieved by
using the spectral representation of L [40] given by

00 2
q 1
L(q)zl—i—/ du——- ,/,u —4M2. (2.11)
o, Mgt

The Fourier transform of the square-integrable part of L is
given by

V2 —4. (2.12)

With these preparations, we obtain the following result for the Fourier transform of A®)(¢,) and 8(5)((,]2):

gAM;-S; [

i)z 7y —
A7) = e

— (Vo + %32)2(175(23047728/4(4514 + 2819 — &2 — &36) — 23047°d5¢3)

+ ga(144c; — 53¢2 — 90c3)) + F(46087%d1s(2c) — c3) + 460877 g4(2814 + 2819 — &3 — 4233))

+ ga(72(647° L5 + 1)c;

— 246‘2 - 36C3)

+(Viz + V) (23047°€14 F2 g4 — 284(5¢2 + 18¢3) | U (x12)U; (x32)

oM
1228874 FS

gaM3

T 2015275 F8

(1 = 2(Vi2 + Va))(@(6¢; — ¢z — 3¢3) — (Via + V)X (—ca

— 6c3))Ui(x12)U1(x32)

(1 = 2(Viz + V32)?)(@(6¢) — 3 — 3¢3)

— (Viz + Vi) (—c2 — 6¢3)(Viz + Vi) f d>x Uy(|%12 + X)) Vi(x) Uy(|%3 + X)),

gaM?

BOFpa. ) = —
(F12:732) = =3 e amt o

[Fi(l 152JT2d_18C4 — 11527T2gA(2517 + 2e, — e37)) + 108gi04 + 24g4c4

— (Vo + V32)? (Sgacs — 11527%€17F2g4) Ui (x12) U1 (x32)

gAC4M8
614474 F8
gA 41‘/18
 24576n SFS

(4 — (Via + Vi) )(Via + Vip)? /d x Ui(|X12 + X]) Vi(x) Ui(1X3, + XJ).

4 — (Via 4+ V)2 U, (x12)U1 (x32)

(2.13)
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One should emphasize that while the momentum-space repre-
sentation of the functions .A and BB depends on just one variable
¢», the coordinate-space functions A and B depend on three
scalar arguments. We will discuss the convergence of the chiral
expansion for the coordinate-space potentials in Sec. VI.

III. TWO-PION-ONE-PION EXCHANGE 3NF AT N‘LO

We now turn to the 27-17 exchange topology. In contrast
to the longest-range 27 exchange topology discussed in the
previous section, its chiral expansion starts at N3LO. At this
order, one has to evaluate all one-loop diagrams made out of
the lowest-order pion-nucleon vertices. This was achieved in
Ref. [30] [see Egs. (2.16)—(2.23) of that work]. As pointed
out in Ref. [43], the decomposition of momentum-space 3NF
expressions according to the type of topology is not unique
as, e.g., some parts of the 27 exchange contributions can be
reshuffled into 277-17 exchange and shorter-range terms by
canceling pion propagators with the corresponding expressions
in the numerator. In Ref. [43] we introduced a “minimal”
parametrization of the 2 exchange 3NF, which corresponds
to Eq. (2.1) and which is adopted here and in what follows.

The structure of two-pion-one-pion exchange contributions
up to N*LO in the chiral expansion has the form

v R LT
-l = ————=[T1- T3 [02- q1 g1 - 43 Fi(qi
g3 + M2
+02-q1 Fa(q1) + 02+ 43 F3(q1)]

-q3 Fs(q1)
“q1 q1 - g3 Fs(q1) + 62 - g1 Fi(q1)

43 41 - G5 Fs(q1) + 02 - g3 Folqn)]

+ 11 X 12 13[01 X 62 - 41 (G1 - G5 Fio(q1)

+ Fi1(g1) + q1 x g3 - 01 g1 - 62 Fialg)],

+12-13[01 - G1 G1 - G3 Falq) + G
+07
+0,

(3.1

AAAAA

(6) (O]
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early paper [30], which is now also valid at N*LO. The first
nonvanishing contributions to the structure functions F; are
generated at N°LO by diagrams shown in Fig. 3 of that work.
Adjusting the expressions obtained in Ref. [30] to our new
notation and taking into account terms induced by reshuffling
the 27 exchange contributions as explained above we obtain
the following results for the functions F;(g):

4
8
F1(4)(Q1)=W[A(QI)((&?%_“)M (g2 +1)ar)
4M2 2(( —4)M; + (33 — 1)a7)].
4 g4
B g = 52 F6A<q1>(2M +4i),
4
@) = —gser e Aan((865 = )M + (363~ 1)ai).
Fq) g5
Ff)(fh):— 5q12 = " 1287 7§ A(q),
FPq) = FP ) = FP(q) = FiJ(q) = F5(q) =0,
4
F—;4)(41) WA(CII)(QM +CI1)
g
FiT(g) = =525 Alg) (4M7 +47). (3.2)

Notice that we give here only nonpolynomial parts as the
polynomial ones simply lead to shifts of the low-energy
constants D and E from the N’LO three-body force.

The first corrections to these results emerge at N*LO from
diagrams shown in Fig. 2, which involve a single insertion
of ¢; vertices from the subleading pion-nucleon Lagrangian.
Evaluating the irreducible contributions of these diagrams
following the lines of Refs. [30,32] and keeping only terms

“4) ®)

e (10)

FIG. 2. Two-pion—one-pion exchange 3NF diagrams at N*LO. Solid dots and filled circles denote the leading and subleading pion-nucleon
vertices, respectively. Graphs resulting from the interchange of the nucleon lines and/or from the application of a time reversal operation are

not shown. For remaining notation see Fig. 1.
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nonpolynomial in g; we obtain the following expressions:

2
FO@q) = — 8acs Lig)(8(4g2 — 1) M*
+2(5¢% + )M2qi — (g5 — 1)ay)
_ (1-4g3) gy
48712F7?q12 ’
F(q) = F)(qn) = FY(q) =0,
2
FOg) = — 8a% Lg)(4(4g5 — 1)M?
4872FS (4M2 + g?)
+ (175 = 5)M2q} + (4¢3 — 1)q)).
FOq)) ghcs
FO(gy = 15 —_8a% o,
4 (q1) p T6x? F6 (q1)
FOq) = gaM2(6¢1+ 2 — 3c3) gaL(qr)
6 9672 FSq? 19272 F8q? (4M2+ q?)
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x (—48¢1 My + e — 8My +2Mzq7 + q)

+12e3M2 (2M2 + ¢P)),

2

FOq) = ——24 L) (24c:M? = ¢> (4M? + ¢
7)) = 5o (q1)(24c1 M7 — 3 (4M? + q7)
— 6c3(2M2 + ¢?)).
4L(q1)
FOq) = Sa=2d [—32¢, M2 (3M2 + ¢})

12872FS (4M2 + ¢7)
+c (16M2 + 16M2g7 + 3q7)
+¢3(80M; + 68M2q7 + 1341)].

ghcal(q)
6472FS
It is straightforward to transform these results into coordinate

space. The general structure corresponding to the momentum-
space expression in Eq. (3.1) has the form

FQq) = F(q1) = (3.3)

Var-1x(F12, F32) = 03 - V3ol T - T3 (G2 - Vio Vi - V3o Fi(x12) — 62 - Vio Fa(x12) — G2 - Vap F3(x12))

+ 7273 (51 - Via Via - Vag Fy(x12) — 61 - V3o Fs(x12) + 02 - Via Via - Vag Fg(x12) — G2 - Via Fr(x12)

+02 - V32 Via - Vap Fy(x12) — 02 - Vaa Fy(x12)) + 71 X T2 - T3(51 X 02 - Vi (V12 - V32 Fio(x12)

— Fi1(x12)) + Vi2 X Va2 - 61 Vip - G2 Fo(x12) Ui (x32) -

In order to calculate the functions F; it is convenient to
employ the spectral representations of the function L(q) [see
Eq. (2.11)] and A(g) given by

A()—I/wd !
1 2 ) MM2+q2'

ke

(3.5)

Following Ref. [30], we define the profile function Wi(x) via

dn [ dPq ey [My AM?
w. — iq-x/Mx T JTA
0 M2 ) @y ¢ [612 4 (q)]
ef2x
= 2Ei(—2x) + , (3.6)
X
where
o0 —tdt
Ei(x)s—/ et . (3.7)

The Fourier transform of terms in Eq. (3.3) involving the
function L(g) can be expressed by using the profile functions
Vi(x) from Eq. (2.12) and V,(x), which is defined according
to

e H

1 o0
Vo(x) = —/ dp—S .
X J2 U/ > —4

(3.8)

34)

With these definitions, the N3LO contributions to the F;
functions are given by

4047
7=(4) _ gaM 2 2
FyV(x12) = —m(ngUl(ZXlz) — (g3 + 1) Wi(x12)
+ (2g5 — 1) Wa(x12)),
407
- aiM
BV 00) = =58 (Vi = 2) Win),
=(4) gﬁM7 2 2 2
T
F;7(x12) = W(—Vu + (3V12 - 8) ga +4) Wi(x12),
6 1g7
- g Mﬂ
Ff)(xlz) = —mwl(xn),
T
6 147
- M
V() = =228 VE Wi (),
FG(4)(X12) = F§4)(x12) = F9(4)(X12) = Ffé)(xlz) = ng)(xlz) =0,
407
- g Mn
BV () = —m (Vi —2) Wixp),
b
£(4) giM; 2
Fii(xp2) = I (Vi —4) Wixp), (3.9

819273 F§
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while for the N*LO contributions we obtain the following
results:

2 8
gacaM;
ot el (Vb = 4) (= Vi + (Vi +10)

+2)Ui(2x12) — 2( — Vi, + 2V},
32)g3 + 8)Valxi)],

FZ(S)(XQ) = Fés)(xlz) = Fl(?)(xn) =0,

FP () =

+ (Vi + 10V}, —

2 8
gAC4MJr

~(5) _
Fy ) = {536 s

(- Vih+5Vi,

+(4Vi, — 17V}, + 16)g} — 4)
x ((Vlzz —4) Uy(2x12) — 2V, Va(xn)),

4 8
gAC4M7r

- (5) —
Fm) = o S i

VL Vi(x12),

4 8
gicaM
A VL Vi(x12),

(5
P50 = 56 Fs

gAM3
614474 F©
—2)e3) Valxi)
+ (Vi —4) ((V5, = 2) 2 — 1263) U1 (2x12)] .

FO(xp) = [2(48¢1 + (= Vi, +2Vi, + 8)

+12(V,

ga )6 &l Bl &L

®.85 = =
Ving " (12, r32) = <E @) @ny @n)

gs M]

ily-rs eilz'rzl eilz'l’lz
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7 (5) gE\MS 2 2
B = 500 s Vio(2der+ (Vi —4) 2
+6(Vi, —2)c3) Vi(xn),
4 148
~(5) . gaM 2
F9 (xlz) = W][:F;?(32 (VIZ - 3) C1

+ (3Vi, — 16V}, + 16) ¢
+ (13V}, — 68V}, + 80) c3)
x (Vi — 4) Ui(2x12) — 2V, Va(x12),

4 8
gAC4M7T

(5 _ 7O —
Fiy () = Fiy(xp) = —m

VLVi(xp).  (3.10)

IV. RING DIAGRAMS AT N‘LO

Finally, we consider the ring topology. The leading contri-
butions emerge at N°LO from diagrams shown in Fig. 4 of
Ref. [30]. As explained in that paper, only diagrams propor-
tional to g§ and g% generate nonvanishing 3NFs:

.85 (ONS
Vr(lﬁ)g = VringgA + VringgA~ 4.1)

Evaluating the corresponding loop integrals in momentum
space we obtained complicated expressions involving the
three-point function, which are given explicitly in the appendix
of Ref. [30].2 The results in coordinate space are much more
compact and have the form

v

17+ M2 [13 + M2T° [ + m2]

=——"——[-41 -T2 Vo3 X V12 - 02 Vo3 X V3103 V31 - V2

4096 73 FS

=271 73 V3-V31 Vo3 - Vo V31 - Vip + 71 X 7273 Vi3 X Vo202 Vo3 - V31 V31 - Vo

+3Va1 X Vi2 -1 Vs X Va1 - 63 Vis - Vial Uy (x23) Ua(x31) Uy (x12)

g M]

2048 773 FS

#.8h = =
Vring (ri2, r2) =

+ 71 X Ty T3 Va1 X Vig - 61 Vaz - V311U (x3) Ui (x31) U (x1),

[27) -T2 (Va3 - V31 Va1 - Via — Va1 X Vi - 31 Va3 X V3 - 53)

(4.3)

where the derivatives should be evaluated as if the variables X5, X»3, and X3, were independent3 and the numerator v in the first

line is given by

U=—81.’1'1'271X73-8'2Z)1X72-6’372'73 — 4‘[1"[371-?271-7372-73 + 21’1X12'1371XZ3-&271-7272'73

+672X73~5’1 Z] XT2-6371~73.

(4.4)

2We emphasize that several symmetry factors are missing in Eq. (A1) of that work. The corrected equation has the form

Vimg = 0102 T2 T3 R1+01-¢q102-q1 T2 T3 Ro+01-q102-q3 T2 T3 R3 +01-q302 - q1 T2 - T3 Ry

W e s o 1 ., 1. . . 1. . .
+<71'61302%]3‘52'13R5+511'T3R6+01’¢I103'6]1R7+501'C]103'43R8+501'6]303'6]1R9

Lo 1, .
+501'03 R10+§(11'43X02T1'T2><T3R11-

4.2)

3Clearly, the relative distances 7y,, 723, and 73, are related via 7ip + 73 + 73, = 0.
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At N*LO, one only needs to evaluate the contributions of the
four diagrams shown in Fig. 3:

(5).84 (5).83 (5.8
VrEIS,)g = Vring 4+ Vring 4+ Vring " (45)
We were again able to obtain fairly compact expressions in
coordinate space, which, however, involve now a single scalar
integral over the mass of the exchanged particles:

PHYSICAL REVIEW C 87, 054007 (2013)

(1 @ 3 4

FIG. 3. Ring diagrams at N*LO. For notation see Figs. 1 and 2.

(5).8 gaM; * G (T O PR 22 > 2
Vring A ——=2 T dS[ZVlz . V23(V23 . V31(12€1(72 +03 — 4625‘ 07037 T3+ 66‘2S

102474 FS

—00

+ %12 . %31[31 c03(=3c3 4+ 4Ty - To A+ CaTr - T3) + 200 - 03(=3¢3 +caTy - T2 F 4Ty - T3)

+¢32T1 - T2+ 71 - T3)]) +2Vi2 - 51 Va1 - 62(3c3 — eaTy - Ty — €aTr - T3) — 435262 - 0312 - T3

+6C3S2 + 04612 . %31 X 5‘11’1 c Ty X ‘[3) — 2(2%12 . 5’1%31 . 5’2(36‘1 — S2(C2 + C3)Tl . ‘[2)
V31 -51V31 - 63 — (s 4+ 1)3) - 33)(s2(ca 4 ¢3)T1 - T3 — 3¢1) + Vi - Vai(der T - T2
+ Va3 -61Va1 - 53(=3¢3 + 471 - Ta + cata - 1)) — (57 + 1)V1p - 53Va3 - 5133 — caTy - T2

— 4Ty T3)) + Vi - V31 (8(Via - 52 Vas - 51 (s*(c2 + ¢3)T1 - T2 — 3¢1)

+ Va3 - 51 V31 - G3(52(ca 4 €3)T1 - T3 — 3¢1) + (52 + 152 - G3(52(ca + €3)T2 - T3 — 3¢1))

— Va3 - Va1(43) - 53(s%(ca + €3)T1 - T3 — 3¢1) 4+ 8¢1T1 - T3 — 625> +4V15 - 57V3 - 51

X (=3¢3 + caTi - T3 + caTa - T3) — 6c35% + céﬁlz . %23 X 02T - T2 X T3))

FA((% 4 DVas - 51[V31 - 52(6¢1 — 252(c2 + €3)T1 - Ta + Vas - Vai (=33 + caT1 - T3 + caTs - T3))
+Vi2 - 3331 — sHea +€3)T1 - T3) + Via - 51 Vin - 62 Va3 - Va1 (6¢1 — 25%(c2 + €3)T1 - T2

+ Va3 - Var(=3c3 + caty - T3 + eaTr - T3)]) — 2(Via - Va3)X(Vay - 61 V31 - 53 — (57 + 1)5y - 63)

X (3c3 — 4Ty - Ty — C4Ta - T3) + 482 + D(Via - V31)252 - 53(3¢3 — €Ty - Ta — €471 - T3)]

x Ut (x12) Uy (x23)U5 (x31), (4.6)
2 8 (o]
(5).83 8aM; / > = = > 28 >
Vi = —=T1 ds[8¢c1Vis - VosTr - T3+ 8¢1Vaz - V31T - T3 +4¢25° V1o - V3To - T
ring 10247 F6 | [8c1 Vi - V312 - T3 1V23 - V3172 - T3 25"V - V3T - T3
+4c252Viay - V3172 - Ty + Via - Vai( — 4e3Vin - Vs Ta - T3 — 4e3Va3 - Vai o - T3
+ ¢c4Vi2 - Va3 X 0271 - T2 X T3 +4c4 Va3 - 61V31 - 03(T1 - T2+ T2 - T3)
+2¢4(s? + )02 - 03(T1 - To + T1 - T3)) + 4357 Vin - Vs To - T3 + 4e3s* Vs - V311, - T3
—2¢4Vi2 - Va3V31 - 61V31 - 03T - T2 — 2¢4Vi2 - Va3 V31 - 61V31 - 0372 - T3
—2¢4Vin - Va3Vaz - V3102 - 03T1 - T2 — 2¢4Vi2 - Va3Vaz - V3107 - 03T - T3
+¢4Va3 - V31 Via - Va3 X 5oty - Ty X T3 — 2¢4(s% + 1)Vi2 - 33Va3 - 51(T1 - T2 + T2 - T3)]
x U (x12)U} (x23)U5 (x31), 4.7
v = - MaS % e 1 Tio- o) sV Vs x 5
ne = ————— sld4t, - 13(2c1 + 57 (¢ +¢3) — ¢ . +c . X 02T -T2 X T
ring 102477 F§ /;OO [475 - 13(2cy (c2+c3) — 3V - V31) +caVip - Vo3 X 0271 - T2 3]
x Ui (x12)U7 (x23)Uj (x31), (4.8)
where
4 [ d° 1 o —Vidst o I
Uj(x) = — S B SR — M}=M;+1, §=—,
M, ] Q2n)3q?+ M2 by M,
d? 1 s 1
U3 (x) = 87 M, | —— FIHMr = VT (4.9)

@ (g 2y

1+ 52

The expressions in momentum space are rather lengthy and can be found in the Appendix.
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V. GENERAL OPERATOR STRUCTURE OF A LOCAL
THREE-NUCLEON FORCE

As already emphasized in the introduction, having derived
explicit expressions for the long-range part of the 3NF at the
three first orders in the chiral expansion, we now test the con-
vergence in coordinate space. One generally expects the chiral
expansion of nuclear potentials to converge at distances of
the order of or larger than r ~ M_!. In order to analyze
the convergence of the chiral expansion for three-nucleon
potentials in a meaningful way, we first need to define a basis
in the space of isospin-spin-position or, equivalently, isospin-
spin-momentum three-nucleon operators. Thus, we need to
work out the most general structure of the three-nucleon
force. To the best of our knowledge, this task has not been
accomplished yet; see, however, Ref. [45], where the most
general isospin structure of the 3NF is given.

Given that a general 3NF depends, in the center-of-mass
system, on four independent momenta in addition to the
spin and isospin Pauli matrices, its structure is obviously
rather rich. Fortunately, even at such a high order in the
chiral expansion as N*LO, the most complicated part of
the three-nucleon force (before antisymmetrization) is still
local. For the long-range part, the only nonlocalities in the
power-counting scheme we adopt arise from the leading
relativistic corrections to the 27 exchange diagrams discussed
in Ref. [32]. We, therefore, restrict ourselves here to the
most general structure of a local 3NF. We, furthermore,
require in the following that the 3NF is invariant under parity,
time-reversal, and isospin transformations.

Every operator appearing in the 3NF can be written as a
linear combination of spin-momentum terms multiplied with
isospin structures. We remind the reader that, according to the
standard convention, the expressions for nuclear forces are to
be understood as matrix elements with respect to momenta and
operators in the spin and isospin spaces. The building blocks
for the spin-momentum structures are

(5.1)

where &; are the Pauli spin matrices of the nucleons while g
and g3 denote the two independent relative momenta.* These
building blocks have to be contracted with the tensors §,, and
€4pc to build scalar operators. We have the following symmetry
constraints:

oy, 02, 03, 41, 43,

(1) Parity invariance of the force allows only for spin-
momentum structures which are invariant under

q1 = —q
(i) Time-reversal invariance implies that only those struc-
tures contribute which are invariant under

and g3 — —gs.

gi — ¢i, and
i=1,2,3
(see Eq. (2.47) of Ref. [46]°).

> -
o; —> —0j,

y y
T = =T,

4The momentum transfer g, can be expressed in terms of ¢ 3 via
G =—G1 — g3 _

5The invariance under 7 — —1;" follows directly from the invari-
ance of the matrix element under (¢'|z;[t) — (¢t|T;|t').
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(iii) Isospin conservation requires any structure to be a
product of a spin-momentum operator with one of the
following isospin structures:

I, 7172, 71-73, T2-7T3, Or T1-(T2X7T3).

In addition to the symmetry constraints, we will also employ
the Schouten identity

8i j€ktm — Sik€im,j+ 8i1€m jk — Sim€jxs =0

to eliminate redundant structures. A general local three-
nucleon force can be written in a form
Y 0i(61,62, 63, T1, T2, T3, 41, §3) Filan, 43, 1 - 43),
i

where O; are spin-momentum-isospin operators and the scalar
structure functions F; depend only on the absolute values

|g1| and |g3| and on the scalar product g - g3. The three-

nucleon force stzl:/“ in Eq. (2.2) is obviously invariant under any

permutation P € S3, with S3 denoting the permutation group:

Y POPF =3 OiF,

(5.2)

where
P0i(01, 62,03, T1, T2, T3, q1» §3)
= 0i(0p(11- Op21» OP3) TP[1]> TP2)s T P31 4P GP3)s
PFi(q1, 493,41 - 43)
= Fi(gpi» qpi31, Grin - 4Pi3)- (5.3)
To understand the behavior of the structure functions under
permutations of momenta it is necessary to analyze the
behavior of the operators O; under permutations. Since the
operator set we consider here is complete, the permuted
operator P O; is just a linear combination of O;’s:
PO; =) 0;D;i(P),
J

where D(P) are some invertible matrices. It is easy to see that
the set of matrices D builds a representation of S3. Indeed

P'PO; = P' )" OuDu(P) =) 0; Djx(P') Dii(P)
k Jj.k

= 0;D;i(P'P),
J
from which immediately follows

D(P'P) = D(P")D(P).

Transformations of the structure functions F; with respect to
permutations P of the nucleon labels can now be read off from

> 0iF;=) PO;PFi =) 0;D;(P)PF,
i i ij
=> 0 (Z D,-j(P)PFj),
i J

from which we obtain the identity

F, =) D;(P)PF;.
J
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It is advantageous to choose the basis in the space of
operators O; such that the representation matrices D are
block-diagonal corresponding to irreducible representations
of the group S3. There are three inequivalent irreducible
representations of S3:

(i) The trivial (identity) and antisymmetric (—1)*® rep-
resentations with w(P) = %1 for even or odd permu-
tations are one dimensional.

(i1) The third irreducible representation is two dimensional.
The representation matrices can, e.g., be chosen as

1
por=(y 1) pam=1(J5 ).

— 1 /—
D((13) = (01 (f) D23 =3 <J§ ‘f)

D((m)):—l( ! ﬁ),

2\ V3 1
_ (1L
D((132) = =5 (ﬁ ) ) : (5.4)
where we used the cyclic notation for permutations:
or=1, 0RI=2 0[]1=3,

A2 =2, AY[21=1, AD[3]=3,

(13)[11 =3, (3)[2]=2, 1A3)[3]=1, ss

eI=1, EIRI=3 eIBI=2 )
(123)[1]1 =2, @1A23)[2] =3, 123)[3]=1,
A3)[1]1 =3, A32)[2]=1, 1A32)[3]=2.

To construct the operators O; for which D(P) is block-
diagonal, we introduce the symmetrizing and antisymmetriz-
ing functions

1 1 y
S0)=2) PO, AWO) =} (-1)""PO.

PeS; PeS;
It is obvious that
PS(0)=S(0) and PA(O)=(—1)*"PA0)

for all P € S35 such that S(O) and A(O) transform under
one-dimensional representations. To construct operators which

22 2
V' =Y L SGOM; + AG)N; + Y G,-k@,»)Lj-k}

i=1 jk=1

where M;, N;, and Lj.k
we get

u 1 u
V= £ 3 PR =

P'eS; P’ PeS; i=1

SDINOIED o EYSION

P"eSs3 i=l1 PeS;

ZZP(@{ ~M; + ( )“’<”>N+Z3

PeS; i=1

are some of the structure functions F;(l =1, ...,

i T yrrol;

6(—1>w<P>P‘1<Ni>+ > —Du(P)P(

PHYSICAL REVIEW C 87, 054007 (2013)

transform under two-dimensional irreducible representation
we introduce the functions

1
3 2 Di(PPO,

P653

G;;j(0) = i,j=12

It is easy to verify that the resulting operators G;;(O) indeed
transform under the two-dimensional irreducible representa-
tion:

1 1
PGi(0)= 3 D Dy(QPQO =3 Y Dy(P~'Q)Q0
Q€S; Q¢€S;
= Zij(O)Dki(P)'
k

With all the symmetry constraints introduced above, we
found that the most general structure of a local 3NF can be
written in terms of 89 operators O1, . .., Ogy, which transform
with respect to permutations according to irreducible represen-
tations of S3. These 89 operators can be generated from a set
of 22 independent operators Gy, ..., Gy, using the functions
S, A, and G;; defined above. The explicit form of generating
operators Gy, . .., Go» we adopt in this work and their relation
to the generated operators O, ..., Ogg are given in Table L.
The complete expression for a local three-nucleon force in our
notation can be written in the symmetric form

89
fall S 5 5 5 o 5 S
Van = E 0i(01,02,03, T1, T2, T3, 41, 43) Fi(q1, g3, q1 - 43).

i=1
(5.6)

In this representation, the structure functions F; have sim-
ple transformation properties with respect to permutations.®
An alternative way to express the three-nucleon force is
given by
2
full - - - - - - -
Vin = Zgi(dls 02,03, T1, T2, T3, 41, 43)Fi(q1, 43, 41 - q3)
i=l

+ 5 permutations. 5.7

It is easy to see that the two representations (5.7) and (5.6) are
equivalent. While Eq. (5.7) can obviously be brought into the
form of Eq. (5.6) we now show that the converse is also true.
Equation (5.6) can be rewritten in the form

Djx(P)L, } , (5.8)

Jj.k=1

89) from Eq. (5.6). From the symmetry property (5.2)

li 1 w I / 1
P'(M) + (=" PPN + 37 Du(P)P (L)

2 ‘ }
j,k=13 ' '
2
1 i }
L))
jk ’
fymd 18

(5.9

%The only exception is Fy7, which mixes different contributions from other structure functions. This is due to the use of the Schouten identities.
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TABLE I. The set of 22 generating operators G; and their relation to 89 independent operators Oy, ..

PHYSICAL REVIEW C 87, 054007 (2013)

., Ogo which parametrize the most

general structure of a local 3NF. The operators O, are generated by application of one of the six functions S, A, G, G2, Gy, or Gy on
the corresponding operator G;. The 22 operators are constructed to be totally symmetric, symmetric under 1 <> 3, or unsymmetric.

Generators G of 89 independent operators S A G Gy Gy Gy
G =1 0, 0 0 0 0 0
gz =T T3 02 0 Oz 04 0 0
Gs =17, 730103 Oy 0 Oy Oy 0 0
Gs = T2 - 1301 - 02 On On O3 Oy 015 O1s
Gs =71 (12 X T3)01 - (02 X 03) Oy 0 0 0 0 0
Gr=11-(12 % 73)0 - @1 X 53) Oy 0 O Oy 0 0
Gs = q1 - 0141 - O3 0, O O Oy Oy O2
Go = g1 - 0343 - O Oy 0 Oxs O 0 0
Gio =41 - 0143 - 03 O3 0 O3 O3 0 0
Gn=1- 1351 : 31§| : 32 O3 O3 Oss O3 O3 O3
G2 =12 1341 - 6143 - 02 O39 Oy Oy Oy Oy Oy
Gz=1s- T3§3 '51(}1 ) Oys Oss Oy Oy Oy Oso
Giu =12 133 0143 - 02 Os, Os, Os3 Os,4 Oss Ose
Gis =11 T3q2 - 6142 - O3 Os; 0 Oss Osg 0 0
Gis=12- T3§3 ‘5253 - 03 Ogo O¢1 O¢2 Og3 Og4 Oe¢s
Gr=1" 1351 : 3153 - 03 O 0 O¢7 Ogs 0 0
Gis =11 (T2 X T3)01 - 6302 - (§1 X §3) Oso 0 O 07 0 0
Go=1-(12 % T3)33 : él‘_il (61 X 02) On O O14 075 O On
Goo =11 - (T2 X T3)01 - 4162 - 163 - (1 X §3) O O79 Oy Oy, O, Og3
Got = 11 - (T2 X T3)01 - G203 - G202 - (§1 X §3) Ogy 0 Oss Oss 0 0
Gn=1-(12 % T3)31 '5133 '(}332 : (51 X 53) Og; 0 Oss Og9 0 0
where we made a change of variable P” = P’P in the last Go =11 (T2 X T3) 51 - (02 X 03),
line. This equation has the form of Eq. (5.7) with G = oA N

7=11-(T2 X T3) 02 - (F12 X F23),

1 1
P = —P'(M) + — (=) PN,
Fii= ) {3eP 7 M)+ (=) (N))
P€S3
21
+ 2 g DiPIPTH(LY)
Jok=1

(5.10)

VI. CHIRAL EXPANSION OF THE LONG-RANGE
TAIL OF THE 3NF

With these preparations we are now in the position to
address the convergence of the chiral expansion for the
long-range tail of the 3NF. It is clear that all arguments of the
previous section can also be applied to operators in coordinate
space. Here and in what follows, we use the following basis of
22 operators:’

Gi =1,

g~2=T1 + T3,

G =01 03,
Gi=1,-135,- 63,

Gs =15-1301 - 02,

"Note that the coordinate-space operators are not just the conjugates
of momentum-space operators according to Eq. (2.3).

Gg =3 - 01723 - 03,
Gy =73 - 03712 - 01,
Gio = 3 - 01712+ 03,
Gi1 = Ty - T3 23 - 01 P23 - 0o,
5 R (6.1)
Gio =Ty T3/23 - 0112 - 0o,

Gi3 =Ty - T3 12 - 0123 - 0o,

Gia = T2 - T3F 120112 02,

Gis =11 13/13- 01 13 - 03,

Gio =12 T3/ Gr F1p - 03,

Gi7 =11 T35 01 F1p - 53,

Gis = 71 (T2 X T3) 51 - 0362 - (Fio X Fa3),

Gio =11 (T2 X T3) 53 - F23 23 - (01 X G2),

Goo =11 (T2 X T3)G1 - F2302 - 2303 - (Fi2 X 23),
Go1 = 11 - (T2 X T3) 51 - F1303 - P13 02 - (P12 X F23),
G =11 (T2 X T3) 51 - 12303 - P12 G2+ (P12 X F23),

where 7;; = 7;;/|F;;| and F;j = F; —F; denotes the position
of nucleon i with respect to nucleon j. The 3NF is a
linear combination of the operators Gi with the coefficients
given by scalar functions F;(ri,, 723, r31). These functions
have the dimension of energy and can be interpreted as the
potential energy between three static nucleons projected onto
the corresponding operator. The profile functions F; receive
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FIG. 4. (Color online) Chiral expansion of the profile functions F;(r) in MeV generated by the two-pion exchange 3NF topology up to
N*LO (in the equilateral triangle configuration). Dashed-dotted, dashed, and solid lines correspond to f-j}), ]-"iG) + }](4) ,and ]-",.(3) + ﬁ(4) + ]-'1.(5),

respectively.

contributions from the long-range and the intermediate-range
3NF topologies and are predicted (at long distances) in terms
of the chiral expansion. In order to explore the convergence, we
plot these functions for the equilateral triangle configuration
of the nucleons given by the condition

Fip =713 =13 =7r. (62)

Restricting ourselves to this particular configuration allows
us to stay with simple one-dimensional plots. We emphasize,
however, that the conclusions about the convergence of the
chiral expansion for the 3NF drawn in this section apply
to this particular configuration. We begin with the longest-
range 27 exchange topology. Projecting the coordinate-space
expressions given in Sec. II onto the operators in Eq. (6.1)
and evaluating the three-dimensional integrals in Egs. (2.8)
and (2.13) numerically we compute the corresponding contri-
butions to the profile functions F(r), F@(r), and FO(r)
at N2LO, N3LO, and N*LO, respectively. Our results for the
3NF profile functions generated by the 27 exchange diagrams
are visualized in Fig. 4. Here and in what follows, we use
the values of the low-energy constants corresponding to the
order-Q* Karlsruhe-Helsinki (KH) fit to the pion-nucleon
partial wave analysis of our work [43]. In particular, we employ
the following values of ¢; (all in units of GeV~'):

¢y =349, 3= —477, ¢4 =334
(6.3)

c; = —0.75,

The results for the functions F;(r) plotted in Fig. 4 resemble
the findings of our work [43], where a good convergence
of the chiral expansion in momentum space was observed
by looking at the functions .A(g;) and B(g,) for low values
of the momentum transfer. While there are large corrections
at N*LO to some of the profile functions and, especially, to

Fa(r) at short distances of the order of r ~ 1 fm, we observe
a very good convergence at long distances of the order of
r > 2 fm. At such large distances, the N*LO results appear
to be very close to N°LO ones. As already pointed out in
the introduction, fast convergence of the longest-range 3NF
is not surprising given that effects of the A isobar are, to a
large extent, accounted for already in the leading contributions
]—:-(3) (r) to this topology through resonance saturation of the
LEC:s c3 4. We further emphasize that the operator structure of
the 2 exchange topology is fairly restricted: only 10 out of
22 functions F;(r) get nonvanishing contributions. Notice that
the larger number of nonvanishing functions F; in coordinate
space compared to momentum space has to be expected due
to the appearance of gradients when the Fourier transform is
performed. In contrast to the momentum-space representation,
the number of nonvanishing structures in the coordinate-space
representation of a 3NF is not representative for estimating the
number of affected nucleon-deuteron polarization observables
at fixed kinematics.

It is instructive to compare the strength of the three- and
two-nucleon potentials. While the long-ral61lge three-
nucleon potentials are considerably weaker than the two-
nucleon potentials, they are still not negligible. For example,
the isovector-tensor and isoscalar central nucleon-nucleon
potentials governed by one-pion exchange and (subleading)
two-pion exchange, respectively, have the strength of the order
of 3—4 MeV at distances r ~ 2 fm [15]. These are the strongest
two-nucleon forces at large distances. At such distances the
strongest three-nucleon potentials F5(r), Fi6(r), and Fi7(r)
reach strengths of ~ 0.7-1 MeV. We remind the reader that
nuclear potentials become scheme dependent at short distances
below r ~ 1-1.5 fm, where the contributions of short-range
topologies start playing an important role. An estimation of this
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FIG. 5. (Color online) Chiral expansion of the profile functions F;(r) in MeV generated by the two-pion—one-pion exchange 3NF topology
up to N*LO (in the equilateral triangle configuration). Dashed and solid lines correspond to .7-',.(4) and .7-'1.(4) + .7-;5), respectively.

intrinsic scheme dependence for nucleon-nucleon potentials is
provided in Fig. 3 of Ref. [15].

The convergence of the chiral expansion for the two-pion—
one-pion exchange and ring topologies is, as expected, much
worse (see Figs. 5 and 6). In nearly all cases, the subleading
contributions at N*LO dominate over the nominally leading
ones at N°LO even at large distances. This is analogous
to the pattern observed for the two-pion exchange two-
nucleon potential. In that case, the strong dominance of the
subleading terms appears for several reasons, including the
large numerical coefficients, an enhancement by one power of
7 as compared to the standard chiral power counting which
is characteristic to the triangle diagrams (see also Ref. [47]),
as well as the large numerical values of the LECs ¢34 from
the subleading pion-nucleon effective Lagrangian, which are
governed by the A isobar. In the case of the 3NF 2x-1x
exchange and ring potentials the situation is less dramatic. In
particular, the enhancement by a power of 7 actually affects the
leading contributions at N*LO which involve the loop function
A(g»). Still, the corrections at N*LO are large, which can
presumably be attributed to the large numerical values of the
LECs c;. One should, however, emphasize that the potentials
generated by the 2w-1m exchange and ring diagrams have a
considerably shorter range as compared to the 27 exchange
ones and only reach at most ~ 50 keV at distances of the
order of r ~ 2 fm. It is, therefore, not clear whether the lack
of convergence will have any significant phenomenological
impact. Clearly, to answer this question one needs to carry out
complete calculations of few- and many-nucleon observables.
This work is in progress. Last but not least, we emphasize that

especially the ring topology generates a very rich structure in
the 3NF and gives rise to 20 out of 22 profile functions.

It is also instructive to compare the 3NF potentials
corresponding to the individual topologies with each other.
Such a comparison is given in Fig. 7, where we restrict
ourselves to N*LO; i.e., we only show ]—';3) —1—}"1.(4) + }'l.(s).
We observe that the 2x-1m exchange and ring potentials
are of comparable size. However, in all cases where the
longest-range 27 exchange topology contributes, it clearly
dominates at7 2> 2 fm over the two other topologies. At shorter
distances of the order of » ~ 1 fm the impact of the 2n-17
exchange and ring terms becomes more significant with, e.g.,
|Fi1,15(1 fm)| ~ 20 MeV to be compared with the strongest
2w exchange potentials |Fjs16,17(1 fm)] ~ 100 MeV.
As pointed out before, it is difficult to draw conclusions on
the phenomenological importance of the new structures based
on this comparison alone since one generally expects that
(scheme-dependent) short-range contributions to the 3NF not
considered in the present work would become significant at
r <1 fm.

Last but not least, Fig. 8 shows the chiral expansion of
the complete results for the functions F;(r) emerging from
adding the contributions from all three topologies together.
The interpretation follows directly from the above discussion.
At long distances of the order of » 2 2 fm dominated by the
2m exchange one observes a good convergence for all cases
where the potentials are numerically sizable. On the other
hand, those profile functions which are not affected by the 2
exchange are typically dominated by the N*LO contributions,
which might be still not converged at this order in the chiral
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FIG. 6. (Color online) Chiral expansion of the profile functions F;(r) in MeV generated by the ring 3NF topology up to N*LO (in the
equilateral triangle configuration). Dashed and solid lines correspond to }',.(4) and .7-',(4) + }'[(5), respectively.

expansion. The corresponding potentials are, however, rather
weak. At shorter distances r ~ 1-2 fm, the 2w -1 exchange
and ring contributions start becoming more important relative
to the 2w exchange terms. One again observes the dominance
of the N*LO contributions, which supports the assumption
about the important role played by A excitations, whose effects
are partially taken into account at N*LO through resonance
saturation of the LECs ¢, ¢3, and c¢4.

VII. SUMMARY AND OUTLOOK

In this paper, we have worked out and analyzed in detail
the intermediate-range contributions to the three-nucleon force
at N*LO, which emerge from the 27-17 exchange and ring
topologies. We used here the heavy-baryon formulation of
chiral EFT with pions and nucleons being the only explicit
degrees of freedom. The pertinent results of our study can be
summarized as follows.

(i) We worked out the coordinate-space representation
of the N*LO corrections to the 27 exchange 3NF
calculated in momentum space in Ref. [43].

(ii)

(iii)

(v)
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We derived the N*LO contributions to the intermediate-
range 2m-lm exchange and ring topologies. These
represent the first corrections to the leading results
which appear at N3LO and have been worked out in
Ref. [30]. We provide explicit analytical expressions in
both momentum and coordinate spaces. The obtained
corrections do not involve any unknown low-energy
constants.

We have demonstrated that the most general structure of
an isospin-invariant local three-nucleon force involves
89 independent isospin-spin-momentum operators. We
proposed a set of 22 linearly independent operators
which can serve as a basis and gives rise to all 89
structures in the 3NF upon making permutations of
nucleon labels. We also discussed the properties of
the corresponding scalar structure functions Fj 2>
parametrizing the 3NF with respect to permutations.
Finally, using the above-mentioned operator basis, we
addressed the convergence of the chiral expansion for
the long-range tail of the 3NF in the equilateral triangle
configuration with rj, = ry3 = r3; = r by comparing
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our predictions for the potentials F; at different or-
ders in the chiral expansion. Consistently with the
momentum-space results of Ref. [43], we observe a
good convergence for the longest-range 27 exchange
topology which clearly dominates the 3NF at distances
of the order r 2 2 fm. The intermediate-range 27-17
exchange and ring diagrams provide sizable corrections
to F; at r ~1 fm and also contribute to those 12
profile functions which vanish for the 27 exchange.
As expected, we found that N*LO corrections to the
intermediate-range topologies are numerically large
and in most cases dominate over the nominally leading
N3LO terms. This can be traced back to the role played
by the A(1232) isobar, whose excitations provide
an important 3NF mechanism. In the standard, A-
less formulation of chiral EFT we employ here, the

FIG. 7. (Color online) Individual contributions of the two-pion exchange (dotted lines), two-pion—one-pion exchange (long-dashed lines),
and ring (dashed-double-dotted lines) topologies to the profile functions F;(r) in MeV at N*LO in the equilateral triangle configuration.

effects of the A isobar are not incorporated in N3LO
contributions to the 3NF. For the intermediate-range
topologies we are primarily interested in here, the first
effects of the A appear at N*LO through resonance
saturation of the LECs ¢, c3, and ¢4 which accompany
the subleading pion-nucleon vertices in the effective
Lagrangian. The importance of the A isobar is reflected
in the numerically large values of these LECs, which
are responsible for the large N*LO corrections we
observe.

The results of our work provide an important step toward
a precise, quantitative theoretical description of the 3NF in
the framework of chiral EFT. The long-range part of the

3NF

is governed by exchange of pions and the Goldstone

bosons of the spontaneously broken chiral symmetry of QCD,
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FIG. 8. (Color online) Chiral expansion of the profile functions F;(r) in MeV emerging from all long-range 3NF topologies up to N*LO
(in the equilateral triangle configuration). Dashed-dotted, dashed, and solid lines correspond to .7-';”, ffb + f;”, and ﬁ(3) + .7-',.(4) + ﬁ(s),

respectively.

and it can be rigorously calculated in the framework of
chiral EFT. It is expected to affect the energy dependence
of the nucleon-deuteron scattering amplitude at low energies
and might be responsible for the long-standing puzzles such
as, e.g., the A, puzzle in elastic three- and four-nucleon
scattering [3]. Although the resulting intermediate-range
potentials are significantly weaker than the 2w exchange
terms, the appearance of new structures might lead to large
effects in certain nucleon-deuteron scattering observables. It
would be interesting in the future to explore this possibility
in a systematic way. Clearly, the N*LO corrections to the
short-range part of the 3NF should also be worked out. This
work is in progress. Notice that subleading contributions to
the three-nucleon contact interactions at N*LO are discussed
in Ref. [48]. Finally, the large N*LO corrections for the

intermediate-range terms raise an obvious question in regard
to whether the chiral expansion for these quantities can be
truncated at this order. One should especially keep in mind
that while the obtained N*LO corrections do include some of
the 1/(ma — my) contributions through values of the LECs
¢2.3.4 and, in this sense, take into account physics associated
with intermediate excitation of a single A isobar, double and
triple A excitations start contributing only at orders N°LO and
N®LO, respectively. Phenomenological studies of Ref. [42]
indicate that at least double A excitations might induce sizable
3NFs. This issue must be investigated in the future. Rather
than calculating N°LO and N°LO corrections to the 3NF in the
A-less formulation of chiral EFT, which correspond to the two-
loop level, it is more feasible and probably also more efficient
to include the A isobar as an explicit degree of freedom in
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the effective Lagrangian (see Refs. [37,38,49-51] for some
promising steps in this direction). In such a A-full formula-
tion, the leading types of 1/(ma —my), 1/(ma —my)?, ...
contributions are resumed and the 3NF mechanisms associated
with single, double, and triple intermediate A excitations are
taken into account already at N°LO. Work along these lines is
underway.
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APPENDIX: RING CONTRIBUTIONS
IN MOMENTUM SPACE

In this Appendix we give the lengthy expressions for
subleading contributions to ring diagrams in momentum space.
We employ here the general parametrization of the local
three-body-force:

2
Ving = Y Gi Rilq1, g3, 2), (A1)
i=1
where Gy, ..., Gy, are the spin-isospin-momentum operators
which we defined in Table I. The N*LO contributions to the
structure functions R;(qi, g3, z) withz = §; - g3 proportional
to g4 are given by

=4 J(4:0,—q1,q3)(c2 + c3)(144M2 (2% — 1 + 8M2(2> — 1)(162% (¢} + 43)

S12FS8(z2 — 1)?

— 13 (g1 + 43) + 16q1932° — 10q1932) + q7(322* — 3227 + 9) + 4q; g3z(1 — 42%)
+2q7q3(80z* — 7827 + 25) + 4qigiz(l — 42 + ¢332 — 3227 +9))

4
_ 84
1228872 F8q1(z> — 1)

S L(g3)(ca + c3) (M7 (2% — 1)(q1 (1282 — 101) + 27g32)

+ 3¢7 (322 — 3222 + 9) + 3¢7q32(322" — 5) + q145(320z* — 4122% + 173) + 3¢32(262% — 17))

4
— gA
1228872 F8q3(z% — 1)?

L(g1)(c2 + ¢3) (4M2(22 — D(27q1z + g3(1282% — 101))

+ q;(782% — 512) + q7q3(320z* — 4122 4 173) + 3q1432(322" — 5) + 3¢3(32z* — 3222 4+ 9))

4
_ 84
1228872 F0q1q3(z% — 1)?

L(g2)(er + ¢3) (—4M2 (2% — 1) (272 (qF + 43) — TAq1q32% + 1284143)

+ (512 — 782°) + 4q7 q3(2z* — 852% + 56) + 2qiq3z(1167* — 4247 + 227)

+ 44193 (27" — 8522 4 56) + 3q5z(17 — 262%)) —

g4

5).¢4
Ry = A
2 256F5(z% — 1)

3gh(c2 + ¢3) (97 + 291932 + 43)

)

409672 F8(z2 — 1)

I(4:0,—q1,g3) [32¢1(2* = 1) (4 BM2 + ¢f + 43) 2 + 2q1932

— 3(4M2 + g} + ¢3)) M2 + c3(— 240(2> — 1P M2 —24(* — 1) (8q1q32° + 8 (¢} + ¢3) 2°
— 6q1932 — 7(qi + q3)) M2 + g (—32z" + 482> — 19) + g5(—32z" + 487> — 19)
— 4q1q32(16z* — 2027 + 7) — 4q; q32(162" — 202> + 7) — 2973 (64z* — 90z* + 35)) ]

g4

+
6144FSm? (4M2 + qf) q3(z2 — D2 (—4(z2 — DM2 + qf + g3 + 21932

)L(41)

x[96¢1(z> = 1) (16(z> — D3q1z + q3(82° — 5)M; + 4 (2(52 — 6)q3 + q3(122* — 292° + 14)q]
+ 3¢323 — 425 q1 + ¢33 — 420) M2 — g7 (zq7 + q3(142> — 11)q} + q32(162% — 13)q,

+ q3(42° — 3))| M2 + ¢3 [—64(z" — 1)*(45¢1z + ¢3(2562° — 211)) M2

— 16(z% — 1) (32(532% — 57)q; + q3(848z" — 167327 + 789)q}

+ 4g32(482% — 15227 + 95)q1 + 4¢3 (48z* — 1247% + 73)) M} — 4 (32(467* — 110z* + 61)g]

+ q3(6882° — 25467* +27827% — 969)g] + 2q3z(144z° — 9927* + 135772 — 554)¢;
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+ 2¢3(487° — 640z* + 92977 — 382)g7 — 3¢32(96z* — 1287% 4 47)q,
—3¢3(32z" — 482% + 19)) M2 + q7(q} + 2q32q1 + g3)((422° — 332)q]
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RO = 84140, —q, pesqiz@iz + 43) (a7 + 201037 + 43)
8FS(z2 — 1)

N gh

6472 F8q3(z> — 1) (—4M2(2> — 1) + qf + 291932 + 43
+49132° = 2q1q3) — 8M2(22 — 1)(¢Pz + 13322 — 1) + ¢32%))

4

+ &4

642 FOq3(z2 — 1) (—4M2(z2 — 1) + g} + 2q1932 + ¢3)

2
— 01932 — D+ q3) — (1 + 21932 + 43) " (@12 + 433 — 22%)))
4

- 84

642 F2(z2 — 1) (M2 + ¢3) (—4M2(22 = D) + 47 + 291932 + 43

3
x (412 + 01432 + D +q3) +4M; (¢12° + 419332 + ) + q1q3 (= + 527 +2)
— 14323z + 22 = 8) + ¢35 — 42)) + 45 (47 + 201932 + 43) (412 + qigaz(@® + 1)
+ ¢33 -229)].
g4

OF . 2 2 2 2 2\ .2
R = s Foggn@ — T ¢ O a)az (07 + 205201 +a3) (4 (3Mz + 0 + 43) & + 241952

)C4q1L(q1)[ (@2 +2q1932+ ¢2) (z (43 + 43)

esL(g)(8ME(Z* — 1) (qiz + qig3(2> +2)

caL(gs) [-32M3(z* — 1)

gh

3072FSn2q) (4M2 + q7) g3(z% — 12 (=422 — DM2 + g7 + q3 + 2q1932)
x[ = 1024(q1 + q32)(2* — 1)*ME — 16(z* — 1) ((412% — 48)q] + q32(502* — Tl)g}
+ q3(24z* — 2927 — 16)q; + q3z(242* — 31)) M} — 4 ((252* — 702% + 42)q]
+ q32(40z* — 14327 + 88)q} + q3(362° — 115z* 4 172% + 32)¢3 + ¢3z(12z* — 10122 + 59)g7
+ 3¢32°(7 — 122%)q1 + 39323 — 42%)) M2 + g7 (g7 + 2q32q1 + q3) ((132* — 10)g;
+ q32(162> — g7 + 3q32° (42 — g + 3¢g3z(42* — 3))]
B g

3072FSn%qiqi(z* — 1)? (—4(z2 — DM2 + g} + 43 + 241432)
x (22— D*M2 + 427 — 1) (2527 — 32)q} + 4932(132% — 20)q; + 243 (14z* — 1527 — 20)q]
+ 4g32(132% — 200 + ¢3(252% — 32)) M2 — (¢} + 24321 + ¢3)° Qangsz® + 13 (¢F +¢3) 2
B g

3072FSn2q2qs (4M2 + ¢3) (22 — 1) (—4(z2 — DM2 + ¢} + 42 + 2q1952)
x[ = 1024(qs + qiz)(2* — 1*ME — 16(z* — 1) (2(242* — 31)q} + q3(24z" — 2922 — 16)g}
+ 4325027 — T)q + g3 (4127 — 48)) M + 4 (3z(42” — 3)q; + 3¢32°(122% — T)g!
+ @22(—=12z* 4+ 1012% — 59)g;7 — ¢3(362° — 115z* + 172% + 32)q7 + q52(—40z* + 14372 — 88)q,
+ q3(=252% + 7022 — 42)) M2 + g2 (g2 + 232q1 + ¢2) (32(42% — 3)g} + 3q3 2242 — g

cs 2q193 + (a7 + 43) 2) &4
3072F8m%q1q3(z22 — 1)

~3(4M2 +qi +43)) — caL(q)

caL(q2) [256 (g7 + 293291 + 43)

+4qiq3z — 10(¢2 + ¢2))] caL(g3)

+ ¢32(162° — T)q1 + q5(132° — 10))] —

054007-19



H. KREBS, A. GASPARYAN, AND E. EPELBAUM PHYSICAL REVIEW C 87, 054007 (2013)

5).84 3¢
Ry = 16F6q1(zAZ “p 4 0.~ 43)as (e3 (42° (3M7 +qi +43) — 12M7z = 7z (g7 + 45) + 8q1452°*

- 12@'16]3Z2 — 2%613) — 1661M§z(22 — l))
3g4

12872 F8qy (2% — 1)? (—4M2(22 — 1) + 4% + 2q1432 + 42)
+5¢32) + (a1 + 201952 + 43) (3q1(2% — 2) + g32(42® — 1) — 16¢1 M2 (2> — 1)(q1 + ¢32))
B 3g4

12872 Fqi (2% — 1? (—4M2(22 — 1) + g} + 21932 + 43)
+ @3+ ) + (a7 + 201932 + 43) (12(42° = 1) + 3g3(2% — 2))] — 161 M2(2> — D(q12 + 43))

Sgi

12872 FSqR2 — 12 (4M2 + ] + 2q1q52 + 43) (—4M2(22 — D)+ ¢] + 201452 + 43
x (16e; M2 = D[AM2 (q1(q1 — 032> +332) + 43) + (a} + 201952 + 43)” ]
+ 3 [-16M3(2° = 1) (¢7(2° +4) = 2q1932(2° = 6) + ¢3(2° +4) — 4M7 (4 + 21452 + 43)
x (g2(z* + 62° — 10) — 2q1q3222* — 1322 + 14) + g3 (z* + 622 — 10))

L(g) [c3 (4M2(2* — D(q1(2> + 4)

a3L(g3) [c3 (4M2 (2> — 1)(5¢)2

) L(gq2)

3g4c3q32
12872 F%q (2 — 1)’

— (@ + 201932 + 43)” (3¢X@ — 2) + 2q1432(42> — 1)+ 3¢3(Z* — 2)) )] +

4 304
5= 32F6(52A— T @:0.—ar. 43)(16e1 Mz (2" = 1) + 3 (- 12M(2° = D) = 227 (g7 + 391432+ 43)
+5(q1 +43) + 1291932) )

~ 382

25672 FSq3(z% — 1) (—4M2(22 — 1) + ¢% + 291932 + ¢2)
+ o3 (—AML (2" — D5qiz + q3(4z* — 42 +5) — (a1 + 291932 + 43)
x (4q12° — Tq1z + 2q32% — 543))]
~ 384

256m2Fq1(z2 — 1)* (—4M2(22 — 1) + qf + 2q1432 + ¢3)
+ o3 (—4ME(E — D(q1(42* — 427 + 5) + 5432) — (47 + 201452 + 43) Qan2® — 5q1 +4q32° — 7432))]
. 3g4

2562 F8q1q3(z2 — 1)? (4M2 + g7 + 2q193z + q3) (—4M2(22 — D) + ¢} + 291932 + ¢3
x (166, M2(2> — D(AM? (1 (g1 — 432 +3432) + ¢3) + (43 + 21032 + 43)7)
+ 03 [~16M3( = D) (5 (a7 + 43) — 41932 + 14q1432) — 4M (32 = 4 (4] + 20132 + 43)
x (3(¢3 +43) —241432° + 81452) — (4} + 2132 + ¢2)” (422 (aF + &) — 7 (4} + 43)
_ 38ic3

2567 2Fo(z2 — 1)’

L(gy) [16¢1 M7 z(z* = 1)(g1 + g32)

L(g3) [16c1 M22(z* — 1)(g1z + ¢3)

)ZL(Clz)

+ 10g1932° — 1641432) ) |
Ry = ﬁ}_l)zm L0, —q1.g)2(160: M22(% — 1) + ¢ (—42> (3M2 + ¢ + ¢2) + 12M2z
+ 72 (g} + ¢3) — 8q1qaz* + 12q1932% + 2q143) )
- 3¢5
256m2F8q3(z% — 12 (—4M2(22 — 1) + qf 4+ 2q1932 + ¢3)
+ o3 (—4MI(E = (@@ +4) +5¢32) — (a7 + 201932 + 43) Bqi (2 — 2) + g32(42> = 7)) ]
B 3g4
2562 F2qi (22 — 12 (—4M2(z2 = 1) + qf + 291932 + 43)
+e3 (—4M2(Z2 = DG5qiz + ¢33 +4) — (9] +2q1932 + ¢3) (q12(42% = T) + 3¢3(z* — 2)))]

zL(q1) [16¢1 M2(2* — D)(q1 + ¢32)

zL(q3) [16611‘/173(22 — D(q1z + g3)
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N 3g4
25672 F8q1q3(z2 — 1)? (4M2 + g7 + 2q193z + q3) (—4M2(z2 — 1) + % + 21932 + ¢3
2
x (16ciM2(z* — D(4M2 (q1 (91 — 32> +3q32) + 43) + (¢ +2q1932 + ¢3)")
+ o3 [—16ME(Z* — 1) (¢7(2% +4) — 2q1932(z> — 6) + g3 (2% +4)) — AM? (g} + 291932 + 43)
x (q3z* + 622 — 10) — 2q1q322z* — 1322 + 14) + ¢3(z* + 62° — 10))

)ZL(Clz)

4
2 2\2 2,2 2 2,2 38463
— 2 3 —2)+2 4z -1 3 -2 -
(a7 +2q1952 + 43)” (347 (z* — 2) + 2qug32(42° = T) + 3¢5(z° = 2)) )] 25672 Fo(z2 — 1)
g4

(5).84
Ry = - —— 24
1 16F%q(z% — 1)?

I(4:0,—q1, g3)caz(qiz + g3) (—12M2(2* — 1) + 3q7 + 6q1932 + q3(7 — 42%))
B g4
12872 F8q193(z2 — 1)? (—4M2(22 — 1) + ¢} + 291432 + 43)
—2q193Q2z* — 922 +2) + 5¢52) — (i + 2q1932 + 43) (q72(z* +2) — 2q193(22* — 72% +2)
4
8a
12872 F8q2q3(z2 — 1) (—4M2(22 — 1) + ¢% + 21932 + 43
x (q72(2* +2) + 3q1g3(22* — 22 +2) — qig3z(z* — 10) — 3¢3(z* — 2))
—4AMA(Z* - 1) (qu(z2 +4) + 7362 + 22 +8) + 3014522+ 4) + 3 (22 + 4))]
4
_ 8A
12872 F8q (22 — 1)? (4M2 + q3) (—4M2(2> — 1) + ¢} + 291932 + ¢3)
X (591222 +5q1432(z* + 1) + q32(22 + 4)) - 4M,2, (3qu2 + 36113(13(323 +2)+ 6112q32(—z4 + 15224+ 4)
+ Q@32(=Tz* + 22 + 18) — g3 + 622 — 10)) — 343 (qf + 2q1932 + 43) (q72* + qug32(z> + 1)

ghea(qr + q32)
12872 F%q (2 — 1)’

esL(q) [4ML(Z° — 1) (q72(2 + 4)

+ ¢32(1 —429)] - )C4L(612) [(a7 + 291432 + 43)

caL(g3) [16M5(z* — 1)

— 32 -2)]+

&

16F8q3(z% — 1)?
—q1q32(42° +5) — 143 (42 + 5) + q32(42> — 7))
B g

12872 FSq3(z2 — 1) (—4M2(2> — D) + ¢} + 2q1q32 + ¢3
x (3qiz + q1(5¢32% + q3) + q32(7 — 42%)) — 4AM2 (2 — 1) (5z (g7 + 43) + 991932” + q193) |
B g

12872 FSq143(22 — 1)? (—=4M2(z> — 1) + g} + 291932 + 43)
x (4M2(2* — DGqiz + q3(2° +4) — 372 — 1 g3(72 + 2) + 1432(22° — 11) 4 3¢3(2* — 2))
. g

12872 F8q193(z2 — 1)? (4M2 + q3) (—4M2(22 — D+ qf + 2q1932 + 43
x[ = 16ME(* — D) (q1(42% + 1) + 2q1¢3222% + 3) + g3 (22 + 4)) + 4M2 (¢} 2% + 1)
+ 6g7q32(2> + 1) — 2¢7q3(z* — 722 — 3) = 2q1432(3z* + 2% — 10) — ¢3(z* + 627 — 10))

ghea(qiz + q3)
12872 F8q3(z2 — 1)’

5 X 4
R(n) = 1(4:0, —q1. g3)caz (12M2(2* — (g1 + ¢32) + i (— (22° + 1))

)C4ZL(q1) [(47 + 291932 + 43)

cazL(q2) (¢} + 291932 + ¢3)

)C4zL(6]3)

+43 (47 + 201932 + 43) (4722 + 1) + 2q1g32(z> + 2) — 3¢3(2° - 2))] —

&
16F8q3(z> — 1)2
—2q14322° + 2) + ¢322% - 5))
B g
12872 F0q3(z2 — 1) (—4M2(22 — ) + ¢? + 2q1q32 + 43
x (3¢72% + 2019322 + 2) + ¢35 — 22%)) — 4M2 (2% — 1) (5¢72° + 2q193(42° + 2) + g3(4z* — 422 4 5))

4
RO = 1(4:0, —q1, g3)ea(qiz + q3) (12M2(22 — 1) — 222 + 1)

)C4L(q1) [(af + 291932 + 43)
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g4

12872FSq1g3(22 — 1)? (—4M,’%A(z2 —D+qf +2q1932 + q3)
x (5¢iz% + 5¢193(22° + 2) + qugs(—4z* + 232% — 4) + 5¢32) — (q7 + 291932 + 43) (3¢i2* + 319322 + 2)
+ @13 (=824 + 2122 — 4) + ¢32(7 — 429))]
B g

12872 F0q193(z% — 1)? (4M2 + q3) (—4M2(z2 — 1) + ¢} + 291432 + 43)
x (q742° + 2) + q1g3(42* + 52° + 1) + 5¢32) + 4M (¢7(22° + 2) + ¢ g3(62* + 522 + 1)
+ q1q3z(=22" + 1122 4+ 9) + q1g3(—62° — 3z* + 1922 +2) + 3¢5 z(4 — 32%))

csL(q) [AMZ(Z* — 1)

csL(gqz) [-16M2 (2> — 1)

+ @2 (% + 201932 + 02) (4222 + 2) + 1322 + 327 + 1) + g22(7 — 429))] — gic@1z + 4s)
93 \q; q193 q3) \4 q193 q3 128712F]§q3(12—1)’

4

)8y _ 8a . 2,2 3072
Ry ™ = TI6FeR( — 1) 1)21(4 10, —q1, g3)caqi (—12M7 (2% — D)(q1 + q32) + ¢7 22" + 1)
+ qiq32(427 + 5) + q1g3(42% + 5) + q32(7 — 42%))

N gh
12872 F0q3(z2 — 12 (—4M2(z> — 1) + g} + 2919432 + 43

)C4q1L(q1) [(af + 291932 + 43)

X (3q121 + q1(5q312 +q3) + qu(7 — 412)) — 4M§ (12 ) (52 (ql2 + q32) + 9qlq3z2 + q1q3)]

4
_ 84
12872 F8q3 (22 — 1)? (—4M2(22 — ) + 7 + 201432 + 42

)C4L(qz) (a7 +2q1932 + 43)

X (—4M7 (22 = D(5q1z + ¢3(2 +4) + 3qi 2 + 41 93(72° +2) + qug52(11 = 22%) — 3¢3(2% — 2))

4
_ 8A
12872 F0q3(z2 — 1)2 (4M7% + q%) (—4M§(z2 —D+qf +2q1q3z + q32)

x (q1(422 + 1) + 2q1932(22> + 3) + ¢5(2> + 4)) — 4M> (¢{ (22> + 1) + 6¢7 q32(z* + 1)

csL(g3) [16M(z* — 1)

—2¢7q3(z" — 722 = 3) — 2q1432(32" + 22 — 10) — ¢3(z* + 62 — 10)) — g3 (¢7 + 2q1932 + 43)

4
+ q32)
X (G222 + 1) + 214522 +2) — 33 — )] + -SASN :
(611( z )+ 2q1932(2 ) —3q3(z ))] 12872F8q3(z2 — 1)

4
(5).8% 8A
Ris™ =

. 2 2 2 2 2 2
—ml(“ 10, —q1, g3)(c2 + ¢3) (22° (—2M7 + g7 + q3) + 4M; + q;

_ gizL(Ch)(Cz +c3) (3q12 —2q1q32(z> — 4) + 3432)
12872 F8q193(z> — 1)

gaL(q)(c2 +3)Bqiz + 2322 + q3)  ghL(g3)(c2 + ¢3)2q12° + g1 + 3¢32) gh(cr+ )

+2q1932° + 441932 + 43)

12872 F8q3(z* — 1)? 12872 FS¢q, (2% — 1)2 D82S — 1)
4
(5).8} ga . i
Rig "' =—cm— 7 31(4:0,—q, + ) n
’ SFE g — 17 a1, 43)z(e2 + ¢3) (a7 + 291932 + 43)

x (—4MZ(Z* — 1)+ 3q1(q1 + 2g32) + 2452 + q3)

 gaL@)(e2 +c3) (a7 + 291932 + ¢5) (47 (@ +2) + 2q1932(2° + 2) + 3¢32°)
647‘[2F7?(]12q32(z2 —1)?

N ghL(q)(c2 + ¢3) (77(2% +2) + 42 q32(422 + 5) + 14322222 + ) + ¢52(222 + 1))
6472 F8q1435(z% — 1)?
N 3g42L(g3)(c2 + ¢3)(q1 + q32) (47 + 2q1932 + ¢3) N ghicr +¢3) (z (g2 + 43) + 24193)
642 Foq?qs(z2 — 1) 6472 F8q1q5(z> — 1) ’
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4
5),84 8
R(”) = _WAZ—I)IM 10, —q1, g3)(c2 + ¢3) (—4MZ(Z* — D) + g7 + 291932 + 43)

_gazl(@)(ea+e3) (af + 201932+ 43) | ghL@)(ea+ )@z +3) | ghL(g)(er + e3)gi + 432)

12872 F8q145(z2 — 1) 12872 F8q3(z2 — 1) 12872 F%q (2 —1)
4 4 4 4 4 4
RO R 2 R 2 D 2 R 2 R 2, )

In the above expressions, g; and g3 are always to be understood as the magnitudes of the corresponding three-momenta (except

in the arguments of the function I): g1 = |¢; | and g3 = |3 |. Further, the function I(d : p1, p», p3) refers to the scalar loop
integral

. - 4] 1 1 |
PP P = L U+ p R — M2 +ie U+ pa — M2 +ie(+ py)? — M2 +ie

(A3)

This expression involves four-momenta p;.

The N*LO contributions to the structure functions proportional to gi vanish for R13.4.6.8.09.10.15...22- The nonvanishing
contributions have the form

5 2
RO _ 84
2 128 F8(z2 — 1)2
+ 2q1q32) M7 — 8c3 (M + g7 + q3 +2q1q32) (22 — D) (—4M: — g7 — ¢35 + 2 (M2 + ¢7 + ¢5) 2°
+ 2q1932) — ¢2 (—4M2 — qf — g5 + 4 (M2 + 47 + q3) 2° + 6q1432)
x (422 = DM; — g3 — q1(q1 +2932)) ]

2
£4 2 2 2 3 3
- L —96 -1 27— )M —3(27° 3
3072F572g3(z% — 1)? (g0 [=96¢1(z% = Dlgiz + ¢3(22° = DM + 2(=3(22° + 2)g;

+ q3(8(22 = 5)22 + 5)qi — 3q32(42% + 5)q1 + 3q3(1 — 42%) + 4M2 (2> — D(3q1z + ¢:(82% — 5)))

+ 8c3(z% — 1) (3247 + q3(162% — T)g} + 3¢32(22> + D1 + 352> — 1)

+ MZ(6q1z + q3(282% — 22)))]

- 8
3072F8n2q1q3(z% — 1)?

—24c5 (2M2 + g} + 43 + 2q1932) (2% — 1) (zq] — 2¢3(z% — 21 + ¢32)

+ e (g7 +2g32q1 + 43) (4q1932* + 6 (47 +43) 2° — 2q1g32% + 3 (47 + ¢3) 2+ 164143)

— 4M2(2* — 1)(— 10g1432> + 3 (¢] + 43) 2 + 164143) )]

2
. 84
3072F8m2q1(z% — 1)2

— 3q32(42% 4+ 5)q7 + ¢3(8(* — 5> + 5)q1 — 3¢3222° + 1) +4M2(Z* — 1)
x (3q3z + q1(827 — 5))) + 8c3(z> — 1) ((62° — 3)q; + 3¢3(22° + 2)g7 + ¢5(162° — T)q

o (q} + 2q3291 + 43) &5
1024FS72(2 — 1)

I(4:0,—q1,q3)[32c1(z* — 1) (4* — DM; — qf — g3 +2(q1 +43) 2°

L(g2) [96¢1(z> = 1) (247 — 243 — 21 + q32) M

L(g3) [-96¢1(z> — D(g3z + 12z — )M + 2 (3 — 122%)q;

+ 3¢3z + M2(6g3z + q1(282° — 22))) ] +

2 2 2 2
51,82 i > o gacal(@)(qiz + q3) (97 + 291932 + 43)
RV =S4 1(4:0,—q, 2
5 SFO2 = 1) ( a1, p)eaqiz(@iz + 43) (a7 + 291932 + 43) + 6477 Foqa(Z2 — 1)
_ gacaqizL(q) (a7 +2q1q32 +q3)  gacal(g3) (¢72° + 19322 + 1) + g3)
6472 Foq3(z> — 1) 6472 Fo(z2 — 1) ’
2
5.2 g
Ry = ‘ 16420, —q1.gs)eaz (47 + 201932 + 3) (AM7 (7 = 1) + 722" = 1)

T 64FSqiq(22 — 1)
+ 2q1q3z + 322> — 1))

2
p— gA
153672 FSqiq3(z2 — 1)

cal(q2) (47 + 291937 + q3) (16M7(2* = 1)+ ¢7 (72> — 4)
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+2q1932(2% +2) + ¢3(72% — 4))

2
+ £4
153672 Foq193(z% — 1)?

+3q1432°22 + 1) +3¢3222° = 1)

csL(q)) (16M2 (2> — 1)(q1 + ¢32) + ¢; (722 — 4) + g1 q32(102% — 1)

i

15367 Fogran = D L@y (16M& = Diiz +g9) + 34122 — 1) + 3474522 + 1)
74143 -

gica (z (g7 +43) + 2q193)

2 2 3 2
1022 — 1 Tz —4
+ q1452(10z )+a3(7z )+ 153672 F0q143(z> — 1)

2
585 _ 8a . 2 2 2,2
Ry = —16F7?q1(z2 — 1)21(4 20, —q1, g3)caz(qr1z + g3) (3 (47 + 291932 + q3) — 4MZ(2° — 1))

| 836a@ + DL@)@rz + g3) (6 + 201932 +43) _ 8acaslian) (47 +2) +6q1432 +343)

12872 FSq2q3(z2 — 1)? 12872 F8q143(z* — 1)?
gacal(@3) (34777 + 301432 + D+ 3 +2)  gheulgr +432)
12872 Ffqi (22 — 1)? 12872 Feqi(z2 = 1)’
2
5).82 g
RO = 24 [4:0,—q,q3)caz ((af + 201932 + 43) 2q12* + g1 + 3¢32)

16F8q3(z2 — 1)

g3cazL(@2) (47 +2q1932 + 43) Bq1z + q3(z* +2))
12872 F8q143(z2 — 1)?

— AMZ(Z = D(q1 + ¢32)) —
N gacazL(qn) (3z (47 + 43) + 591932> + q193)
12872 F8q2(z2 — 1)

N gicszL(q3) (g7 Q2% + D + 2q1g32(2* + 2) + ¢5(z* +2)) gies(qiz +q3)
12872 F0q1q5(z> — 1)? 12872 F08q3(z2 — 1)’

2
OF 84 . 2 2 2 2,2
Ry~ = —W““ 10, —q1. g3)ca(qrz + q3) (227 + 1) (41 + 21932 + q3) — 4M(2° — 1))

_ 3gheszl(g)(@i2 4 43) (g1 + 201953+ 45) | gaesl(q) (3412 + 2919522 +2) + 4522 + 1)

12872 F%q1q3(z2 — 1) 12872 F%q3(z2 — 1)2
N gical(g3) (q7(22° + 2) + q1g3(2z* + 32> + 1) + 3¢32) Seqriz +q3)
12872 F8q1g5(z% — 1)? 12872 F8q3(z2 — 1)’
2
5, 2
RO = — 84 140, —q1. g)caqn (6 + 201932 + ¢2) Q122 + q1 + 3g52)

16FSq3(z2 — 17
gacaL(@) (47 + 291932 + 43) Bqiz + ¢5(2° +2))
12872 F8q3(z2 — 1)
gical(gs) (a7 (222 + 1) + 2q1932(2° +2) + ¢3(2° +2))
B 12872 FSq3(z2 — 1)?
_gacaqiL(q) 3z (a7 +43) + 501932 + 143)  gheaqi(qn + 432)
12872 F8q35(z2 — 1) 12872 F8q3(z2 — 1)’

—AM2(Z* — D(q1 + ¢32)) +

(A4)

Finally, the N*LO contributions to the structure functions proportional to g% vanish for R 3, ¢s..2. The nonvanishing
contributions have the form

1
256F0(z% — 1)?
+ 30y (—4MZ(Z2 = D+ g7 + 21932 + g3) — 8c3(2* — 1) (M2 + 47 + 2q1432 + 43) ]

0
ROV = I4:0,—q1,q3) (M2 — 1) — qi(q1 +2432) — ¢3) [B2e1 M2 (2> — 1)
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2L(q2) (47 + 2q1932 + 43) [ 321 M2(Z2 — 1) + ¢2 [20M2 (2> — 1)

+ (222 = 5) (¢} + 29193z + ¢3)] + 8c3(22 — 1) (M2 + ¢} + 291932 + ¢3) ]

 6144m2FSqs(22 — 1)

L(q1) (96¢1 M2(2* — D(q1z + g3) + 3ea(qiz + q3) (—20M2 (> — 1)

+ q3(5 = 22%) + 69193z + 3¢3) — 8c3(2* — 1) [2M2(3q1z + q3(7 — 42) + 3¢iz

+ 4193(42 + 5) + 991937 + 343) |
1
614472 F8qy(z% — 1)?

L(g3) (96¢1 M2(z* — 1)(q1 + q32) + 3ea(qr + q32) (—20M2(22 — 1)

+ 3q7 + 6q1937 + ¢3(5 — 22%)) — 8c3(z* — 1) (2M2(q1(7 — 42%) + 3¢32) + 347 + 9415z

_ (6]12 +2q193z + q32)

+ q143(42° +5) + 3¢32))

5).} 1
REA =
7 128 F8q1q3(z2 — 1)?

204872 FS(z2 — 1)

’

1(4:0, —q1, g3)caz (g7 + 291932 + g3) (—4M2(Z> — D) + g7 + 291932 + ¢3)

| ali@) (a1 + 291932 + 43) ((2* +2) (47 + 291932 + q3) — 8MZ(z* — 1))
307272 Fbq?q3(z2 — 1)
eng2i2 3,2 2 2 2.2 3
aiLl(q) (=8M7(Z* — (g1 + q32) + ¢{(2° + 2) + q7q32(42° + 5) + 9q1432” + 3¢572)

307272 FSq1q3(z2 — 1)?
_caL(gs) (=8M7 (2> — D(q1z + g3) + 3972 + 947 932° + q1932(42% + 5) + ¢3(2* +2)

307272 F8qiq;3(z2 — 1)

s (z (g7 +43) +2q193)
307272 Foq1q3(2 — 1)

(AS5)

A MATHEMATICA notebook which contains the above expressions for the structure functions in momentum space is available

from the authors upon request.
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